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Abstract: Non-destructive testing (NDT) for eggshell faults is highly important for the egg industry,
as cracked eggs account for around 3% of total production. The most commonly used method at
present, candling, is labor intensive, while computer vision systems are expensive and complicated.
In this paper, we present a simple, yet efficient, novel method for eggshell crack detection by acoustic
spectroscopy. Altogether, 693 sound recordings were evaluated by different classification methods.
The results show a cross-validated 2.1% total classification error, with only 0.87% false positive rate,
which is the crucial metric for fresh eggs. Adapting the developed method to an industrial setting
may lead to a reliable, fast and cost-effective detection method.

Keywords: egg; eggshell; acoustics; crack detection; non-destructive testing; spectroscopy

1. Introduction

Non-destructive testing (NDT) for eggshell and internal egg defects is very important
for the industry for two reasons: 1. as opposed to other foodstuff, destructive testing of a
batch sample cannot be extrapolated to critical faults of individual pieces, which account
for about 3% of total production [1]; 2. quasi-non-destructive testing would completely null
the value of the product for customers. These two factors created an ideal circumstance for
researching NDT solutions for the industry. In addition, the most commonly used method
at present, candling, requires extensive human labor [2,3].

There have been several attempts for automation of the eggshell crack detection
process with the aid of computer vision systems, but these are very costly, and their
reliability is questionable. Nevertheless, the pressure of the industry has led to creative
solutions, such as the one described in a patent [4], which is able to detect microcracks but
also requires a pressurized chamber of alternating pressures and, therefore, is expensive
and difficult to implement. This shows the difficulties faced when high precision is a factor
to consider. Classification of cracked eggs with computer vision systems has proven to be
difficult: Wu et al. [5] managed to achieve only 93% validated correct classification using
soft-margin support vector machine (SVM) classification.

Detection of cracks based on visual cues is difficult due to two main factors: computer
vision systems can only see the samples in two dimensions, which means it is required
to move the eggs in a calculable manner (direction- and speed-wise); detection of surface
faults on constantly moving ovoid bodies with a high variance in spatial dimensions is an
immensely complex task. This can also create a bottleneck for automated and operator-
dependent solutions. Although candling can be used for internal defect detection or
observation of embryos, these details are more pronounced at later stages, and the problem
affecting consumer acceptance from the very beginning is the presence of shell defects.
The other problem is that there ought to be no lower threshold on the size of the fault; it
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is a matter of presence or absence, meaning the tiniest cracks, in some cases with width
measured in microns, need to be detected [6]. A great benefit of visual techniques is that
they bear the possibility of applying spectroscopic analysis to measure internal qualities [7],
which is difficult (but not impossible, as with estimation of density and mass (0.62–0.68) in
Wang et al. [8]) with acoustic measurement.

The acoustic response is a feature that can be quickly determined and analyzed,
and it requires less precision in an online industrial setting and significantly less data to
be processed as opposed to multiple high-resolution pictures. These factors made it a
prevalent technology in the industry, although it is not perfect. Coucke et al. [9] published
a study in 1997 concerning successful testing for fertility of eggs based on acoustic signals
but pointed out in their later study and doctoral thesis [10,11] that the acoustic response of
the egg is mostly characterized by the mechanical properties of the shell. Their findings
were verified by Attar and Fathi [12], who found a strong correlation (0.97) between
resonance frequency and shell strength. Their method was further developed by De
Ketelaere [13,14] and Cho et al. [15]. Cho’s team, using discriminant analysis, achieved
4% and 6% misclassification errors for intact and cracked eggs, respectively. Li et al. [16]
applied the Bayesian probabilistic classifier on wavelet transforms of acoustic responses for
the detection of cracks, reaching a correct classification rate over 95%, but a precise value
was not stated. Jindal and Sirtham [2] reported the identification of 99% of all cracked
eggs, but their false rejection rate was 10%. In contrast to this, Coucke’s method based
on the dynamic stiffness (Kdyn) calculated from the spectrum gave a false rejection of 1%,
and it was used as the basis for later research by De Ketelaere [17] and Bain et al. [18].
Deng et al. [19] applied a wavelet transformation-based technique, reaching a maximum
of a 98.9% detection rate with SVM and a 0.8% false rejection rate, but it was unvalidated,
meaning the actual prediction capability of their model is undoubtedly worse.

Despite these issues, the most reliable method for crack detection on an industrial
scale remains the acoustic response method. Even though it is the prevalent technique,
as discussed in this section, there is still room for improvement, as the producers tend to
heavily underestimate the ratio of defected eggs by approximately half [18].

