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Abstract: Parameter estimation is one of the key technologies for system identification. The Bayesian
parameter estimation algorithms are very important for identifying stochastic systems. In this paper,
a random finite set based algorithm is proposed to overcome the disadvantages of the existing
Bayesian parameter estimation algorithms. It can estimate the unknown parameters of the stochastic
system which consists of a varying number of constituent elements by using the measurements
disturbed by false detections, missed detections and noises. The models used for parameter
estimation are constructed by using random finite set. Based on the proposed system model
and measurement model, the key principles and formula derivation of the proposed algorithm
are detailed. Then, the implementation of the algorithm is presented by using sequential Monte
Carlo based Probability Hypothesis Density (PHD) filter and simulated tempering based importance
sampling. Finally, the experiments of systematic errors estimation of multiple sensors are provided
to prove the main advantages of the proposed algorithm. The sensitivity analysis is carried out to
further study the mechanism of the algorithm. The experimental results verify the superiority of the
proposed algorithm.

Keywords: parameter estimation; importance sampling; Probability Hypothesis Density (PHD);
Random Finite Set (RFS); Markov Chain Monte Carlo (MCMC); simulated tempering

1. Introduction

In modern society, mathematical models are playing increasingly important roles in engineering
systems when used for simulating, predicting, managing, and deciding [1]. Since system identification
is essential for modeling, it is the potential and vital technology to meet the challenges of model based
scientific research. System identification has been applied to many areas, including industrial systems,
agricultural systems, biological systems, medical systems and economic systems, and even social
systems [2–5].

Generally speaking, the existing system identification algorithms can be classified into
non-parametric model identification algorithms and parametric model identification algorithms [6].
Parametric models are more powerful, because they can represent the studied system with fewer
parameters and have more statistical power. The parametric model identification algorithms usually
assume some model structure and estimate the associated parameters by reducing the error criterion
function of the model and practical system. Therefore, parameter estimation is the core component of
these algorithms.

1.1. Parameter Estimation

Parameter estimation refers to identifying, estimating and calibrating continuous or discrete
model parameters [7]. The parameters to be estimated could be the time-invariant physical quantities,
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or the coefficients and other constants in a functional relationship that describe the practical physical
system [8]. They can be represented by scalars, vectors, or matrixes. In this paper, we use an n elements
vector θ ∈ Θ to represent the unknown model parameters.

The stochastic system is the system whose input, output and interference have random factors,
or the system itself has some uncertainty. Only by parameter estimation can we get the model
parameters for the stochastic system. Parameter estimation of the stochastic system is the basis of
state filtering, stochastic control, fault diagnosis, forecasting and many other fields [9]. This paper
deals with the identification problem of stochastic systems whose model structures are known
and parameters to be identified. In this case, the identification of stochastic system minimizes the
estimating of unknown parameters associated with the known models by using prior information and
observations from the practical system.

The Sequential Monte Carlo (SMC) method is a powerful tool to perform optimal state and
parameter estimating by using the nonlinear and non-Gaussian state space models. Since SMC based
parameter estimation algorithms employ the non-parametric statistic inference based on Bayesian
inference theory, and have no assumptions of the distribution and linearity of the studied system,
they are widely used for parameter estimation [10–14].

According to [11], the SMC based parameter estimation algorithms can be broadly formulated
into Maximum Likelihood (ML) formulation and Bayesian formulation. ML formulation is mainly
related to finding a point estimate of the unknown parameter which is the most likely to be associated
with the observations. The ML estimate of the parameters is the parameters that minimize the negative
logarithm of the likelihood function based on the received measurements. The estimation process is
shown as the following equation:

θ̂ML = arg max
θ∈Θ

pθ(z1:T) = arg max
θ∈Θ

log pθ(z1:T) (1)

where θ̂ML is the estimated parameter vector, z1:T is the sequence of measurements, and θ is the
unknown parameter vector to be estimated.

ML method is only applicable to the estimation problem where a joint probability density function
(PDF) can be assigned to the measurements [15]. In addition, ML estimate needs to use the gradient
based search methods such as a damped Gauss–Newton method to actually compute estimated
parameters [16].

In the Bayesian formulation, the unknown parameters θ are regarded as an unobserved
random variable or vector. The Bayesian parameter estimation gives a posterior PDF of the
unknown parameters, conditioned on measurements and prior distribution. Thus, the parameter
estimation problem refers to obtaining the posterior PDF of θ by using the available measurements.
According to Bayes’ theory, the posterior distribution can be obtained by Equation (2), where p0(θ) is
the prior distribution.

p(θ|z1:T) =
p(z1:T |θ)p0(θ)

p(z1:T)
(2)

The first advantage of the Bayesian parameter estimation algorithm over the traditional algorithms
is the conceptualization of the estimation result. In the traditional algorithms, there is a specific but
unknown model that needs to be identified. In the Bayesian algorithm, the model is a random variable
rather than deterministic. The estimation result is a probability distribution for the model parameters
named as posterior distribution. With the probability distribution, we can answer many probabilistic
questions about the model. Such questions are impossible in the traditional algorithms, because the
identified model they provided is not a random variable.

The second advantage of the Bayesian parameter estimation algorithm over the traditional
algorithms is the incorporation with prior information represented mathematically as a prior
distribution for the model. The Bayesian parameter estimation algorithm naturally incorporates
prior information about the estimation result, ranging from hard additional constraints to experience



Entropy 2018, 20, 569 3 of 28

based intuition. Once measurements are collected, they are combined with the prior distribution using
Bayesian inference to produce the desired posterior distribution of the unknown parameters.

Both ML and Bayesian parameter estimation can be implemented off-line or on-line. In an
off-line parameter estimation algorithm, we infer the unknown parameters by iterating over a fixed
measurement dataset. In an on-line method, the unknown parameters are sequentially estimated
as the measurements become available. The role of SMC for both off-line and on-line parameter
estimation is discussed in [10,17]. If we assume that the states of the studied system are unknown,
there is a need to deal with the relationship between states and parameters. Marginalization and data
augmentation are two different strategies for dealing with this kind of parameter estimation problem.
Marginalization means integrating out the states from the problem and viewing the unknown
parameters as the only unknown variable of interest. Usually, marginalization is implemented in an
off-line manner. Data augmentation estimates the unknown parameters together with the states [11,18].
In other words, the data augmentation performs parameter estimation by extending the state with
the unknown parameters and transforming the problem into an optimal filtering problem. Usually,
data augmentation is implemented in an on-line manner.

1.2. Nomenclature

An introduction of some concepts used in this paper is provided in the following. More detailed
information can be found in the provided references.

1.2.1. Random Finite set (RFS)

In the middle 1970s, G. Matheron systematically described the random set theory [19]. The random
finite set (RFS) approach introduced by Mahler is an advanced theory that unifies much of information
fusion under a single Bayesian paradigm [20,21]. The RFS ψ is defined as a random variable that draws
its instantiations ψ = Y from the hyperspace X of all finite subsets Y (the null set ∅ included) of some
underlying space X0. Here, we assume that X0 = Rn is a Euclidean vector space and that, therefore,
X consists of all finite sets of the form Y = ∅ or Y = {y1, . . . , yn} where n ≥ 1 is an arbitrary positive
integer and y1, . . . , yn are arbitrary vectors in Rn.

1.2.2. Finite Set Statistics (FISST)

Here, we adopt FISST which provides the mathematical representation and manipulation of RFS.
FISST is a set of tools for filtering and estimating problems involving RFS [22]. FISST enables the RFS
based Bayesian inference by providing some mathematical tools. Fundamentally, it approaches
the modeling of multi-object tracking by introducing sets that contain a random number of
single-object states, each of which is a random vector. It allows the dynamics of each object (member
of the object set) to vary according to some motion model while the number of objects (members in
the set) is allowed to vary according to some point process model.

1.2.3. Probability Hypothesis Density (PHD)

The difficulty of RFS based Bayesian inference is its computational complexity. To make the RFS
based estimation possible, Mahler proposed the PHD (probability hypothesis density) filter [21,23,24].
The PHD Dk|k(x|Zk) of the posterior probability PDF fk|k(Xk|Zk) is a density function defined on the
single object state x ∈ X0 as follows:

Dk|k(x|Zk) =
∫

fk|k({x} ∪ Xk|Zk)δXk (3)

Here, we use the abbreviation Dk|k(x) = Dk|k(x|Zk). In point theory, Dk|k(x) is defined as the
intensity density. Dk|k(x) is not a probability density, but it represents the density of expected number
of points at x. If S represents a region in the single object state space X0, the integral

∫
S Dk|k(x)dx
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represents the expected number of targets in the state space S. More information about PHD can be
found in [22].

