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Abstract

Background: Autophagy plays a major role in myocardial ischemia and hypoxia injury. The present study investigated the
effects of autophagy on cardiac dysfunction in rats after severe burn.

Methods: Protein expression of the autophagy markers LC3 and Beclin 1 were determined at 0, 1, 3, 6, and 12 h post-burn in
Sprague Dawley rats subjected to 30% total body surface area 3rd degree burns. Autophagic, apoptotic, and oncotic cell
death were evaluated in the myocardium at each time point by immunofluorescence. Changes of cardiac function were
measured in a Langendorff model of isolated heart at 6 h post-burn, and the autophagic response was measured following
activation by Rapamycin and inhibition by 3-methyladenine (3-MA). The angiotensin converting enzyme inhibitor
enalaprilat, the angiotensin receptor I blocker losartan, and the reactive oxygen species inhibitor diphenylene iodonium
(DPI) were also applied to the ex vivo heart model to examine the roles of these factors in post-burn cardiac function.

Results: Autophagic cell death was first observed in the myocardium at 3 h post-burn, occurring in 0.008 6 0.001% of total
cardiomyocytes, and continued to increase to a level of 0.022 6 0.005% by 12 h post-burn. No autophagic cell death was
observed in control hearts. Compared with apoptosis, autophagic cell death occurred earlier and in larger quantities.
Rapamycin enhanced autophagy and decreased cardiac function in isolated hearts 6 h post-burn, while 3-MA exerted the
opposite response. Enalaprilat, losartan, and DPI all inhibited autophagy and enhanced heart function.

Conclusion: Myocardial autophagy is enhanced in severe burns and autophagic cell death occurred early at 3 h post-burn,
which may contribute to post-burn cardiac dysfunction. Angiotensin II and reactive oxygen species may play important
roles in this process by regulating cell signaling transduction.
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Introduction

Autophagy plays a major role in the physiological cellular

degradation and recycling of long-lived proteins and organelles,

maintaining cellular homeostasis and adaptation to nutrient

depletion [1]. Autophagy represents a programmed and dynamic

process that proceeds by sequestration of cellular material into

double membrane vacuoles that dock to and fuse with lysosomes to

form autophagic vacuoles (i.e. autophagosome), where the

contents are degraded by lysosomal hydrolases and the resulting

macromolecules are recycled [2]. During the assembly of the

autophagosome, microtubule associated protein 1 light chain 3

(LC3), originally synthesized as a precursor cytosolic protein, is

converted from LC3 I to LC3 II. The ratio of LC3 II to LC3 I,

therefore, is an established indicator of autophagy [3]. Autophagy

occurs at basal levels, but can also be induced by stress conditions

such as hypoxia or ischemia/reperfusion [4,5]. Autophagy not

only serves as a cell survival mechanism, but may also lead to cell

death (type II programmed cell death) [6]. Autophagic cell death

contributes during organ development and in neurogenerative

disorders such as Parkinson’s disease [7]. The ubiquitin/protein

degradation system is associated with the autophagic machinery

[8], therefore ubiquitin expression in tissues can be used to

determine autophagic cell death [9].

The functional role of autophagy during cardiac ischemia/

reperfusion is controversial. Autophagy was shown in one report to

inhibit apoptosis in chronically ischemic pig myocardium, serving

as an injury response mechanism [10]. Autophagy was also found

to be protective in HL-1 myocytes subjected to simulated

ischemia/reperfusion [11,12]. However, other reports suggest that

autophagy plays a detrimental role in myocardial ischemia/

reperfusion injury. Inhibition of autophagy by 3-methyladenine (3-

MA) prevents H9c2 cell death during glucose deprivation [13].

Further, Beclin 1-mediated autophagic cell death can be pro-

tectively inhibited by urocortin in cardiac myocytes under

ischemia/reperfusion [14]. Matsui et al. have proposed that

autophagy may be protective during ischemia while detrimental

during reperfusion, and the differential effects are dependent on

distinct signal pathways [15]. Therefore, the exact roles of

autophagy in cardiac ischemia/reperfusion remain unclear. More
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information on the time course for the induction and progression

of autophagy in different stress conditions in the heart is needed.