2. Results
2.1. Performance Indicators

First, a general prediction was performed with all the settings discussed in the Materi-
als and Methods section to provide an overall picture of which methods should be taken
into consideration for later calculations. The tested discriminants were K-nearest neighbors
(KNN), SVM, decision trees, linear discriminant analysis (LDA) and quadratic discriminant
analysis (QDA). Results for the three performance indicators are shown in Tables 1–3 (no
decimal precision was provided by the built-in application of MATLAB for false positives).

Table 1. Group prediction accuracy (%) of different classification methods.

Window Size 212 213 214

Multiplier 21 22 23 21 22 23 21 22 23

C
la

ss
ifi

er LDA 94.8 94.2 94.5 94.0 94.6 94.6 94.6 95.0 94.7
QDA 95.5 95.0 94.3 96.3 95.6 95.6 97.2 96.2 97.0
SVM 95.2 95.9 95.2 95.9 95.3 95.6 96.3 96.3 96.0
KNN 93.2 92.8 93.3 94.7 94.2 94.9 94.9 94.9 94.7
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Table 2. False positives for crack presence (%) of different classification methods.

Window Size 212 213 214

Multiplier 21 22 23 21 22 23 21 22 23

C
la

ss
ifi

er LDA 6 6 6 6 6 6 6 5 6
QDA 3 3 3 3 3 3 2 3 2
SVM 5 4 5 3 5 4 3 3 3
KNN 6 6 6 5 5 4 4 5 5

Table 3. Speed of classification (s−1) of different classification methods.

Window Size 212 213 214

Multiplier 21 22 23 21 22 23 21 22 23

C
la

ss
ifi

er LDA 610 450 130 430 250 220 170 160 91
QDA 610 500 270 410 210 230 210 100 92
SVM 780 270 140 480 220 270 260 150 95
KNN 750 380 140 470 270 260 260 100 91

It is clear that window size contributed to the classification performance, but the
multiplier value did not. The speed of classification shows very high values, but they
decline rapidly with multiplier and window size. This indicator, although being important
on an industrial scale, can be boosted easily by using the right hardware and firmware,
and, therefore, it is considered less relevant than the other two.

Summing up all of the conclusions from the results presented in the tables, QDA
and SVM classifiers showed the best performance, and the values of indicators were not
consistent or poor for LDA and KNN. The performance difference between QDA and SVM
becomes evident when the false positive rates are interpreted correctly: SVM misses the
detection of a crack approximately one and a half times more often than QDA; that is, for
two faulty eggs missed by QDA, there is a third missed by SVM. Therefore, in the future,
only the QDA classifier should be used.

2.2. Classifier Eligibility Testing

Despite the obvious prevalence of QDA over LDA, it is important to evaluate whether
QDA should be applied instead of LDA. The difference between LDA and QDA is that for
QDA, the covariance matrices of variables between groups of observations are different,
whereas for LDA, they are equal.

In case inequality is a valid assumption, the difference between the spectra of the
intact and cracked eggs should be captured in the principal components from principal
component analysis (PCA). This can be easily verified by plotting the diagonal (containing
the column variances) of the covariance matrix corresponding to the coefficients of the
components with the highest variance explanation power (component number one) against
the original variables for the two groups. Different covariance matrices manifest in different
loading (coefficient) patterns, as shown in Figure 1 (for laid down position only).
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Figure 1. Column variances of the PCA coefficients for the two groups of samples.

Moreover, disparities in covariances of the original variables (i.e., the spectra) may
give us insights into which frequencies may describe other frequencies well, revealing
important regions for differences in the sounds. The main differences in curve shape (not
only the height) can be found in the interval between 500 Hz and 3000 Hz as seen in
Figure 2 for the laid down position.
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2.3. Final Crack Detection Results

After verification of the applicability of QDA, the method should be rigorously tested
while pushing the limits of the prediction performance, using the two most important
indicators: total classification error and false positive detections of faulty eggs. A high fold
number for cross-validation (20) was used, to ensure the validity of the results. A window
size of 214 and a multiplier of 21 were used.

The number of latent variables was calculated by minimizing the total classification
error, which corresponded with the false positive error rate. This ultimately resulted in
a 2.1% prediction error for the total number of misclassifications and a 0.87% prediction
error for false positives, as shown in Table 4, using 40 latent variables that accounted for
the 99.6% explained variance.

Table 4. Validated classification matrix of the optimized QDA algorithm.

True

Intact Cracked

predicted intact 566 6
cracked 9 112

3. Discussion

Egg crack detection resulted in high validation accuracy based only on the FFT spec-
trum magnitude values used as predictor variables. This suggests that it is not only the
resonance frequency shift used in earlier studies that can reliably be used for prediction of
faults, but the spectrum magnitudes themselves capture the important variations caused
by physical changes in the shell.