1.2.4. Simulated Tempering

Simulated tempering is a stochastic optimization method that is used for improving the probability
of an optimization routine converging to a global optima in highly multimodal objectives [25]. It adopts
the properties of thermodynamical systems and deals with two important problems with Markov
Chain Monte Carlo (MCMC) methods: one is improving exploration of multimodal distributions,
and the other one is allowing estimation of the normalizing constant of the target distribution.
Simulated tempering augments the Markov chain state with a discrete index variable controlling
the inverse temperature of the system [26].

The objective function that we want to minimize is defined by the energy function φ of the
system and the variables being optimized with the state x ∈ X. An increasing schedule of K inverse
temperatures {βk}K

k=1 is chosen with 0 = β1 ≤ β2 ≤ · · · ≤ βK = 1. The variables x ∈ X on which the
target distribution P is defined are augmented with a discrete index variable k ∈ {0, . . . , K}. A joint
density on the target variable x and temperature index k is then defined as

px,k(x, k) =
1
C

exp(−βkφ(x)− (1− βk)ψ(x) + ωk) (4)

where C is a constant, and {ωk}K
k=0 is a set of prior weights associated with each inverse temperature

value, and which can be used to help shape the marginal distribution on the temperature index k.
The energy function φ is defined as the negative logarithm of the unnormalized target density i.e.,
φ(x) = − log p̃(x). Function ψ defines a corresponding energy function for a base distribution Q with
normalized density q(x) = exp(−ψ(x)).

If k = 0, the conditional distribution Px|k on the target variables x corresponds to the base
distribution Q and β0 = 0. If k = K, it will correspond to the target distribution P and βK = 1. We can
therefore use the x components of sampled chain states for which k = K to estimate the variables of
interest which is related to the target distribution P. In simulated tempering, a Markov chain with
invariant distribution corresponding to (4) is constructed by alternating updates of the target variables
x given the current value of temperature index k, with updates of the temperature index k given the
current value of the target variables x. More information about simulated tempering can be found
in [27].

1.3. Motivation and Advantages of the Proposed Parameter Estimation Algorithm

In this paper, we choose to use the Bayesian formulation represented by Equation (2).
The unknown parameters are regarded as a random vector and associated with a suitable prior
information modeled by the prior distribution. The posterior PDF of the parameters is to be
characterized by using the given measurements. The proposed parameter estimation algorithm
can be regarded as the Monte Carlo batch techniques [28], and it is perfect for estimating parameters
of stochastic dynamic systems. The proposed parameter estimation algorithm is an off-line Bayesian
parameter estimation algorithm, and it is an updated version of the marginalization based algorithms.

The conventional Bayesian parameter estimation algorithms depend on the vector based
representation of data including states and measurements. The vector based representation makes
these algorithms have three essential disadvantages. The first one is that they must assume that the
studied system is a single permanently active system and the model is presumed. They cannot be
used for estimating the dynamic system that switches on and off randomly. The transition from one
mode to another is impossible. The second disadvantage is that they are based on the assumption
that the detection is perfect which means no clutters and no missed detections, and they also need
the number and sort order of measurements to be previously designated. The third disadvantage is
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that they are not appropriate for estimating the systems with varying state dimensions caused by the
varying number of constituent elements contained in the studied system.

The limits of the commonly used random vector based Bayesian estimation algorithms are
analyzed in [29]. We can find that the root of their disadvantages is that they must ensure the dimension
and elements’ order in each vector to be equal and fixed. They also need necessary operations outside of
the Bayesian recursion to ensure the consistency of the vectors used for calculation. The determination
of newly observed measurements and missed measurements is through vector augmentation and
truncation which are very computationally intensive and irreversible. In this paper, we propose
to employ the RFS theory to overcome these disadvantages of the standard vector based Bayesian
parameter estimation algorithms.

An RFS has a broader application prospect than a random vector, because an RFS has a random
number of constituent vectors and it allows these constituent vectors themselves to be random,
distinct and unordered [30]. In practice, the number of measurements is not fixed and the ordering of
measurements is irrelevant, so the measurements are better to be modeled as an RFS. RFS based data
representation generalizes the system model and measurement model for parameter estimation,
because it takes into account a more realistic situation where the varying number of objects,
detection uncertainty, clutters, missed detections and data association uncertainty are all taken
into consideration.

Unlike the traditional parameter estimation algorithms and the vector based Bayesian parameter
estimation algorithms, the proposed Bayesian parameter estimation algorithm employs RFS based
modeling, and has the following advantages:

1. It can estimate the parameters by using the imperfect detections including noises, clutters,
data association uncertainty and missed detections. Thus, it enables the measurement model
used for parameter estimation to be more universal and consistent with the practical system.

2. It can estimate the parameters for the stochastic systems which consist of a varying number of
constituent components or objects. It can take the object birth, object death and spawned objects
of the studied system into consideration.

3. The proposed algorithm can also accurately estimate the states of the studied system and the
number of objects contained in the studied system while estimating the unknown parameters.
The estimation of states and object number depends on the estimated parameters.

The rest of the paper is structured as follows. We present the RFS based modeling for both
measurement model and system model in Section 2. A detailed description of the PHD based Bayesian
inference and the SMC based implementation are given in Section 3. The proposed RFS based
parameter estimation algorithm is detailed in Section 4. After describing the proposed algorithm,
in Section 5, we take a particular problem of estimating systematic errors of multiple sensors as an
example to verify this algorithm. In order to better promote academic exchanges, we provide the source
codes for the experiments in the supplementary materials part. Finally, the conclusion is provided in
Section 6.

2. RFS Based Modeling

The RFS based parameter estimation algorithm uses two kinds of models to describe the real world:
one is the Markov transition density based system model; the other one is the measurement likelihood
based measurement model. System model is used to model the state transition of the studied system,
and the measurement model is used to model the practical measurement system. Here, we focus
on estimating the static parameter vector θ which features in the state space models that represent
system dynamics and measurement system using observations from the practical system. The RFS
based representation of measurements and states is the foundation of RFS based algorithm. In this
section, we give the RFS based problem formulation and the RFS based models used in the proposed
parameter estimation algorithm.
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2.1. Problem Formulation

Suppose at time step k = 0, 1, 2, . . ., the studied system consists of nk objects. Their states can,
respectively, be represented by the vectors xk,1, . . . , xk,nk

, and each state vector is obtained from the
state space X ⊆ Rnx . In practice, the number nk and the individual states in X of system’s constituent
elements are both time varying and random. In this paper, the system state at k is described by an
RFS Xk = {xk,1, . . . , xk,nk

} ∈ F (X ). The state evolution of the RFS based system model can be
described by the Markov system state process conditioned on the static parameters θ ∈ Θ. The state
evolution is characterized by a prior density X0 ∼ µ(X0|θ) and a multiple objects transition density
Πk|k−1(Xk|Xk−1, θ).

The measurement process is imperfect in the sense that there exists detection uncertainty.
The measurement devices usually create false detections. If observation datasets are available
at time k = 1, 2, . . ., and there are mk elements in the observation dataset at time k, and the
observations take a values in the measurement space Z ⊆ Rnz . Then, the observations can be
modeled by an RFS Zk = {zk,1, . . . , zk,mk

} ∈ F (Z ). Here, we assume that the measurement process
is conditionally independent from the system’s state evolution, and can be fully described by the
likelihood ϕk(Zk|Xk, θ) which is conditioned on θ ∈ Θ.

