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Abstract
Most Americans are in Intensive Care Units (ICUs) at
some point during their lives. There is wide variation in
the outcome quality of ICUs and so, thousands of patients
who die each year in ICUs may have survived if they were
at the appropriate hospital. In spite of a policy agenda
from IOM calling for effective transfer of patients to more
capable hospitals to improve outcomes, there appear to be
substantial inefficiencies in the existing system. In partic-
ular, patients recurrently transfer to secondary hospitals
rather than to a most-preferred option. We present data
mining schemes and significance tests to discover these
inefficient cascades. We analyze critical care transfer data
in Medicare across nearly 5,000 hospitals in the United
States over 10 years and present evidence that these trans-
fers to secondary hospitals repeatedly cascade across mul-
tiple transfers, and that some hospitals seem to be in-
volved in many cascades.
Keywords: Critical care, cascades, data mining, alerts,
transfer networks, administrative data, Medicare claims

1 Introduction
The intensive care unit is the apogee of modern
technologically-intensive medical care, providing inva-
sive support of many failing organs and offering poten-
tially profound life-saving ability. It is also in relatively
short supply, and inadequate availability of critical care
beds is a salient policy concern. In order to distribute
some of the load of critically ill patients, informal transfer
networks have evolved over which patients are routinely
transferred between hospitals. But this system is not man-
aged or overseen at the present time, and there is anecdotal
evidence that it may have important limitations. Potential
overload of the critical care system becomes all the more
pressing in the event of disasters – correlated stresses on
multiple parts of the system that may result from acute
events (such as terrorist attacks or extreme weather) or
subacute stresses (such as pandemic flu). During routine
functioning of the critical care transfer system, most hos-
pitals have a primary transfer destination to which the plu-
rality of their patients are sent [1]. These primary trans-
fers seem to be favored by routine practice at the hospitals

– deviations from the primary transfer are likely to slow
down patient care and represent substantial additional de-
lays in care. In principle, a non-primary destination for
one hospital might be a primary destination for another.
Thus non-primary transfers might use up excess capacity,
and result in other hospitals unable to transfer patients to
their own primary hospitals. The goal of this paper is to
develop a rigorous approach to detecting such cascades in
re-oriented network activity.

2 Data Characteristics
In this study, we use the final action claims from the
1996 through 2005 Medicare Provider Analysis and Re-
view (MedPAR) file. Medicare claims and enrollment
data capture 96% of the American population aged 65
and older [2]. Critical care use is indicated directly in
the hospital-filed claims. Although these data have some
limitations [3], they have been used by our group [4] and
others [5] to measure critical care at both the patient and
national levels. We excluded beneficiaries covered under
certain types of group health organizations with capitated
premiums who are not required to file claims. We ex-
cluded from critical care “psychiatric critical care” and
intermediate or step-down units [3], but included medi-
cal, surgical, cardiac and burn units. Transfers between
hospitals are not directly indicated in the claims. We de-
fined a transfer as occurring between two hospitals g and
h when a patient was observed to be in Hospital g until a
certain day, and then in Hospital h beginning on the same
day or the next day. Critical care transfers were defined
as transfers that occurred between two hospitalizations,
both of which involved critical care use. Thus the data S
is structured as a date-stamped list of ICU transfers, with
uniquely identified sending and receiving hospitals.

S = 〈(g1 → h1, t1), (g2 → h2, t2), . . . , (gn → hn, tn)〉

where gi, hi ∈ H, the set of all hospitals, (gi → hi) in-
dicates an ICU transfer from hospital gi to hospital hi at
time ti. A snippet of the raw data is shown in Table 1.
Some of the statistics related to the ICU transfers are listed
in Table 2. Figure 1 shows the distribution of transfers in
six month time windows.
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Table 1: A segment of ICU transfer data. Each hospital is as-
signed an unique random identifier.

transfer-date sending-
hospital-id

receiving-
hospital-id

type

18 May 99 1170 2468 CARDIAC
27 Nov 00 2911 2468 CVSURG
11 Mar 03 1170 2468 CARDIAC
02 Jun 04 3155 2468 CARDIAC

Table 2: Data statistics

Date range 01-Oct-95 - 31-Dec-06
Total number of hospitals 5,083
Total number of transfers 765,171
Total number of unique pairs 62,529
Distribution of transfers (see Figure 1)
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Figure 1: Plot of the number of ICU transfers from 1996 to
2006 shown in windows of six months. Note the substantial
reduction in the overall number of transfers.

3 Data Mining Methodology
As mentioned in the Introduction section, our hypothesis
is that the secondary transfers may cascade - that the use
of a secondary destination by one hospital may make sec-
ondary transfers by other nearby hospitals more likely. In
this section we propose an efficient data mining scheme
and associated tests of significance for discovering such
cascades.