In severe burns, the myocardium undergoes both hypoxic and

ischemic injury. Our previous reports have shown that serum

cardiac troponin I, a specific myocardial structural protein as an

indicator of injury, increases 1 h post-burn, accompanied by

decreased heart function which still does not recover at 24 h post-

burn [16]. Under the stress of severe burns, the blood flow to the

heart declines very early [17], which may result from the instant

activation of the cardiac renin-angiotensin system (RAS) [18]. It

has been reported that indicators of apoptosis, such as caspase-3

activity, increase at 3 h after severe burns, and the significant

morphologic alterations characteristic of apoptosis can be found at

6 h post-burn [19]. At 6 h post-burn, few of the myocardial fibers

are breaking and dissolving, a sign of cardiomyocyte oncosis [16].

However, in the setting of cardiac ischemia induced by burn

injury, little is known about the roles that autophagy plays.

Whether autophagy is a protective mechanism or a cause for early

cardiac cell death in severe burn and how autophagy affects

cardiac function is unclear. The present study is the first report to

shed light on the roles of autophagy in cardiac damage after severe

burns.

Results

Changes of Autophagy Marker Proteins
To determine whether cardiac autophagy was enhanced under

severe burn conditions, we examined for LC3 and beclin 1

expression. LC3 II, which is localized in autophagosome

membranes, is converted from LC3 I during processing [3]. The

half-life of autophagosomes is very short, usually only a few

minutes. The LC3 II/ LC3 I ratio, therefore, can sensitively reflect

the current autophagic status. Our results showed that the LC3 II/

LC3 I ratio significantly rose at 1 h post-burn in the myocardium,

and the total level of LC3 proteins also increased later at 3h post-

burn. Both of them continued to increase through the 12 h time

point (Fig. 1A).

Beclin-1 is also known as an autophagy-related protein involved

in the initiation of autophagasome formation. As reported, Beclin

1-mediated signal transduction may lead to autophagic cell death

[14], and the expression of Beclin 1 is enhanced during the

reperfusion stage, but not during ischemia [5]. Our results showed

that, similar to LC3 II/ LC3 I, beclin 1 expression increased

robustly from 1 h to 12 h post-burn (Fig. 1B).

Changes in Cardiac Function
We determined cardiac function after severe burn in vivo and in

isolated hearts. The in vivo myocardial mechanical parameters,

especially the maximal rate of the rise/drop of left ventricular

pressure (6dp/dt max), indicated that cardiac contraction and

relaxation were impaired very early, at 1 h post-burn, and further

declined by 12 h post-burn (Fig. 2A, B). In the ex vivo perfused

hearts isolated from 1 h, 3 h, 6 h, and 12 h following burn,

cardiac function was also depressed (Fig. 2C, D).

Autophagic, Apoptotic, and Oncotic Cell Death
The visualization of autophagosomes and increased ubiquitin

conjugation in dying cells indicate that autophagy is a non-

apoptotic form of programmed cell death [9]. C5b9, the

complement membrane attacking complex, provided a tool for

detection of early oncosis [20]. The immunofluorescence results

showed that no cell death was seen in the myocardium at 1 h post-

burn, while at 3 h after severe burns, autophagic cell death could

be found morphologically at a ratio of 0.008 6 0.001%, without

apoptosis and oncosis. From 6 h to 12 h post-burn, 3 types of cell

death presented together, and all increased in quantities with

duration of injury (Fig. 3A, B).

Influences of Autophagy Regulation on Cardiac Function
We tested if activation or inhibition of autophagy affects cardiac

function in rats suffering from severe burn. As shown in Fig. 3,

hearts from 6 h post-burn had an intense autophagic response.