We assign a prior distribution to the unknown parameter vector θ, and estimate it on the parameter
vector space according to Bayesian theory. The parameter estimation problem in this paper mainly
refers to estimating the posterior PDF p(θ|Z1:K); here, Z1:K = Z1, . . . , ZK is the measurement set
sequence gathered up to time index K. If the prior density p0(θ) is given, according to Equation (2),
the estimation result in the Bayesian approach is given by:

p(θ|Z1:K) =
f (Z1:K|θ)p0(θ)

f (Z1:K)
∝ f (Z1:K|θ)p0(θ) (5)

The computation of f (Z1:K|θ) is quite difficult, because it refers to performing estimation on
the joint space of the unknown system states history X1:K and the unknown parameter vector θ.
To solve this problem, we choose to consider a broader problem instead of solving the problem directly.
The parameter estimation problem can be regarded as a subproblem of the chosen problem where the
main task is to obtain the following posterior PDF :

f (θ, X1:K|Z1:K) ∝ f (X1:K|Z1:K, θ) f (Z1:K|θ)p0(θ) (6)

where f (X1:K|Z1:K, θ) is the posterior PDF of the system states conditioned on θ and all the given
observation datasets.

2.2. RFS Based Measurement Model

For the given predicted system state Xk = {x1, . . . , xn}, the random measurement set collected
by the sensor can be represented by Zk = Γk(Xk) ∪ Ck, where Γk(Xk) is the object detection set and it
has the form Γk(Xk) = Γk(x1) ∪ · · · ∪ Γk(xn); Γk(xj) is the detection set for state xj; and Ck is the set of
Poisson clutters.

Any given object in the studied system can generate either a single measurement or no
measurement at all. Consequently, Γk(xi) can be modeled as Γk(xi) = ∅pD(xi |θ) ∩ {Zi}. Here,
Zi = h(xi, W i|θ) is the sensor-noise model associated with ith state xi; and ∅pD(xi |θ) is the discrete
random subset of the baseline measurement space Z0. Detection uncertainty is modeled as a Bernoulli
RFS as follows:

Pr(∅p = T) =


1− pD(x|θ), if T = ∅

pD(x|θ) · g(Zi|θ), if T = Z0

0, otherwise

(7)
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where pD(x|θ) is the probability that a single object whose state is x gives a single observation,
and 1− pD(x|θ) is the probability that the sensor generates no measurement at all.

The fact that the clutter process is Poisson means that the clutters can be represented by the
set C = {c1, . . . , cM}, where M is a random nonnegative integer with probability distribution
pM(m) = e−λλm/m!; c1, . . . , cM are independent, and identically distributed random measurement
vectors with density c(z) = gC(z|θ).

For the state set Xk, the PDF of receiving the measurement set Zk is described by the true
likelihood function ϕk(Zk|Xk, θ), which describes the sensor measurement for the studied system and
characterizes the missed detections, clutters, and object generated observations. As described in [29],
the true likelihood function can be calculated as follows:

ϕk(Zk|Xk, θ) = ϕk((Γk(Xk) ∪ Ck)|Xk, θ) = ∑
W⊆Zk

pΓk(Xk)
(W|Xk, θ)pCk |θ(Zk −W) (8)

= eλ · gC(Zk|θ) · gk(∅|Xk, θ) ·∑
ξ

∏
i:ξ(i)>0

pD(xi|θ) · gk(zξ(i)|xi, θ)

(1− pD(xi|θ)) · λ · c(zξ(i)|θ)
(9)

where gC(Zk|θ) = e−λ ∏z∈Zk
λc(z|θ) and gk(∅|Xk, θ) = e−λ ∏x∈Xk

(1− pD(x|θ)); the summation is
taken over all associated hypothesis ξ : {1, . . . , n} −→ {0, 1, . . . , m}. In time, the clutter process is
Poisson distributed, and the mean value is λ. In space, the clutter process is distributed according
to an arbitrary density c(z), and ck|k(Zk|θ) = e−λλm

k|kck|k(z1) · · · ck|k(zm) is the probability that a set
Zk = {z1, . . . , zm} of clutters will be generated. gk+1(z|x, θ) = gWk+1(z− hk+1(x|θ)) is the likelihood
function of a single sensor.

2.3. RFS Based System Model

Some systems may consist of multiple objects, and the number of these objects can be
constantly varying, just as the objects appear and disappear from the system. Existing objects can give
rise to new objects through spawning. Objects can likewise leave the system, as when disappearing,
or they can be damaged or destroyed. All of these instances of multiple object dynamics should be
explicitly modeled. If multiple objects contained in the studied system are related to birth, death,
spawning, merging, and so on, the standard vector based estimation algorithms are inapplicable,
because they fail to accurately estimate the number of objects in the studied system.

We model the time evolution of the system which consists of multiple objects by employing RFS.
We take the object birth, death, spawn, and motion into consideration. The system Markov density
Πk|k−1(Xk|Xk−1, θ) characterizes the time evolution of the system states. Here, we give the true system
Markov density function Πk|k−1(Xk|Xk−1, θ) for the proposed system model, where Xk = {x1, . . . , xnk}
and Xk−1 = {x′1, . . . , x′nk−1

}. The RFS based representation of system’ states has the following
mathematical form

Xk = Sk|k−1(Xk−1) ∪ Bk|k−1(Xk−1) ∪ Bk (10)

where Xk is the set of predicted system states, Sk|k−1(Xk−1) is a set of states of persisting objects that
are continuing to exist in the system, Bk|k−1(Xk−1) represents the state set of spawned elements,
Bk represents the state set of spontaneous objects. Sk|k−1(Xk−1) has the form Sk|k−1(Xk−1) =

Sk|k−1(x′1) ∪ · · · ∪ Sk|k−1(x′nk−1
), and Sk|k−1(x′i) is the set of predicted states evolved from x′i.

Bk|k−1(Xk−1) has the form Bk|k−1(Xk−1) = Bk|k−1(x′1) ∪ · · · ∪ Bk|k−1(xnk−1), and Bk|k−1(x′i) is the
set of spawned states by the object whose previous state is x′i.

As detailed in [29], the RFS based system model is identical in mathematical form to the RFS
based measurement model. The corresponding true Markov density is
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Πk|k−1(Xk|Xk−1, θ) = Πk|k−1((Sk|k−1 ∪ Bk|k−1 ∪ Bk)|Xk−1, θ) (11)

= ∑
W1∩W2=∅,W1∪W2⊆Xk−1

pSk|k−1
(W1|Xk−1, θ)pBk|k−1

(W2|Xk−1|θ) · pBk (Xk −W1 −W2|θ) (12)

= eµ(Xk−1|θ) fBk|k−1
(Xk|θ) fk|k−1(∅|Xk−1, θ)∑

ξ
∏

ξ(i)>0

ps(x′i|θ)πk|k−1(xξ(i)|x′i, θ)

(1− ps(x′i|θ))µ(Xk−1)b(xξ(i)|Xk−1, θ)
(13)

where πk|k−1(xk|xk−1, θ) is a Markov transition density, which corresponds to a single object system
model xk = π(xk−1, V k−1|θ). It is the likelihood that a single object will have state vector xk at time step

k if it had state vector xk−1 at time step k− 1. ps(xk|θ)
abbr.
= pk|k−1

s (xk−1|θ) denotes the probability of
object’s surviving into time step k. b(Bk|k−1(Xk−1)|xk−1, θ) is the probabilistic distribution of spawning
a set Bk|k−1(Xk−1) of new objects at time step k. The summation is taken over all association hypotheses
ξ : {1, . . . , nk−1} −→ {0, 1, . . . , nk}.

The related definitions in Equation (13) are as follows:

fk|k−1(∅|Xk−1, θ) = e−µ(Xk−1|θ) ∏
xk−1∈Xk−1

(1− ps(xk−1|θ)) (14)

µ(Xk−1|θ) = µ0 + µ1(x′|θ) + · · ·+ µnk−1(x′|θ) (15)

b(x|Xk−1, θ) =
µ0b0(x|θ) + µ1(x′|θ)b(x|x′1, θ) + · · ·+ µnk−1(x′|θ)b(x|x′nk−1

, θ)

µ0 + µ1(x′|θ) + · · ·+ µnk−1(x′|θ) (16)

Here, µ0 is the expected number of spontaneously generated new objects and b0(x|θ) is their
physical distribution. In addition, µ(x′i|θ) is the expected number of new objects spawned by an object
whose previous state is x′i, and b(x|x′i, θ) is their physical distribution.