The classification method proposed in this paper, based on acoustic excitation and
FFT analysis of the eggs, was purposely tested against cracks that are very difficult and, in
some cases, impossible to detect by candling. The 2.1% total misclassification and 0.87%
false positive error rate achieved by our method, compared to many published in this field,
are validated and are among the best-validated results found in the literature, showing
promise for industrial application.

In an industrial setting, the most problematic aspects are external sources of noise and
automation of a steady excitation process. The problem of noises can be addressed by using
a tunnel with quasi-soundproof insulation. This can lower the medium- and high-pitch
external noises considerably, and, at the same time, low-frequency vibrations of machines
are not of concern, as they appear outside the bandwidth of interest, 500–30,000 Hz. The
other important tool for proper signal extraction is the microphone. The use of a high-
sensitivity lobar polar pattern condenser microphone is suggested, as the sensitivity pattern
is ideal for focused, unidirectional sound capture, further decreasing the effects of ambient
noise. Such microphones are relatively cheap (in the range of a few hundred euros),
especially when compared to high-quality industrial cameras used for automated candling.
This allows for speeding up of the grading process using multiple grading lines, as the costs
of extension are much lower than those of candling. As a side note, as shown in Table 3,
the calculation time for individual sample classification is extremely low, does not require
high computation power and is completely automatic. This keeps the costs low, and the
process will not increase the grading time. The other condition for a successful automation
of the method is either conversion of the steady excitation protocol to a continuously
applicable one, or the adaptation of the grading line by adding a stage for the egg coming
to a rest. For the latter, as the procedure of excitation and recording requires less than one
tenth of a second, they do not create a bottleneck, and a very short stoppage is sufficient.
Furthermore, the laid down position favors the automation, since this is the natural rolling
and resting position for eggs, and, therefore, no manipulation of the alignment is required.
This results in a seemingly continuous procedure, as the whole grading process can be
completed in less than one second, which is the lower end of the industry standard. The
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other option, excitation of rolling samples, can be carried out by stationary obstacles acting
as exciters, which allows a completely continuous process. In this case, the time between
the successive samples needs to be adjusted to maintain separation of the signals and
synchronization of recording, but it opens up the possibility of even faster grading.

The supporting pad used in the experiment was made of a relatively stiff polyurethane
foam and had an impermeable surface layer; therefore, it is applicable in industrial equip-
ment with the possibility of cleaning and, if necessary, easy replacement. The main purpose
of the foam is to minimize the conduction of ambient vibrations, and, therefore, other, non-
rigid materials may be suitable for supporting the samples during the excitation if necessary.

4. Materials and Methods

Acoustic measurements were conducted through a course of six weeks on medium-
sized eggs (53–63 g). The restriction to medium size was applied because this is the most
common size in the industry, especially for processed products, and the aim of the study
was to prove that the principles of the present method can be applied. Furthermore, as
preliminary infinite-element modelling has shown, size does not create profound changes
in the resonance spectra of the eggshells. Samples were stored at 22 ◦C (± 1 ◦C), between
50–70% relative humidity. The storage experiment was set up in order to follow mass loss
and other structural and chemical changes, but this part of the experiment was unsuccessful.
Because of this, the hereby described measurements do not address the storage effect.
Before starting the measurements, all samples were tested for faults by candling; a bright
light was shone through the eggs to reveal hair cracks (see Figure 3).
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All eggs were measured on the zeroth day, and 20 eggs were weekly tested for
constituents, which meant cracking them open in the process; therefore, these samples
were removed from the set. Before opening them completely, a very small (most of the
time invisible) thin microcrack was inflicted on the pointy tip (opposite the air chamber)
of the eggs, and acoustic testing was conducted before and after this destructive action,
totaling 705 measurements over six weeks. The test itself was carried out by excitation with
a hollow metal rod, meaning a single light knock on the shell. This knock was performed
in both an upright (north–south, NS) and a laid down (east–west, EW) position on the
uppermost part, meaning the pointy tip in NS and along the equatorial circumference in
the EW arrangement. For stabilization and noise reduction, in both positions, the samples
were placed on a foam pad (as suggested by Felföldi and Ignát [20]) hollowed out for the
insertion of a microphone.
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For recording, a very sensitive microphone was used with a practically flat spectrum
sensitivity. This instrument was connected to a Hewlett-Packard 53670A signal analyzer,
from which the sound signal was sent to a laptop for recording with 96,000 Hz sampling
frequency in lossless wav format. The experimental setup is shown in Figure 4. The sound
files were processed with a program compiled in the MATLAB 2017a environment.
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After removing erroneous measurement files, the total number of processed measure-
ments was 693. The signals were first cropped to length dictated by the desired window
size (but no less than 4096 points), which includes the most information-rich part of the
response signals. The window size of the Fourier transform is defined as the length of
the part (or the entirety) of the signal, measured in the number of data points, that is
being converted by the transformation process into a spectrum for representation on the
frequency domain. The signals were grouped according to the position of testing; examples
for the two signals are shown in Figure 5.
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After normalization, fast Fourier transforms (FFT) of the signals were calculated with
different window sizes to assess the effect of increasing resolution. Examples of the spectra
of the response signals in the two positions are shown in Figure 6.