The 6 h time point, therefore, was chosen for evaluation in the

isolated heart perfusion models. Our results showed that the

Figure 1. Myocardial LC3 and Beclin 1 expression following
severe burns in rats. Immunoblotting was performed on proteins
extracted from myocardial tissue of rats exposed to 3rd degree burns
over 30% of the total body surface area or sham controls. A. As an
indicator of autophagy, LC3 II/LC3 I ratio rose from 1 h to 12 h post-
burn. The total level of LC3 protein also increased, beginning at 3 h and
continuing to rise through 6 and 12 h post-burn. The sample size was
n = 6 per group for sham and each of the time points, * p,0.05 vs
sham. B. Beclin 1 expression was robustly expressed at 1 h post-burn
and continued to follow an upward tendency. The sample size was n = 5
for each group, * p,0.05 vs sham.
doi:10.1371/journal.pone.0039488.g001
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activation of autophagy by rapamycin caused a decrease in cardiac

function, while inhibition of autophagy by 3-MA resulted in

improved cardiac function (Fig. 4A, B). The effects on autophagic

cell death in the myocardium of rapamycin and 3-MA treated

hearts were confirmed by immunofluorescence staining (Fig. 4C,

D). Immunoblotting for LC3 II/ LC3 I ratio also demonstrated

that rapamycin activates autophagy, while 3-MA inhibited

autophagy (Fig. 4E).

Effects of Enalaprilat, Losartan, and DPI on Autophagy
and Cardiac Function
In order to explore the mechanisms of autophagic cardiomycyte

death in severe burn rats, we evaluated whether the local cardiac

RAS, which is activated immediately following severe burns and

contributes to cardiac dysfunction [18], was involved in this

model. We inhibited the generation of Ang II by enalaprilat and

blocked the AT1 receptor by losartan to determine the changes in

autophagy and cardiac function. We also examined the association

between ROS and autophagy in severe burns by administering

diphenylene iodonium (DPI), an inhibitor of the ROS-generating

enzymes NADPH oxidase and nitric oxide synthase.

The results showed that inhibition of Ang II, blockage of AT1

receptor, or inhibition of ROS production, improved cardiac

function in isolated 6 h post-burn hearts (Fig. 5A, B). Compared

with the control group, the hearts of the treated groups underwent

less autophagic cell death (Fig. 5C, D). The immunoblotting results

confirmed the inhibitory effects of these reagents on myocardial

autophagy in severe burns (Fig. 5E).

Discussion

In the very early stage of myocardial response to severe burns,

leakage of myocardial-specific structural proteins and histopath-

ologic changes occur and cause cardiac pumping deficit and

decreased circulating blood volume, which in turn is an important

initiating factor for other organ hypoxia injuries such as liver,

kidney, and intestine [16]. In severe burn patients, multiple organ

dysfunction syndrome (MODS) has been reported to occur at

a 28.1% incidence and is very difficult to reverse [21]. In addition,

MODS is also associated with a high mortality rate, ranging from

78%–98% among studies. Although the prophylactic treatment of

MODS has improved survival rates in recent years, MODS

remains a highly relevant clinical complication in severe burn

patients [22]. As a result, our research team has been engaged in

searching for the key issues linked to the occurrence of MODS in

severe burns. Since cardiac dysfunction is an initiating factor in the

Figure 2. Post-burn cardiac function in vivo and ex vivo in a Langendorff preparation. Rats subjected to 3rd degree burns affecting 30% of
total body surface area were established as a burn model. A. These cardiac mechanical parameters were obtained with an intubation method from
the carotid artery of the rats under anesthesia. The left ventricular systolic pressure (LVSP) and mean arterial pressure (MAP) decreased from 1 h to
3 h post-burn and continued to decline in the following time points. The left ventricular end-diastolic pressure (LVEDP) rose from 6 h to 12 h post-
burn. The sample size was n = 8 for each group, * p,0.05 vs sham. B. Reflecting cardiac contraction and relaxation, the maximal rates of left
ventricular systolic pressure increase and diastolic pressure decrease (i.e., +dp/dt max and -dp/dt max, respectively) fell from 1 h to 12 h post-burn.
The samples size was n = 8 for each group, * p,0.05 vs sham. C and D. In isolated hearts perfused with a Langendorff apparatus, the recorded
cardiac mechanical parameters LVSP and6 dp/dt max decreased from 1 h to 12 h post-burn, similar to the changes seen in vivo. The sample size was
n = 5 for each group, * p,0.05 vs sham.
doi:10.1371/journal.pone.0039488.g002
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pathological response of MODS, we focused on the effects of burn