3. PHD Filter

3.1. PHD Based Bayesian Equations

The Bayesian estimator sequentially determines the posterior PDF of the system states fk|k =

(Xk|Z1:k, θ) at each time step k, where Z1:k ≡ Z1, . . . , Zk denotes the gathered measurement set
sequence up to time step k. The posterior PDF is calculated through the prediction and the correction
recursion sequentially. On the assumption that the posterior PDF fk−1|k−1(Xk−1|Z1:k−1, θ) at time k− 1
is already known, if the set of measurements Zk which is related to time k has been given, the prediction
step and corrected step can be described as in [22]:

fk|k−1(Xk|Z1:k−1, θ) =
∫

Πk|k−1(Xk|Xk−1, θ) · fk−1|k−1(Xk−1|Z1:k−1, θ)δXk−1 (17)

fk|k(Xk|Z1:k, θ) =
ϕ(Zk|Xk, θ) · fk|k−1(Xk|Z1:k−1, θ)∫
ϕ(Zk|X, θ) · fk|k−1(X|Z1:k−1, θ)δX

(18)

The PHD filter is an approximation of the Bayesian estimator described by Equations (17)
and (18) [31]. Rather than propagating the FISST PDF fk|k(Xk|Z1:k, θ), we can only propagate PHD
Dk|k(x|Z1:k, θ), defined by Equation (3).

The prediction equation of the PHD filter can be represented as follows [21]:

Dk|k−1(x|θ) = γk|k−1(x|θ) + ps

∫
πk|k−1(x|x′, θ) · Dk−1|k−1(x′|θ)dx′ (19)

where γk|k−1(x|θ) represents the PHD related to the object birth RFS between step k − 1 and k.
Once the observation dataset Zk for time k is available, the correction equation of the PHD filter
can be represented as follows [21]:
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Dk|k(x|θ) = (1− pD) · Dk|k−1(x|θ) + ∑
z∈Zk

pD · gk(z|x, θ) · Dk|k−1(x|θ)
κk(z|θ) + pD

∫
gk(z|x, θ) · Dk|k−1(x|θ)dx

(20)

where κk(z|θ) is the PHD related to the clutter RFS at step k. Here, the clutters are characterized by the
Poisson RFS. The PHD of the Poisson RFS is κk(z|θ) = λc(z|θ); here, λ denotes the mean number at
step k, and c(z|θ) denotes the spatial distribution of clutters in the measurement space.

3.2. SMC based Implementation

Beginning with Sidenbladh [32] and Zajic [33], many researchers have studied how to implement
the PHD filter by using the SMC method. By using sequential importance sampling to each terms
of Equation (19), the particle approximation of Equation (19) can be obtained. After choosing the
importance densities pk(·|Zk, θ) and qk(·|xk−1, Zk, θ) for spontaneous birth and persisting objects,
Equation (19) can be rewritten as

Dk|k−1(xk|θ) =
γk|k−1(xk|θ)
pk(xk|Zk, θ)

pk(xk|Zk, θ) +
Lk−1

∑
i=1

ω
(i)
k−1

ps · πk|k−1(xk|x
(i)
k−1, θ)

qk(xk|x
(i)
k−1, Zk, θ)

qk(xk|x
(i)
k−1, Zk, θ) (21)

Therefore, we can get the particle approximation of Dk|k−1(x|θ) as follows

Dk|k−1(x|θ) =
Lk−1+Jk

∑
i=1

ω
(i)
k|k−1δ

x(i)k|k−1
(x) (22)

where

x(i)k|k−1 ∼
{

qk(·|x
(i)
k−1, Zk, θ), i = 1, . . . , Lk−1

pk(·|Zk, θ), i = Lk−1 + 1, . . . , Lk−1 + Jk
(23)

ω
(i)
k|k−1 =


psπk|k−1(x(i)k|k−1|x

(i)
k−1,θ)

qk(x(i)k|k−1|x
(i)
k−1,Zk ,θ)

ω
(i)
k−1, i = 1, . . . , Lk−1

γk|k−1(x(i)k|k−1|θ)

Jk pk(x(i)k|k−1|Zk ,θ)
, i = Lk−1 + 1, . . . , Lk−1 + Jk

(24)

For the correction step of the PHD filter, the predicted PHD can be represented by
{ω(i)

k|k−1, x(i)k }
Lk−1+Jk
i=1 after prediction step, where x(i)k = x(i)k|k−1. Applying the correction Equation (20),

we can get the following particle approximation

Dk|k(x|θ) =
Lk−1+Jk

∑
i=1

ω
(i)
k δ

x(i)k
(x) (25)

where

ω
(i)
k = (1− pD)ω

(i)
k|k−1 + ∑

z∈Zk

pD · gk(z|x
(i)
k , θ) ·ω(i)

k|k−1

κk(z|θ) + ∑
Lk−1+Jk
j=1 pD · gk(z|x

(j)
k , θ) ·ω(j)

k|k−1

(26)

By updating the weights of the particles in term of Equation (26), the correction step maps the
predicted particle system {ω(i)

k|k−1, x(i)k }
Lk−1+Jk
i=1 into the corrected particle system {ω(i)

k , x(i)k }
Lk−1+Jk
i=1 .

4. RFS based Parameter Estimation Algorithm

The system states conditioned on θ, are estimated by using the Bayesian theory. The main task
is to obtain an estimate of PDF f (X1:K|Z1:K, θ) for each possible value of θ by running a PHD filter
implemented by SMC. By this way, we can evaluate the measurement likelihood f (Z1:K|θ), and then
we can indirectly obtain a practical solution for p(θ|Z1:K).
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4.1. Formula Derivation

By employing PHD to approximate Equation (6), we can estimate f (X1:K|Z1:K, θ) which depends
on RFS based modeling. According to the relationship between the PHD and the RFS based PDF
detailed in [22], Equation (6) can be rewritten as the following equation

D(θ, x1:K|Z1:K) ∝ D(x1:K|Z1:K, θ) · f (Z1:K|θ) · p0(θ) (27)

The advantage of Equation (27) is that the posterior PHD D(x1:K|Z1:K, θ) is defined on the standard
vector based state space X , so the calculation of the RFS based posterior PDF f (X1:K|Z1:K, θ) is
quite easy.

The observed data likelihood f (Z1:K|θ) of the accumulated sequence of observation dataset which
features in Equations (5) and (27) can be calculated by using the following equation:

f (Z1:K|θ) =
K

∏
k=1

f (Zk|Z1:k−1, θ) (28)

Now, the problem is how to calculate the measurement likelihood f (Zk|Z1:k−1, θ) using the
results of PHD filter. The equations and SMC based implementation of the PHD filter for recursively
estimating Dk|k(x|Z1:k, θ) have been introduced in Sections 3.1 and 3.2. The measurement likelihood
f (Zk|Z1:k−1, θ), which is defined as in [21], can be calculated as follows

f (Zk|Z1:k−1, θ) =
∫

ϕ(Zk|Xk, θ) ·Π(Xk|Z1:k−1, θ)δXk (29)

From Equations (28) and (29), we can find the tight relationship between the parameter estimation
problem and the state estimation problem. The key challenge is how to deal with the unknown
system states. The PHD filter implemented by the SMC method is used to solve this problem. Thus,
f (Zk|Z1:k−1, θ) can be obtained by using PHD filer, and can be calculated as follows:

f (Zk|Z1:k−1, θ) = αe−
∫

pD(xk |θ)·Dk|k−1(xk |Z1:k−1,θ)dxk

× ∏
z∈Zk

(
κk(z|θ) +

∫
pD(xk|θ) · g(z|xk, θ) · Dk|k−1(xk|Z1:k−1, θ)dxk

)
(30)

where α is a proportionality constant.
As described in Section 3.2, we can use the weighted particle system {x(i)k , ω

(i)
k }

N
i=1 to represent

the posterior PHD Dk|k(x|Z1:k, θ). To estimate the posterior p(θ|Z1:K), we should firstly obtain the
approximation of f (Zk|Z1:k−1, θ) given by Equation (30) by running the PHD filter. According to
Equation (22), the predicted PHD Dk|k−1(x|Z1:k−1, θ) is approximated by the following particles

D̂k|k−1(x|Z1:k−1, θ) =
Nk

∑
i=1

ω
(i)
k|k−1δ

x(i)k|k−1
(x) (31)

Substituting Equation (31) into Equation (30), we can obtain the following result:

f̂ (Zk|Z1:k−1, θ) = α exp

{
−

Nk

∑
i=1

pD(x(i)k|k−1|θ)ω
(i)
k|k−1

}

× ∏
z∈Zk

(
κk(z|θ) +

Nk

∑
i=1

pD(x(i)k|k−1|θ) · g(z|x
(i)
k|k−1, θ)ω

(i)
k|k−1

)
(32)

Therefore, according to Equation (28), f (Z1:K|θ) can be calculated as follows:
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f̂ (Z1:K|θ) = αK exp

{
−

K

∑
k=1

Nk

∑
j=1

pD(x(j)
k|k−1|θ)ω

(j)
k|k−1

}

×
K

∏
k=1

∏
z∈Zk

(
κk(z|θ) +

Nk

∑
j=1

pD(x(j)
k|k−1|θ) · g(z|x

(j)
k|k−1, θ)ω

(j)
k|k−1

)
(33)

4.2. Simulated Tempering Based Importance Sampling

We have obtained the estimate of f (Z1:K|θ) by running the PHD filter, the following step
is to compute p(θ|Z1:K) according to Equation (5). Since the analytic solution for p(θ|Z1:K) is
difficult to compute, we solve Equation (5) by using the simulated tempering based importance
sampling method.