Definition 1. A primary transfer pair consists of a pair
of hospitals (g → h) such that the number of transfers
from g to h exceeds the number of transfers from g to any
other hospital ĥ, ∀ĥ ∈ H and ĥ 6= h. The hospital h will
be referred to as the primary recipient for g, denoted by
recv(g) = h.

From the above definition, every hospital has a primary
transfer partner that receives most of its ICU transfers.
And there is a set of hospitals where each hospital receives
transfers from one or more hospitals and acts as their pri-
mary recipient hospital. Let send(h) denote the set of
hospitals for which h is the primary receiving partner.

send(h) = {g : recv(g) = h, g ∈ H}

Definition 2. A secondary transfer refers to an ICU trans-
fer from hospital g to ĥ, where ĥ is not the primary recip-
ient for g i.e. ĥ 6= revc(g).

Definition 3. A cascade is defined in terms of an or-
dered list of hospitals. A k-size cascade is denoted by
〈h1, h2, . . . , hk〉 where hi ∈ H, the set of all hospitals
in the data. An occurrence of a cascade is characterized
by a sequence of transfers in the data (but not necessarily
adjacent):

(x→ h1), t1 → (g1 → h2), t2 → (g2 → h3), t3

. . . (gk−1 → hk), tk → (gk → y), tk+1

where x, y, gi, hi ∈ H, hi is the primary recipient hos-
pital for gi, i.e. gi ∈ send(hi). In addition a gap con-
straint is enforced to ensure the temporal proximity of
these transfers:

t2 − t1 ≤ δ; t3 − t2 ≤ δ; . . . ; tk+1 − tk ≤ δ

where δ is the allowed upper bound on the time gap be-
tween a pair of consecutive transfers.

Example 1. A cascade of size 3 that occurs in data is il-
lustrated in Figure 2. The primary transfer hospitals that
are part of this cascade are 1422, 2220 and 4500. Here
a primary transfer from 4483 to 1422 (on 18-Oct-95) is
followed by a secondary transfer from 1365 to 2220 (on
20-Oct-95); where 1422 is the primary transfer partner of
1365. This secondary transfer is followed by another sec-
ondary transfer from 113 to 4500 (on 23-Oct-95); where
113 and 2220 are primary partners. Finally there is a
transfer from 2956 to 914 (on 26-Oct-95) where 4500 is
the primary recipient for 2956.

1422 2220 4500 

4483 113 1365 

914 

2956 

18-Oct-95 
20-Oct-95 23-Oct-95 26-Oct-95 

Figure 2: Illustration of a 3-size cascade consisting of the pri-
mary transfer hospitals 1422, 2220 and 4500.

3.1 Mining Scheme for Longer Cascades

The task of discovering cascades in the transfers is a com-
binatorially hard problem. For instance, finding all cas-
cades of size 3 requires us to look through all possible
combinations of primary recipient hospitals and count the
occurrences of associated cascades in the data. As we start
to look for longer cascades the combinatorial explosion
of the search space makes this approach infeasible (see
[6, 7, 8] for details).

Here we propose a level-wise procedure for discover-
ing long cascades in data that overcomes the combina-
torial explosion. The overall steps of this procedure are
given below in Algorithm 1. Here we begin with a set of
candidate cascades of size 2. We restrict our analysis to
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secondary transfers between hospitals within a distance d
miles of each other. The number of non-overlapping oc-
currences of each candidate is calculated using a finite-
state automata-based counting scheme. This counting
scheme presented in Algorithm 2 follows from our ear-
lier work [6]. After the counts of all secondary transfer
candidates of size 2 is determined, we retain only those
cascades whose count exceeds a user-specified threshold.
This set of cascades is called the frequent cascades of size-
2. The frequent cascades of size-2 are used to generate a
set of candidate cascades of size 3. The candidate gen-
eration scheme based on prefix-suffix matching (see [6]).
The procedure then alternates between candidate gener-
ation, counting and pruning until there are no more fre-
quent cascades. This level-wise procedure helps control
the number of combinations one has to count in order to
find all frequent long-cascades.

Algorithm 1 Level-wise procedure for cascade mining
1: Generate an initial list of candidate cascades of size-2, C =
{〈hi, hj〉 : geographical distance(hi, hj) ≤ d miles}.

2: Set k ← 2
3: repeat
4: Count the non-overlapped occurrences of candidate cas-

cades in the data (See Algorithm 2).
5: Retain only those cascades that occur more often than a

user-specified threshold.
6: Generate k + 1-size candidate cascades, using the list of

frequent n-size cascades
7: Set k ← k + 1
8: until no candidate cascades remain.
9: Output all the frequent cascades discovered.