on myocardial injury. Our previous reports showed that apoptosis

[19] and damage to mitochondria and cytoskeleton [23,24] were

major mechanisms for the myocardial injuries. However, these

mechanisms do not totally explain the prompt occurrence of

cardiac injury and dysfunction after severe burns. Cardiomyocyte

loss has been suggested to be an important causative factor for the

decline in cardiac function [25]. Severe burn-induced cardiac

damage and dysfunction partially results from cardiomyocyte loss

due to apoptosis [19]. Since autophagic cell death is an

independent mode of cell death distinct from apoptosis and

oncosis, it is important to measure autophagy in the setting of burn

injury [26]. Therefore, we designed these experiments to in-

vestigate the roles of another type of programmed cell death,

autophagy, in myocardial injuries during early stages of severe

burns.

As shown in our results, autophagy was enhanced in myocar-

dium at 1 h post-burn and gradually increased over the 12 h time

course. In the process of autophagy, with the amount of

autophagosome increasing, not only is LC3 I continuously

converted to LC3 II (i.e., LC3 II /LC3 I ratio rises), but the

total level of LC3 protein is also upregulated. The precursor of

LC3 protein is constantly synthesized [27,28]. Our results also

showed that the LC3 II /LC3 I ratio rose, accompanied by the

increase of the total LC3 protein level. However, autophagy plays

dual roles in myocardial ischemia and hypoxia injuries. Autophagy

serves as a protective mechanism under moderate hypoxia, while it

causes cell death under critical hypoxia [4]. Some reports showed

that the protective and detrimental functions of autophagy depend

on different cell signaling pathways, and autophagy plays opposite

roles in myocardial ischemia and reperfusion [5,15,29]. Taken

together, autophagy can induce survival or death depending on

the extent of stress. Although autophagy was enhanced 1 h post-

burn, autophagic cell death was not found histologically until 3 h

post-burn, when the quantity of autophagic cell death gradually

increased in the following time points. This result indicates that

autophagy may be protective within 3 h after severe burns, when

the compensation mechanisms of organs can accomodate a quite

moderate hypoxia condition in myocardium. After 3 h post-burn,

in the setting of continuous hypoxia and possible effects of

reperfusion, autophagy becomes detrimental and stimulates

cardiomyocyte death.

Figure 3. Myocardial immunofluorescence of autophagic, apoptotic, and oncotic cell death. A. Representative immunofluorescence
images of myocardium with different staining targets in rats with 3rd degree burns over 30% of total body suface area. As indicated by the white
arrows, cardiomyocytes with ubiquitin accumulation were mostly loss of nuclei and occupied partially by the positive staining. The TUNEL staining
co-localized with DAPI staining in nuclei. The complement membrane attack complex C5b9 staining frequently appeared in the myocyte periphery
and showed progression toward the cell center. B. Quantification of autophagic (ubiquitin positive), apoptotic (TUNEL positive), and oncotic (C5b9
positive) cardiomycyte death showed that autophagic cell death could be found at 3 h post-burn, while the other two types of cell death occurred
later. All three types of cell death increased further at 6 and 12 h post-burn. The sample size was n = 8 for each group, * p,0.05 vs the 1 h group.
doi:10.1371/journal.pone.0039488.g003
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Our previous work has demonstrated that apoptosis plays an

important role in cardiac damage of the severely burned rats [19].

The issue of apoptotic cell death in myocardium after severe burns

is not yet entirely clear, because values for apoptotic rates vary

from very high [19] to almost absent [30]. However, in

accordance with our results, these reports did not find any

substantial levels of myocardial apoptosis within 6 h post-burn.

Many reports show that apoptosis is quite limited relative to

autophagy or oncosis in failing hearts [9,31]. Narula’s concept of

interrupted apoptosis is of special interest in this context and might

explain the low apoptotic rate observed in the present study [32].

Because of the lack of knowledge of the time needed to complete

the DNA fragmentation process and to remove apoptotic cells

from the tissue, the calculated rate of apoptosis may be higher than

actual. The present results show that autophagy preceded

apoptosis, and the extent of autophagic cell death exceeded

apoptosis rates. Since the proportion of autophagy is a greater

contributor in cardiomyocyte loss in severe burns than apoptosis,

autophagic cell death may contribute significantly to cardiac

function impairment in severe burn.