Since we are interested in the values of the unknown parameters, we can compute them as the
posterior mean by using the following equation:

E(θ|Z1:K) =
∫

θp(θ|Z1:K)dθ (34)

To avoid doing integral calculus, we propose to approximate Equation (34) via importance sampling.
Here, we assume the sample size is M, we draw a sample θ1, . . . , θM from the importance density ξ.
Thus, the integral in Equation (34) can be approximated by the following equation:

θ̂ =
M

∑
j=1

`jθj (35)

The sample weights `j ≥ 0, (j = 1, . . . , M) are defined as:

`j =
˜̀ j

∑M
m=1

˜̀m
, with ˜̀ j =

f (Z1:K|θj)p0(θj)

ξ(θj)
(36)

According to Equation (36), we find that α can be omitted, since it cancels out if we normalize
the weights. Thus, for convenience, we assume α = 1. The determination of sample weight `j depends
on the selection of importance density ξ(θj). A good selection of importance density should be
proportional to the posterior PDF f (Z1:K|θj) and produce sample weights with a small variance.

Since we can only obtain an estimation of f (Z1:K|θj)/αK after running the SMC based
PHD filter, the selection of the importance density ξ is quite important. If the sample size M → ∞,
the approximation Equation (35) will be quite accurate for many importance densities. However,
if M is finite, the approximation accuracy will depend greatly on the specific selection of importance
density ξ. As shown in Equation (36), the accuracy of importance sampling by using the prior
information is not satisfactory for any possible sample size, since the posterior PDF p(θ|Z1:K) which is
proportional to f (Z1:K|θ)p0(θ) is unknown. We propose a simulated tempering [2] based importance
sampling method to obtain a better importance density ξ which is similar to the posterior PDF
p(θ|Z1:K).

Here, we use S to represent the maximum stages number and ϑs, s = 1, . . . , S, represent the
proposal density for the s-th stage. The main idea of tempering is to sequentially generate a
serious of importance densities from which we can sequentially draw samples. The first importance
density usually resembles the prior density p0(θ), and the final importance density is the posterior
PDF p(θ|Z1:K). The sequential importance density in the sequence should have very small difference.
We obtain ϑS = p(θ|Z1:K) at the final stage S . A sequence of importance densities that begin with the
prior density and increasingly resemble the posterior PDF can be generated by the following equation,
for s = 1, . . . , S

ϑs(θ) ∝ [ f (Z1:K|θ)]Λs p0(θ) (37)
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where Λs = ∑s
j=1 β j with β j ∈ (0, 1] and at the final stage we have ΛS = 1. Thus, Λs increases with the

growth of s and its upper bound is 1.
During the tempering process, we should sequentially draw samples from importance densities

ϑ1, ϑ2, . . . , ϑS. At the first stage (s = 1), we draw the sample {θ1
j }M

j=1 from the prior density

ϑ0(θ) = p0(θ). At the s-th stage, we use the sample {θs−1
j }M

j=1 drawn from ϑs−1 at the (s − 1)th

stage to obtain a sample from ϑs. Firstly, we need to compute weights from particles in {θs−1
j }M

j=1 by

using the equation ˜̀s
j = f (Z1:K|θs−1

j )βs for j = 1, . . . , M. Then, we normalize the weights.
Resampling is quite necessary for tempering, because it can help to remove the particles with

lower weights from the sample {θs−1
j }M

j=1 and improve the diversity of the remaining particles. Thus,
the second step is resampling. Resampling means selecting M indices is

1, . . . , is
M with probability

Pr{is
j = j} = `s

j .

After resampling, the particles {θ̃s
j}1≤j≤M will almost surely have repeated elements, because the

weights `s
1, . . . , `s

M will be the most possible to be uneven. Here, the MCMC (Markov Chain Monte
Carlo) [34] is employed to the sample {θ̃s

j}1≤j≤M that have been resampled. MCMC can help to
remove the duplicate particles, thus the diversity of the sample will be increased. For each particle of
{θ̃s

j}1≤j≤M, a new sample particle can be drawn as follows

θs,∗
j ∼ gs(·|θ̃

s
j ) (38)

where gs represents the importance density for the s-th stage. The decision of accepting or rejecting
θs,∗

j with certain probability is made by using the Metropolis–Hastings algorithm. If the MCMC move

is accepted, θs
j = θs,∗

j . If the move is rejected, θs
j = θ̃

s
j . Thus, we can obtain a new sample {θs

j}M
j=1.

The probability of accepting the MCMC move is determined by the following equation

η = min

{
1,

ϑs(θ
s,∗
j )gs(θ̃

s
j |θs,∗

j )

ϑs(θ̃
s
j )gs(θ

s,∗
j |θ̃

s
j )

}
(39)

To diversify the sample, the importance density gs should generate the candidate particles over a
fairly large area of the parameter space. We should ensure that gs is still within the area where the
likelihood is high. We can select the importance density by the following method as introduced in [35]:

gs(θ
∗|θ) = gs(θ

∗) = N (θ∗; µ̂s, Ĉs) (40)

where N (θ; µ, C) denotes a Gaussian distribution; µ̂s and Ĉs are respectively the mean and covariance
matrix of the weighted particles {`s

j , θs−1
j }M

j=1.
The pseudo-code of the proposed parameter estimation algorithm is shown in Algorithm 1.

Here, 1 ≤ H ≤ M and φ > 0 are parameters that should be defined by users.
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Algorithm 1: Random Finite Set based Parameter Estimation Algorithm

Input: Accumulated measurement sets Z1:K; prior information p0(θ)

Output: Sample {θS
j=1}M

j=1 and maximum a posteriori estimate θ̂

1 Initialization:
2 Initialize s = 0, and Λ0 = 0;
3 for j = 1, . . . , M do
4 Draw θ0

j ∼ p0(θ);

5 Execute the PHD filter with θ0
j to estimate ψ0

j = log f (Z1:K|θ0
j ) according to (33);

6 end
7 Simulated Tempering based importance sampling:
8 while Λs < 1 and s < S do
9 Update stage number s = s + 1 ;

10 Sort negative log-likelihoods: −ψs−1
(1) < −ψs−1

(2) < · · · < −ψs−1
(M)

;

11 Update the correction factor βs = min{1−Λs−1,−φ/ψs−1
(H)
};

12 Update Λs = Λs−1 + βs;
13 for j = 1, . . . , M do
14 Compute sample weight ˜̀s

j = exp{βs · ψs−1
(j) };

15 end
16 Normalize the sample weight: `s

j =
˜̀s

j / ∑M
m=1

˜̀m
j ;

17 Compute the mean µ̂s and covariance matrix Ĉs;
18 for j = 1, . . . , M do
19 Select ij = j with probability `s

j and let θ̃
s
j = θs−1

ij
and ψ̃s

j = ψs−1
ij

;

20 Draw θs,∗
j ∼ gs(·; µ̂s, Ĉs) according to (40);

21 Execute PHD filter using θs,∗
j to estimate ψs,∗

j = log f (Z1:K|θs,∗
j ) according to (33);

22 Compute acceptance probability η = min
{

1, exp[βs(ψ
s,∗
j − ψ̃s

j )]
gs(θ̃

s
j )

gs(θ
s,∗
j )

}
;

23 Sample u ∼ U[0,1];
24 if u < η then
25 Set θs

j = θs,∗
j and ψs

j = ψs,∗
j ;

26 else
27 Set θs

j = θ̃
s
j and ψs

j = ψ̃s
j ;

28 end
29 end
30 end
31 Compute the maximum a posterior (MAP) estimate θ̂ from the sample {θS

j }M
j=1.