Counting cascades: Algorithm 2 outlines the pseudo-
code for counting occurrences of a single cascade over
primary transfer hospitals 〈h1, h2, . . . , hk〉 where consec-
utive secondary transfers satisfy the gap-constraint δ. Tα
list maintains the latest secondary transfer for each hi ∈ α
such that it is preceded by a secondary transfer with in δ
time gap and are related as per the definition of the cas-
cade. If the condition on Line 8 is met it implies that there
exists a sequence of secondary transfers that together con-
stitute an occurrence of the cascade α and also the consec-
utive pairs of transfers satisfy the gap constraint.

Note that the counting step of the mining procedure
(Algorithm 1) on Line 4 requires counting occurrences of
all cascades of the candidate list. In the actual implemen-
tation we count occurrences of all cascades in the can-
didate while making one pass of the data. We employ a
data-structure built around hash-maps to efficiently access
the Tα list for each cascade α in the candidate list only
when a transfer (g → h, t) that can potentially update Tα
is seen in S.

Algorithm 2 Count cascade with primary transfer hospitals
α = 〈h1, h2, . . . , hk〉 and a gap-constraint δ.

1: Initialize count← 0
2: Initialize Tα[hi] = φ, ∀i = {1, . . . , k}
3: for (g → h, t) ∈ S do
4: for i ∈ {1, . . . , k} do
5: if h = hi then
6: if (i = 1) or (g ∈ send(hi−1) and t−Tα[hi−1] ≤

δ) then
7: Tα[hi] = t
8: if (g ∈ send(hk) and h 6∈ α) and (t − Tα[hk] ≤ δ)

then
9: count← count+ 1

10: Tα[hi] = φ ∀i = {1, . . . , k}
11: return count

4 Statistical Significance
In this section, we present a number of null models against
which the significance of the cascades discovered in the
data can be established. Significant cascades have a tem-
poral structure that depends on the exact order and timing
of the constituent transfers. A null model that removes
such structure will help ascertain the p-value of a cascade.

4.1 Temporal shuffling

Here we generate surrogate datasets by randomly shuf-
fling the time of occurrence of transfers in consecutive
chunks of 100 transfers. Since we do not add or remove
transfers from the original data, the first order statistics are
preserved. For each cascade discovered in the level-wise
mining procedure we determine its count over n surrogate
datasets. This allows us to estimate the distribution of the
number of occurrences of a cascade under the null model
and determine its p-value. In the results section, we report
only those cascades that have p-values below a threshold.

4.2 Spatial shuffling

Here we redistribute the receivers of the secondary trans-
fers. The primary transfers are left undisturbed. For every
secondary transfer g → ĥ, we replace ĥ with h′, where
h′ is randomly chosen from the set of hospitals known to
receive transfers from g excluding its primary recipient.
This null model ensures that the spatial structure of the
secondary transfers are sufficiently removed. Again in the
results section, we report only those cascades that have
p-values below a threshold.

5 Results
In the ICU transfer records over the entire period of 10
years (1996-2006), (described in Section 2), we discov-
ered 163 statistically significant (p ≤ 0.001 with respect
to both the null models) cascades of size 3. We used a
maximum distance d of 250 miles between the hospitals,
a maximum delay δ of 3 days between transfers, and a
minimum count of 15 for mining. Over all there were
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3,204 cascade occurrences that were significant and many
cascades shared transfers. In total the cascades accounted
for 10,208 transfers, or 1.33% of the total number of ICU
transfers. The top five cascades found in the ICU transfers
data are shown in Table 3 along with p-values of statistical
significance under two different noise models.

Table 3: Top five cascades found in the ICU transfers data. (p-
value-1: p-value of a cascade under the null model of temporal
shuffling; p-value-2: p-value of a cascade under the null model
of spatial shuffling).

Cascade Count p-value-1 p-value-2
1422-2220-4500 57 0.001 0.001
2419-1099-552 55 0.001 0.001
4661-1204-225 48 0.001 0.001
552-1099-839 47 0.001 0.001
4661-1204-4531 45 0.001 0.001

5.1 Geographical Distribution

Figure 3 shows all the 163 significant cascades of size 3.
All the secondary transfers (g → ĥ) are indicated in the
plot with blue arrows. The primary pairs in the cascades
are indicated by red arrows. These edges indicate the po-
tential ICU transfers that got diverted to secondary loca-
tions according to our hypothesis.

Figure 3: Plot of the cascade occurrence on the US map. In
the figure, red arrows indicate primary transfer pairs and blue
arrows show the actual secondary transfers.

Figure 3 also shows the locations of the cascades we
discovered in the data. It is fairly obvious that there is a
high number of cascades occurring across the east coast
of United States as is the density of population in this re-
gion. The high density of hospitals in this region provide
true alternatives in bigger cities and hence the impact of
cascades is potentially higher here compared to other re-
gions of the country.