We performed a comparative study of autophagy on perfused

hearts isolated from rats of 6 h post-burn by rapamycin activation

and 3-MA inhibition of autophagy. Under enhanced autophagy,

the quantity of autophagic cell death increased, accompanied by

cardiac deficits. Under autophagy inhibition, the amount of

autophagic cell death decreased and cardiac function was

enhanced. This suggests that in the pathological process of severe

burn, autophagy in the myocardium mainly plays a detrimental

role by directly inducing cardiac dysfunction. The significance of

our present findings is demonstrating that control of autophagy

occurs during a certain time course, i.e. after 3 h post-burn, which

may enhance cardiac pumping abilities and reverse the dysfunc-

tion, suggesting that this is a reasonable medical intervention

target point to prevent MODS.

Further studies on how autophagy is triggered in severe burns

and how it causes cardiomycyte death are warranted. To provide

mechanistic insight, we added three kinds of inhibition agents

(ACEI, AT1 receptor blocker, and an inhibitor of ROS pro-

duction) to the perfusion fluid to the isolated hearts at 6 h post-

burn. All three agents inhibited autophagy and enhanced cardiac

Figure 4. Effects of autophagic regulation on cardiac function. The hearts were isolated from rats with 3rd degree burns over 30% of total
body surface area at 6 h post-burn. Continuous K-H buffer perfusion without medication was used as a negative control. A and B. The left ventricular
systolic pressure (LVSP) and the maximal rate of the rise/drop of left ventricular pressure (6 dp/dt max) decreased in the hearts perfused with the
autophagy activator rapamycin. While the 6 dp/dt max increased with treatment of the autophagy inhibitor, 3-methyladenine (3-MA). The sample
size was n = 5 for each group, * p,0.05 vs control. C. Representative immunofluorescence images of myocardial autophagic cell death (ubiquitin
positive, red) in isolated hearts perfused with rapamycin, 3-MA, or non-medication (control). D. Quantitation of autophagic cell death showed that
autophagy increased in the rapamycin treated group and decreased in the 3-MA treated group. The sample size was n= 5 for each group, * p,0.05
vs control. E. Immunoblotting results confirmed the activation or inhibition effects on autophagy by rapamycin and 3-MA, respectively. The sample
size was n = 5 for each group, * p,0.05 vs control.
doi:10.1371/journal.pone.0039488.g004
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function. Porrello et al [33,34] recently reported that autophagy is

enhanced by Ang II through an activating AT1 receptor

approach. As reported, the cardiac local RAS is activated quickly

after severe burns and the concentration of Ang II increases in the

myocardium [18]. According to these studies, the accumulation of

Ang II activates cardiac autophagy. In concurrence with this idea,

inhibition of Ang II generation or blockage of its effective receptor

remarkably mitigated autophagy and its negative effects on cardiac

function. It has been reported that ROS can activate autophagy by

damage to mitochondria and regulate autophagy in protective or

fatal effects [35]. Our results also showed that DPI could alleviate

autophagy by inhibition of ROS in isolated perfused hearts at 6 h

post-burn. This indicates that ROS may also play a crucial role in

the cell signaling of autophagic cell death.

Conclusion
Myocardial autophagy is significantly enhanced after severe

burns, and autophagic cell death occurs earlier than apoptosis and

oncosis in the myocardium. The reduction in post-burn cardiac

function occurred in parallel to increased autophagic cell death,

and regulating the extent of autophagy altered cardiac function in

isolated perfusion models. Our results suggest that autophagic cell

death contributes significantly to post-burn cardiac dysfunction. In

addition, Ang II and ROS play important roles in the autophagic

cell death signal transduction pathways.

Materials and Methods

This study conforms to the NIH Guide for the Care and Use of

Laboratory Animals (NIH publication no. 85–23, revised 1996).