5. Experiments

In this section, we verify the correctness and validity of the proposed algorithm by using an
example of multiple sensors. Estimating the systematic errors of multiple sensors is important for
sensor registration in cooperative networked surveillance [36]. In this example, we estimate the
systematic errors of two sensors. The advantages of the proposed algorithm introduced in Section 1.3
are all successfully proved. In order to ensure that those who are interested in the experiments can
conduct these experiments smoothly, we also provide the source codes as the supplementary materials.
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5.1. Experimental Models

Here, we use the measurements given by R (here R = 2) static sensors to estimate the systematic
errors of these sensors. Here, we denote the observation dataset reported by sensor rk ∈ {1, . . . , R} at
time k by Z(rk)

k = {z(rk)
k,1 , . . . , z(rk)

k,mk,rk
}. To verify the first advantage introduced in Section 1.3, we use the

detection probability pD to characterize the detection uncertainty, and missed detection. The sensor
observations are affected by the systematic errors and the measurement noises. The clutters are
characterized by using Poisson RFS. We assume that the observations provided by the sensors are the
azimuth and range to the objects in the surveillance system. For an observation z ∈ Z(rk)

k which is
related to the object with state x ∈ Xk, the measurement likelihood of the r-th sensor is modeled as:

g(rk)
k (z|x, θ) = N

(
z; h(rk)

k (x)− θ(rk), Σ
(rk)
k

)
(41)

where h(rk)
k (x) is the measurement function of the r-th sensor, and its specific form is as follows:

h(rk)
k (x) =

[√
(x− xr)2 + (y− yr)2

arctan( x−xr
y−yr

)

]
(42)

where (xr, yr) is the position of the r-th sensor. The unknown parameter vector θ consists of four
parameters as follows:

θ = [∆η1, ∆ρ1, ∆η2, ∆ρ2]
T (43)

where θ(r) = [∆ηr, ∆ρr]T , which appears in Equation (41), denotes the systematic error vector for
the r-th sensor (r = 1, 2), ∆η is the azimuth systematic error and ∆ρ is the range systematic error.
Σ
(rk)
k = diag

[
(σ

(r)
η )2, (σ(r)

ρ )2] is the covariance matrix in (41). p(r)D denotes the detection probability of
the r-th sensor.

To verify the second advantage of the proposed algorithm introduced in Section 1.3, the targeted
system surveilled by the sensors consists of a varying number of objects. We use the probability of
survival ps to characterize the uncertainty of target existence. The state of each individual object is
described by the vector x = [x, ẋ, y, ẏ]T , here (x, y) denotes the position of the object and (ẋ, ẏ)
denotes the velocity.

The state of each object in the surveillance system evolves according to the Markov transitional
density in time, and it is independent of the unknown parameters θ. Here, we use the following
motion model:

πk|k−1(x|xk−1) = N (x; Fkxk−1, Qk) (44)

where

Fk = I2 ⊗
[

1 Tk
0 1

]
, Qk = I2 ⊗v

 T3
k

3
T2

k
2

T2
k

2 Tk

 (45)

and ⊗ is the Kroneker product, Tk = tk+1 − tk denotes the time interval of the sensors, and v denotes
the intensity of process noises.

5.2. Experimental Setup

The typical observation dataset sequence Z1:K, the real states of the multiple objects and the
location of the sensors in the experiment are shown in Figure 1. The number of observation datasets
used for estimating parameter is K = 20. The number of component objects is varying in the
experiment, with nk = 3 for k = 1, 2, 3, 4, 5; nk = 5 for k = 6, 7, 8, 9, 10; nk = 4 for k = 11, 12, 13, 14, 15;
and nk = 3 for k = 16, 17, 18, 19, 20. The two sensors in the experiment work asynchronously: Sensor 1
provides observation datasets at odd time steps, and Sensor 2 provides observation datasets at even
time steps. Tk = 1 s is the time interval between k and k− 1. The location of two sensors are (x1, y1)
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= (0 km, 0 km) and (x2, y2) = (200 km, 100 km). The probability of detection is p(1)D = p(2)D = 0.98,
the expected numbers of Poisson clutters for two sensors are: λ1 = λ2 = 5, while c1(z|θ) = c2(z|θ)
are uniform distribution over Z = [−π, π]×[0 km, 1000 km]. The standard deviation of observation
noises is σ

(1)
ρ = σ

(2)
ρ =1 km and σ

(1)
η = σ

(2)
η = 0.2◦. The true systematic errors are ∆η1 = −3◦,

∆ρ1 =10 km, ∆η2 = 3◦, ∆ρ2 = −10 km.
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m
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Real System States
Dataset of Sensor1
Dataset of Sensor2
Location of Sensor1
Location of Sensor2

Figure 1. The location of sensors (marked by square), the real states of the studied system which
contains multiple objects and the accumulated observation dataset Z1:K for two sensors.

The SMC based implementation of PHD filter uses N = 1000 particles per newborn object and
persistent object. The probability of object survival is ps = 0.99. The expected number of object birth
is 0.03. The prior distribution p0(θ) is a uniform distribution over [−10◦,+10◦]× [−20 km,+20 km]×
[−10◦,+10◦]× [−20 km,+20 km]. The sample number in the systematic errors space is M = 1000.
The parameters used in adaptively choosing β are: φ = 65 and H = 0.5 M. We set the maximum
number of stages by S = 10.

5.3. Experimental Results

The estimated systematic errors for the sensors are given in Figure 2. Figure 2 is the histogram
with a distribution fit of the resulted sample {θS

i }M
i=1. Figure 2a–d marginalizes the posterior PDF

p(θ|Z1:K) approximated by the resulted samples to one dimension and obtain the estimated azimuth
systematic error ∆η and range systematic error ∆ρ for the sensors. The solid lines in each figure are
the kernel density estimate (KDE) of the marginal posterior PDF. The vertical dashed lines in each
figure are the true values of the sensors’ systematic errors. Since we have obtained the KDE, we use
the maximum a posterior (MAP) method to estimate the sensors’ systematic errors. The estimation
results are shown in Table 1.

In Figure 2 and Table 1, we can know that the proposed RFS based parameter estimation algorithm
can provide the accurate estimated parameters by using the RFS based measurement model and the
measurements set that consists of noises, false detections, and missed detections. This is consistent
with the first advantage introduced in Section 1.3. Moreover, the proposed algorithm gives the accurate
estimated parameters for the stochastic system in which the number of constituent objects (targets) is
varying over time. This is consistent with the second advantage introduced in Section 1.3. The obtained
experimental results show an outstanding accuracy of the proposed algorithm, although the size of
dataset is only 20 scans.
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Table 1. True and estimated sensors’ systematic errors.

∆η1 (deg) ∆ρ1 (km) ∆η2 (deg) ∆ρ2 (km)

True values −3 10 3 −10
Estimated values −2.9399 9.9790 2.9418 −10.0558
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(a) systematic error of Sensor 1, azimuth
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(b) systematic error of Sensor 1, range
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(c) systematic error of Sensor 2, azimuth
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Figure 2. Histograms with distribution fit of the systematic error sample {θS
j }M

j=1 that are marginalized
to ∆η1: (a) systematic error of Sensor 1, azimuth, ∆ρ1; (b) systematic error of Sensor 1, range, ∆η2;
(c) systematic error of Sensor 2, azimuth, ∆ρ2; and (d) systematic error of Sensor 2, range.

To quantitatively assess the convergence of the algorithm, we adopt the convergence diagnostic
named as the estimated potential scale reduction (EPSR). The definition of EPSR is given in [37,38].
The resulted sequence of correction factors β and the EPSR at each stage s = 1, . . . , 10 are listed in
Table 2. From this table, we can know that the simulated tempering process works effectively. As the
stage number increases, the correction factors of each stage increase, and EPSR at each stage decreases,
which means that the resulted sample in the simulated tempering process increasingly concentrates in
the area of the parameter space characterized by the true likelihood.