5.2 Seasonal Variations

Figure 4(a) shows the seasonal variations in the number of
transfers involved in significant cascades of size 3 for four

quarters in each year of data. The data is normalized with
respect to the total number of transfers in occurrences of
these cascades. We can clearly see the increase in cas-
cades over the winter quarter. To illustrate the sensitivity
provided by the cascade analysis, in Figure 4(b) we show
the same seasonal variations reflected in the total number
of ICU transfers. The seasonal variation in this data is
much smaller than that in Figure 4(a). Hence the cascades
can be used as early predictors of seasonal effects such as
the winter flu with higher sensitivity. This can in turn be
used for capacity planning of ICUs.

(a) ICU transfers participating in cascades

(b) All ICU transfers

Figure 4: Seasonal variation in the occurrence of cascades. The
transfers are presented in buckets of three months. The data is
normalized with respect to the total number of transfers in oc-
currences of cascades in (a) and all transfers in (b).

5.3 Network Hot-spots

A hospital can be considered to be a hot-spot in the ICU
transfer network if there are many cascades involving it.
In Figures 5, we show one such hot-spot (hospital 39 that
is part of 29 different significant cascades). Hospital 39
is present in 717 distinct cascade occurrences. There are
several other such nodes in the discovered cascades that
can be considered as bottle-necks.

6 Discussion and Future Work
Secondary transfers are a common part of the care of crit-
ically ill patients. It appears that these secondary transfers
frequently cascade. These cascades present a prima facie
case that there are important and currently unacknowl-
edged and unmanaged interdependencies among ICUs.
Examining the reasons for these specific cascades may of-
fer substantial insights into the functioning of the critical
care transfer system and suggest ways to improve the ef-
ficiency and quality of care provided to patients. It may
be possible to detect these cascades in real time, and use
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Figure 5: Plot of cascades involving Hospital 39.

them as an early warning sign for impending strain on the
ICU system. Further, the hotspots that have been identi-
fied offer particular targets for public health planning in-
terventions. Those interventions may be to improve ca-
pacity at the hotspots (if they are high functioning hospi-
tals) or to encourage nearby hospitals to seek other trans-
fer destinations (if patients would be better served by re-
ducing the dependence on the hotspot hospitals).

This cascading behavior and its concentration in cer-
tain hot-spots is strongly suggestive that there are areas
of binding capacity constraint in critical care transfers.
While it is true that these patients were able to be trans-
ferred to some other hospital, our data raise the concern
that such transfers may have been delayed by the time it
took to identify a secondary transfer location. Such de-
lays may have important consequences for critically ill
patients, whose care it often very time-sensitive; how-
ever, it is important to acknowledge that our data suggest
but do not prove that this is true. These patterns may
provide an important screening tool by which to target
quality improvement initiatives to optimize the availabil-
ity of high quality ICU referral capacity, and may offer a
fruitful partnership between system-level informatics and
hospital-specific quality improvement.

The approach we have developed here is a quite general
tool for detecting and identifying unacknowledged depen-
dencies and tight coupling in complex systems. There has
been substantial interest in the potential of networks to
shape cascades, particularly as they could relate to cas-
cading failures due to overload – power grid failures may
be the most prominent example in the public mind. How-
ever, many tightly coupled systems exist, from traffic on
highways to work flows in organizations. But while the
potential disruptiveness of large scale cascades has been
explored, we are aware of little work that seeks to detect
sub-catastrophic cascades that may be indicators of inef-
ficiencies in routine practice. The couplings in many such
systems are often not easily detected – the methods we
propose may be quite general for detecting key nodes in
coupled systems that lead to cascading deviations from
usual practice.

The results presented in the paper are quite prelimi-

nary. We plan to quantify the definition of hotspots and
extend the analysis to variation of hotspots over time and
geographical regions. We also plan to look at the nature
of hospitals initiating significant cascades and the nature
of cascades for different types of transfers (cardiac, non-
cardiac, etc.). These will be presented in a future publica-
tion.

The formalism presented in this paper has many limi-
tations. For speedy discovery of significant cascades, we
need to model the counting process and build equivalent
statistical models (see [7, 8] for details). The data we have
extracted from MedPAR does not have enough details to
answer the most interesting question: are the secondary
transfers made because the primary transfer hospital could
not be used? We plan to address this in future work. We
plan to extract capacity utilization data for a limited set of
hospitals in Michigan and correlate it with the cascades.
We also plan to set up a simulation platform to find the
critical hospital-level and network-level parameters that
are important for causing cascades. We are in the process
of proposing a pilot study that involves a regional chain of
hospitals in Michigan and Ohio for this purpose.
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