Experimental Animals
Healthy adult male Sprague-Dawley rats (200 g–250 g; n= 120)

were used in the study. The animal experiments were conducted

according to protocols reviewed and approved by the Animal

Experimental Ethics Committee of the Third Military Medical

University, Chongqing, China (Permit Number SYXK-CQ-

20070002). Animals were allowed 5 days to acclimate to their

surroundings. Food and water for rats were available ad libitum

throughout the experimental protocol.

Groups and Burn Procedure
Rats were randomized into burn or sham burn groups

according to a random digits table, and the burn group was

subdivided into groups of post-burn at 1 h, 3 h, 6 h, and 12 h time

points (n = 8 for each group). Control non-burn sham animals

were also included (n= 8). Animals were intraperitoneally injected

with 1 g/L pentobarbital sodium (30 mg/kg). Under anesthesia,

the hair on the back of the rat was shaved, and the nude skin was

scalded with a 97uC water bath for 18 seconds, sufficient to cause

a 3rd degree burn encompassing 30% total body surface area

(TBSA), which was confirmed post-mortem. The sham burn group

had the same procedure, except the temperature of the water was

37uC. After immersion, each animal was placed in an individual

cage and allowed free access to food and water. The burn rats

were resuscitated with an intraperitoneal (i.p.) injection of a volume

of Ringer’s lactate following the Parkland formula (4 ml/kg/

1%TBSA). The total calculated volume of fluid for the first 24 h

was delivered in three injections at 30 min, 4 h and 8 h post-burn

(1/4 total volume for each).

Assay of Cardiac Function in vivo
For measurement of cardiac function in vivo, the neck region of

the rats was prepared for surgery under anesthesia and analgesia

(pentobarbital 30 mg/kg i.p.). The right carotid artery was

exposed, and a polyethylene catheter (i.d. 0.5 mm) filled with

isotonic saline containing 25 U/L heparin was inserted through

the right common carotid artery into the aorta, and the other end

linked to a pressure transducer of the Multi-Channel Physiological

Signal Collecting and Processing System (RM6420 model,

Chengdu Instruments Factory, China). Five minutes later, mean

arterial pressure (MAP) were measured by the RM6420 software

of the system. The catheter was then inserted further into the left

ventricle to record and analyze left ventricular systolic pressure

(LVSP), left ventricular end-diastolic pressure (LVEDP) and

maximal rate of the rise/drop of left ventricular pressure (6 dp/

dt max), which reflected left ventricular systolic and diastolic

function. The parameters were measured immediately after sham

burn in sham group, or measured at the indicated time points in

the burn group. After the measurements, rats were killed by

cervical neck dislocation, and the hearts were harvested.

Perfusion and Functional Assay of Isolated Rat Heart
The hearts were removed rapidly from rats under anesthesia

(pentobarbital 30 mg/kg i.p.) and mounted on a Langendorff

apparatus. The hearts were perfused with Krebs-Henseleit (K-H)

buffer containing (in mM) 118.5 NaCl, 4.7 KCl, 1.2 MgSO4,

1.8 CaCl2, 24.8 NaHCO3, 1.2 KH2PO4, and 10 glucose, which

was heated to 37uC and gassed with 95% O2/5% CO2. A latex

balloon connected to a pressure transducer was inserted into the

left ventricle through the left atrium. The left ventricular pressure

was continuously recorded with the Multi-Channel Physiological

Signal Collecting and Processing System (RM6420 model,

Chengdu Instruments Factory, China). All hearts were allowed

to stabilize for at least 20 min. The hearts from rats 6 h post-burn

were then perfused with K-H buffer with 0.1 mM rapamycin (an

activator of autophagy, from LKT Laboratories, USA), 1 mM 3-

MA (an inhibitor of autophagy, from Sigma, USA), 5.7 mM
enalaprilat (an angiotensin converting enzyme inhibitor [ACEI],

Changzhou Pharmaceutical Factory, China), 0.1 mM losartan (an

AT1 receptor blocker, LKT Laboratories, USA), or 5 mM DPI (a

reactive oxygen species [ROS] production inhibitor, Sigma, USA)

for 30 min before determining cardiac function again. Continuous

K-H buffer perfusion was added to isolated hearts from the 6 h

post-burn group as a control.