Table 2. Correction factors and EPSR during simulated tempering.

s 1 2 3 4 5 6 7 8 9 10

βs 0.0557 0.0663 0.0854 0.0883 0.0896 0.0903 0.0906 0.0908 0.0910 0.0700
EPSR 1.0043 0.9492 0.8862 0.8731 0.8680 0.8673 0.8671 0.8670 0.8669 0.8667

The estimates θs (the mean of all the particles at each stage) over the simulated tempering stages
obtained by running the proposed algorithm are shown in Figure 3. The black solid lines are the true
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range and azimuth systematic errors of the sensors. The red circles are the sample mean at different
tempering stages. From this figure, we can see that, after the fourth stage, the estimation results are
very close to the real systematic errors. Since Λs = ∑s

j=1 β j is still less than 1, the estimation process
will continue until reaching the maximum stage number S = 10.
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Figure 3. True sensors’ systematic errors and sample mean for all stages: (a) sensors’ systematic
errors–azimuth; and (b) sensors’ systematic errors–range.

The SMC approximation of the posterior PDF of the sensors’ systematic errors according to
Equation (35) at the first stage, fifth stage and tenth stage are shown in Figure 4. The true systematic
errors for sensors are represented by black circles. In Figure 4, we can see that, as the simulated
tempering process evolves, the particles gradually concentrate on the real systematic errors of
the sensors.
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Figure 4. Particle approximation of the posterior PDF of the systematic errors of the sensors at: s = 1 (a);
s = 5 (b); and s = 10 (c).

5.4. System States and Object Number Estimation

As given in Section 1.3, the third advantage of the proposed algorithm is that it can provide
the estimate of the system states and the number of targets. Figure 5a gives the real target number
contained in the system and the estimated one. Figure 5b gives the real and estimated system states
at all the sampling time. From this figure, we can find that the proposed algorithm can accurately
estimate the varying number of targets and system states at the final stage by using the estimated
systematic errors of sensors.
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Figure 5. The estimated target number and system states given by the proposed algorithm: (a) the real
and estimated target number; and (b) the real and estimated system states.

5.5. Comparison with Metropolis Hastings Algorithm

There are many probability distributions from which it is impossible to sample directly.
The Metropolis Hastings (MH) algorithm is a typical MCMC algorithm that can generate a sequence of
random samples from these distributions. Since it is the most widely used method in statistics and in
statist physics, we verify the superiority of the proposed algorithm by comparing with MH algorithm.
Figure 6 displays the histogram of the resulted samples given by using MH algorithm with the identical
experimental setup. From this figure, we can find that the resulted samples given by MH algorithm are
more decentralized than the proposed algorithm. The estimated results are shown in Table 3. We can
find that the proposed algorithm are more accurate than MH algorithm.
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Figure 6. Histograms with distribution fit of the systematic error sample {θS
j }M

j=1 by using Metropolis
Hastings algorithm: (a) systematic error of Sensor 1, azimuth; (b) systematic error of Sensor 1, range;
(c) systematic error of Sensor 2, azimuth; and (d) systematic error of Sensor 2, range.
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Table 3. True and estimated sensors’ systematic errors by using two algorithms.

∆η1 (deg) ∆ρ1 (km) ∆η2 (deg) ∆ρ2 (km)

True values −3 10 3 −10
Estimated values by proposed algorithm −2.9399 9.9790 2.9418 −10.0558

Estimated values by MH algorithm −3.6075 13.1868 2.7403 −5.9794

To compare the accuracy of the importance sampling process, we adapt the evaluation criteria
named as autocorrelation function (ACF) [39,40]. According to the fundamentals of MCMC,
the samples generated by using MCMC are auto-correlated. Compared with the independent samples,
the information content of the samples is relatively reduced. The sample based ACF at lag k of a set of
samples is defined as follows:

ρk =
1

M−k ∑M−k
s=1 (θs − θ̄)(θs+k − θ̄)
1

M−1 ∑M
s=1(θs − θ̄)2

(46)

where θ̄ = 1
M ∑M

s=1 θs is the Monte Carlo estimate, and θs is a sample. From the definition, we can see
that, if the ACF dies off to 0 more rapidly, it indicates that the samples are less auto-correlated and
more accurate. Figure 7 displays the ACF of the proposed algorithm and MH algorithm. From this
figure, we can find that the ACF of the proposed algorithm dies off to 0 more rapidly than the MH
algorithm. Thus, the accuracy of the prosed algorithm is much higher.
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Figure 7. ACF of the proposed algorithm and MH algorithm: (a) ACF for Sensor 1, azimuth; (b) ACF
for Sensor 1, range; (c) ACF for Sensor 2, azimuth; and (d) ACF for Sensor 2, range.

The former experiments assume that the prior p0(θ) is a uniform distribution. To verify the
superiority of the proposed algorithm in a more general case, we assume the prior p0(θ) is a Gaussian
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distribution with mean value [−2.5; 9.5; 2.5;−9.5] and covariance diag [10, 20, 10, 20]. Figure 8
displays the histogram of the resulted samples by using the proposed algorithm. We can find that the
resulted KDE densities have deviation by comparing with the former experiment. This is caused by
the inaccurate prior distribution. Figure 9 displays the histogram of the resulted samples given by HM
algorithm. From this figure, we can find that the resulted samples are still very decentralized and the
distribution of samples is heavily depending on the prior distribution.

The estimated results of the two algorithms are given in Table 4. We can find that the accuracy of
the proposed algorithm deteriorates slightly, but it is still better than the results of MH algorithm.

The ACF of the two algorithms is given in Figure 10. We can find that the ACF of the proposed
algorithm dies off to 0 more slowly than the former experiment, but still more rapidly than the MH
algorithm. Thus, the accuracy of the estimated results of the proposed algorithm is a little better than
the MH algorithm.

Table 4. True and estimated sensors’ systematic errors for Gaussian distribution.

∆η1 (deg) ∆ρ1 (km) ∆η2 (deg) ∆ρ2 (km)

True values −3 10 3 −10
Estimated values by proposed algorithm −2.8619 9.2276 3.0909 −11.0458

Estimated values by MH algorithm −2.7219 9.7624 2.4841 −8.8048
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Figure 8. Histograms with distribution fit of the sample {θS
j }M

j=1 by using the proposed algorithm
when the prior is Gaussian distribution: (a) systematic error of Sensor 1, azimuth; (b) systematic error
of Sensor 1, range; (c) systematic error of Sensor 2, azimuth; and (d) systematic error of Sensor 2, range.
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Figure 9. Histograms with distribution fit of the sample {θS
j }M

j=1 by using MH algorithm when the
prior is Gaussian distribution: (a) systematic error of Sensor 1, azimuth; (b) systematic error of Sensor
1, range; (c) systematic error of Sensor 2, azimuth; and (d) systematic error of Sensor 2, range.
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Figure 10. ACF of the proposed algorithm and MH algorithm when the prior is Gaussian distribution:
(a) ACF for Sensor 1, azimuth; (b) ACF for Sensor 1, range; (c) ACF for Sensor 2, azimuth; and (d) ACF
for Sensor 2, range.
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5.6. Sensitivity Analysis

In this section, we analyze the sensitivity of the proposed algorithm to a number of
important parameters, such as the particle number N for PHD filter, the sample number M in parameter
space as well as the parameter φ related to the simulated tempering process.

5.6.1. Particle Number N

The PHD filter can provide the estimation of the likelihood f (Z1:K|θ). Hence, the accuracy of the
proposed parameter estimation algorithm may depend on the particle number N used by the SMC
based PHD filter. The influence of the particle number N on the parameter estimation is presented in
Figure 11. The estimated systematic errors at the 10th stage for different particle number N by using
MAP are given in Table 5.
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Figure 11. The sample mean for different particle number N used by PHD filter: (a) sensors’ systematic
errors–azimuth; and (b) sensors’ systematic errors–range

Table 5. Estimated systematic errors at stage s = 10 for different particle number N.