Molecules 2021, 26, x 8 of 10 

After normalization, fast Fourier transforms (FFT) of the signals were calculated with 
different window sizes to assess the effect of increasing resolution. Examples of the spec-
tra of the response signals in the two positions are shown in Figure 6. 

Figure 6. Spectra of the signals in NS (a) and EW (b) positions. 

As an extra step, padding with zeros was also carried out, functioning as a basis to 
use multipliers for further increase in the resolution. The number of padding zeros was 
calculated as 

Z = N(M − 1) (1)

where N is the number of data points in the signal, and M is the value of the multiplier. 
These multipliers take the form of the powers of two, because the FFT algorithm window 
sizes are also restricted to 2n points. The lowest number used as the multiplier was 2, 
meaning the total length of the padded signal was double the original. The applied win-
dow sizes were not necessarily matched, resulting in the original, lower resolution with a 
running window, theoretically capturing more of the variation in time. 

This manipulation of the resolution was carried out in order to assess whether more 
meaningful information can be extracted from the spectrum than what can be extracted 
using default window sizes. This is a useful technique when the precise locations of mov-
ing peaks (searching for resonant frequencies) are to be identified. However, it might also 
have an effect on using the magnitude values as variables, because with relocation of res-
onant frequency peaks, magnitude change in their original location occurs. This effect can 
also stack along neighboring frequencies and can be exploited if the entire spectrum is 
used as a series of explanatory variables. 

Spectra were considered where 0 Hz < f < 3000 Hz, because there was no apparent 
change apart from the noise in the higher frequencies; the lowest frequency was deter-
mined by the resolution. The magnitudes of all frequencies were used for classification, 
but for NS and EW positions separately, because on an industrial scale, it is not realistic 
to expect that sorting machines can move around eggs and handle both positions in a 
reasonable timeframe. 

b 

a 

Figure 6. Spectra of the signals in NS (a) and EW (b) positions.

As an extra step, padding with zeros was also carried out, functioning as a basis to
use multipliers for further increase in the resolution. The number of padding zeros was
calculated as

Z = N(M − 1) (1)

where N is the number of data points in the signal, and M is the value of the multiplier.
These multipliers take the form of the powers of two, because the FFT algorithm window
sizes are also restricted to 2n points. The lowest number used as the multiplier was 2,
meaning the total length of the padded signal was double the original. The applied
window sizes were not necessarily matched, resulting in the original, lower resolution with
a running window, theoretically capturing more of the variation in time.

This manipulation of the resolution was carried out in order to assess whether more
meaningful information can be extracted from the spectrum than what can be extracted
using default window sizes. This is a useful technique when the precise locations of moving
peaks (searching for resonant frequencies) are to be identified. However, it might also have
an effect on using the magnitude values as variables, because with relocation of resonant
frequency peaks, magnitude change in their original location occurs. This effect can also
stack along neighboring frequencies and can be exploited if the entire spectrum is used as
a series of explanatory variables.

Spectra were considered where 0 Hz < f < 3000 Hz, because there was no apparent
change apart from the noise in the higher frequencies; the lowest frequency was determined
by the resolution. The magnitudes of all frequencies were used for classification, but
for NS and EW positions separately, because on an industrial scale, it is not realistic
to expect that sorting machines can move around eggs and handle both positions in a
reasonable timeframe.
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In all cases, the spectrum was first processed with PCA to ensure the independence
of the variables, which is a pivotal assumption for some of the classifiers tested. Principal
components were calculated up to 99% of the described variance in the original data (i.e.,
the spectrum magnitudes).

For classification, a range of techniques were tested, including linear and nonlinear
prediction methods: KNN, SVM, decision trees, LDA and QDA. Among the metrics for
performance were the total number of misclassifications, the number of false positives for
cracked eggs (as the most important aspect in the industry) and the speed of classification
for new independent samples, which obviously depends greatly on the computer used for
estimation but is a good basis for comparison between different methods.

All classification techniques were tested on spectra gained with window sizes of 212,
213 and 214 and multipliers of 21, 22 and 23, giving nine results per performance indicator
per classifier per position (a total of 216). The result for the NS positions were subpar;
therefore, they were omitted from further analysis. In all cases, K-fold cross-validation
with 20 folds was applied to avoid underestimation of falsely classified samples.
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