Immunolabeling and Fluorescence Microscopy
The apex of the heart (about 100 mg in weight) was separated

and quickly frozen in liquid nitrogen. The tissue blocks were then

Figure 5. Effect of enalaprilat, losartan, or DPI on autophagy and cardiac function. The hearts were isolated from rats subjected to 3rd

degree burns over 30% of total body surface area at 6 h post-burn. Continuous K-H buffer perfusion without medication was used as a negative
control. A and B. The left ventricular systolic pressure (LVSP) and the maximal rate of the rise/drop of left ventricular pressure (6 dp/dt max)
increased in isolated hearts perfused with enalaprilat, losartan, or DPI. The sample size was n = 5 for each group, * p,0.05 vs control. C.
Representative immunofluorescence images of myocardial autophagic cell death (ubiquitin positive, red) in isolated hearts perfused with enalaprilat,
losartan, DPI or non-medication (control). D. Quantitation of autophagic cell death showed that it decreased in the hearts medicated with enalaprilat,
losartan, or DPI. The sample size was n = 5 for each group, * p,0.05 vs control. E. Immunoblotting results confirmed the inhibitory effects on
autophagy by enalaprilat, losartan, or DPI treatment. The sample size was n= 5 for each group, * p,0.05 vs control.
doi:10.1371/journal.pone.0039488.g005
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prepared as frozen sections (5 mm thick) which were fixed for 10

minutes with 4% paraformaldehyde and then exposed for 10

minutes in 1% BSA, followed by incubation with the correspond-

ing antibodies in double or triple staining procedures. The primary

antibodies used included rabbit polyclonal anti-ubiquitin (Abcam,

USA), mouse monoclonal anti-actin (Abcam, USA), and mouse

monoclonal anti-C5b9 (Santa Cruz, USA). The secondary de-

tection system was biotinylated anti-mouse or anti-rabbit IgG

(Byotime, China) conjugated with Cy-3 or fluorescein isothiocya-

nate (FITC). In situ labeling of fragmented DNA (TUNEL) was

performed in the sections using a commercially available kit

(Beyontime, China). Nuclei were stained with DAPI (Sigma, USA).

Omission of primary antibodies served as a negative control. The

samples were examined with a digital fluorescence microscope

(DM6000B, Leica, Germany).

Quantification of Ubiquitin-, TUNEL-, and C5b9-positive
Myocytes
From each tissue block, 3 sections 5 mm thick, cut at a distance

of 100 mm, were stained and quantitatively evaluated. Counter-

staining for identification of myocytes was done with anti-actin

combined with a secondary fluorescent antibody. Ubiquitin-

positive cardiomyocytes were counted for the entire section. The

number of myocyte nuclei per 5 randomly chosen fields of vision

(6400) was counted and calculated per mm2. From these data and

the area of the tissue section, the total number of myocytes was

determined, and ubiquitin-positive cells were expressed as

a percentage of the total number of cardiomyocyte nuclei. The

same counting procedure was performed for TUNEL and C5b9

labeling.

Immunoblotting
Protein was extracted in RIPA buffer from the myocardium

tissue blocks and stored at -80uC. For each lane, 30 mg protein was

loaded and separated on a 10% sodium dodecyl sulfate-poly-

acrylamide gels and transferred onto nitrocellulose membranes.

After the blocking procedure, the membrane was immunoblotted

with the primary antibodies: rabbit polyclonal anti-LC3b (Cell

Signaling, USA) and/or rabbit polyclonal anti-beclin 1 (Cell

Signaling, USA) at 4uC overnight. After washing, the membrane

was incubated with secondary antibodies (Santa Cruz, USA) for 1

hour at room temperature. The immunocomplexes were visual-

ized with an enhanced chemiluminescence detection kit (Amer-

sham Pharmacia, USA) and the densities of the bands were

quantified with QuantityOne software (Bio-Rad, USA). GAPDH

(rabbit polyclonal anti-GAPDH from Sigma, USA) was also

probed and visualized as a loading control.

Statistics
All data are presented as mean 6 SEM. SPSS 13.0 was used for

statistical analysis and significance evaluated by one-way ANOVA

followed by the Student-Newman-Keuls (SNK) post-hoc test.

Differences were considered statistically significant when P, 0.05.
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