N 500 800 1000 2000 3000 4000 5000

∆η1 (deg) 3.1676 −2.9190 −2.9399 −2.9443 −2.9465 −2.9415 −2.9418
∆ρ1 (km) 9.9420 9.9475 9.9790 9.9776 9.9874 9.9828 9.9813
∆η2 (deg) 2.7879 2.9364 2.9418 2.9739 3.0019 2.9791 2.9827
∆ρ2 (km) −10.4852 −10.0786 −10.0558 −10.0259 −10.0569 −10.0507 −10.0481

In Figure 11 and Table 5, we can find that the estimation error has a decreasing tendency as N
increases. With more particles, PHD filter can give more accurate likelihood f (Z1:K|θ), and thus leads
to a better coverage of the parameter space. The plot shows that the decreasing tendency in estimation
errors by increasing N is not proportional, and when N increases to a certain degree, the improvement
of estimation accuracy is very small. The result shows that, if N increases to a certain degree, it will
not significantly affect the parameter estimation results. As the accuracy of the estimation results is
restricted by the quality of the model and data used in the parameter estimation process, the estimation
results without any errors by continuously increasing N is impossible. The computational complexity
will also be increased as N increases. Therefore, we should achieve a balance between computational
complexity and estimation accuracy.

Figure 12 shows the ACF by using different values of N. For the convenience of analysis, we give
the ACF of the first 150 samples. From this figure, we can find that, if N is larger, the corresponding
ACF will die off to 0 more rapidly, so the accuracy is higher.
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Figure 12. ACF for different particle number N: (a) ACF for Sensor 1, azimuth; (b) ACF for Sensor 1,
range; (c) ACF for Sensor 2, azimuth; and (d) ACF for Sensor 2, range.

Table 6 shows the EPSR at all the stages for different particle number N used by the PHD filter.
From this table, we can find that, as the number of stage increases, the EPSR of each stage decreases.
This means that as the simulated tempering process progresses, the sample increasingly concentrates
in the area of the parameter space characterized by the true likelihood. The increase of the particle
number N seams to have no influence on the convergence of the proposed algorithm.

Table 6. EPSR for different particle number N.

N 500 800 1000 2000 3000 4000 5000

s = 1 1.0043 1.0043 1.0043 1.0043 1.0043 1.0043 1.0043
s = 2 0.9482 0.9447 0.9492 0.9426 0.9439 0.9344 0.9440
s = 3 0.8778 0.8765 0.8862 0.8756 0.8726 0.8780 0.8744
s = 4 0.8694 0.8692 0.8731 0.8684 0.8679 0.8691 0.8687
s = 5 0.8667 0.8674 0.8680 0.8674 0.8673 0.8677 0.8674
s = 6 0.8663 0.8670 0.8673 0.8672 0.8671 0.8672 0.8671
s = 7 0.8662 0.8670 0.8671 0.8670 0.8671 0.8671 0.8670
s = 8 0.8662 0.8670 0.8670 0.8668 0.8670 0.8671 0.8670
s = 9 0.8661 0.8669 0.8669 0.8668 0.8669 0.8670 0.8668
s = 10 0.8661 0.8668 0.8667 0.8668 0.8667 0.8669 0.8668

5.6.2. Sample Number M

The sample number M in the parameter space may also have influence on the accuracy of
parameter estimation. The influence of the sample number M on the parameter estimation result
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is summarized in Figure 13. Table 7 is the MAP estimate at the 10th stage for different M. From
the plot, we can find that the decreasing tendency in estimation errors by increasing M is quite
similar to the result caused by increasing N. If M increases to a certain degree, the improvement of
estimation accuracy is very small. There also needs a balance between computational complexity and
estimation accuracy.

The EPSR of different sample size M is given in Table 8. From this table, we can find that the
increase of M will result in the increase of EPSR, which means that the convergence of the proposed
algorithm will be increased.
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Figure 13. The sample mean for different sample number M in the parameter space: (a) sensors’
systematic errors–azimuth; and (b) sensors’ systematic errors–range.

Table 7. Estimated systematic errors at stage s = 10 for different sample numbers M.

M 500 800 1000 1500 2000 2500

∆η1 (deg) −3.0428 −2.5120 −2.9399 −2.9704 −2.9844 −2.9816
∆ρ1 (km) 11.4438 9.7102 9.9790 9.9889 10.0056 10.0567
∆η2 (deg) 3.2298 2.8761 2.9418 3.0196 2.9482 2.9519
∆ρ2 (km) −8.2334 −10.3842 −10.0558 −10.2542 −9.8020 −10.0881

Table 8. EPSR of different sample size M.

M 500 800 1000 1500 2000 2500

s = 1 1.0039 0.9905 1.0043 1.0030 1.0661 1.0560
s = 2 0.9348 0.9111 0.9492 0.9621 0.9852 0.9933
s = 3 0.8784 0.8681 0.8862 0.9028 0.8929 0.9016
s = 4 0.8700 0.8671 0.8731 0.8774 0.8780 0.8791
s = 5 0.8680 0.8668 0.8680 0.8772 0.8773 0.8779
s = 6 0.8674 0.8667 0.8673 0.8671 0.8671 0.8673
s = 7 0.8671 0.8666 0.8671 0.8668 0.8669 0.8671
s = 8 0.8666 0.8666 0.8670 0.8667 0.8668 0.8670
s = 9 0.8665 0.8665 0.8669 0.8666 0.8667 0.8668

s = 10 0.8665 0.8665 0.8667 0.8666 0.8666 0.8667

5.6.3. Simulated Tempering Parameter

By setting the maximum stage number to be S = ∞, the influence of the parameter φ on the
parameter estimation results is presented in Figures 14 and 15. In Figure 14, we can find that a smaller
φ will need more stages and get more accurate estimation result. If φ is bigger than a certain degree,
the number of stages will be very small, and the estimation errors will be bigger. In Figure 15b,
we can find that, if a lower value of parameter φ is used, the MCMC acceptance rate will be increased.
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In Figure 15a, we can find that, if a lower value of parameter φ is used, the number of stages S will be
increased, because the increments of correction factors βs become smaller.
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Figure 14. The sample mean for different φ: (a) sensors’ systematic errors, azimuth; and (b) sensors’
systematic errors, range.

0 5 10 15 20 25 30 35 40
0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

discrete stage index s

C
or

re
ct

io
n 

fa
ct

to
r 

β s

 

 

φ=20
φ=30
φ=50
φ=65
φ=80
φ=100
φ=150

(a)

0 10 20 30 40
0

20

40

60

80

100

discrete stage index s

ac
ce

pt
an

ce
 r

at
e 

(%
)

 

 

(b)

Figure 15. The relationship between correction factors, acceptance rates and φ: (a) correction factors;
and (b) acceptance rates.

The computational complexity of simulated tempering based importance sampling is
determined by the number of stages S and the correction factors β1, · · · , βS. To reduce the
computational complexity, we tend to use a small value of S. However, at the same time, if we
choose a small S, the sequential intermediate distribution ϑs will vary rapidly. There is a balance
between the number of stages (related to the computational complexity) and the estimation accuracy.

We give the estimated systematic errors at the final stage for different φ in Table 9. It seems that,
if φ decreases, the stage number will increase and the estimated results will be more accurate.

Table 9. Estimated systematic errors at the final stage for different φ.

φ 20 30 50 65 80 100 150

Maximum stage number 40 27 17 13 11 10 8
∆η1 (deg) −2.9850 −2.9832 −2.9717 −2.9399 −3.0010 −3.3901 −4.1380
∆ρ1 (km) 9.9788 9.9784 9.9484 9.9790 9.7276 8.9416 7.2124
∆η2 (deg) 2.9770 2.9701 2.9295 2.9418 2.8938 2.6447 2.0738
∆ρ2 (km) −9.9075 −10.0889 −10.1899 −10.0558 −9.9267 −10.4167 −11.8311
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6. Conclusions

We have presented the proposed RFS based parameter estimation algorithm to overcome some
disadvantages of the vector based Bayesian algorithms. We also detail how to implement this algorithm
by using the SMC based PHD filter and simulated tempering based importance sampling. By applying
the SMC based PHD filter, the proposed algorithm successfully extends the application of parameter
estimation from the single object system to the stochastic system which consists of a varying number
of constituent objects. Without any assumptions under ideal conditions, it can fit the dynamic nature
of the studied system and the detection uncertainty of the measurement system very well. It can be
successfully used for identification of the stochastic systems which consist of a varying number of
constituent objects. It can also be used for parameter estimation problem where the observation dataset
is affected by false detections, missed detections and noises.

Supplementary Materials: The supplementary files are the source codes for the experiments of this paper.
The related experimental results are also given. The files are available online at http://www.mdpi.com/1099-
4300/20/8/569/s1.
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