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Abstract

Objectives

Islet transplantation is an emerging treatment option for type 1 diabetes but its application is

limited by the shortage of human pancreas donors. Characterization of the N- and O-glycan

surface antigens that vary between human and genetically engineered porcine islet donors

could shed light on targets of antibody mediated rejection.

Methods

N- and O-glycans were isolated from human and adult porcine islets and analyzed using

matrix-assisted laser-desorption time-of-flight mass spectrometry (MALDI-TOF-MS) and

electrospray ionization mass spectrometry (ESI-MS/MS).

Results

A total of 57 porcine and 34 human N-glycans and 21 porcine and 14 human O-glycans

were detected from cultured islets. Twenty-eight of which were detected only from porcine

islets, which include novel xenoantigens such as high-mannose type N-glycans with core

fucosylation and complex-type N-glycans with terminal neuraminic acid residues. Porcine

islets have terminal N-glycolylneuraminic acid (NeuGc) residue in bi-antennary N-glycans

and sialyl-Tn O-glycans. No galactose-α-1,3-galactose (α-Gal) or Sda epitope were

detected on any of the islets.

Conclusions

These results provide important insights into the potential antigenic differences of N- and O-

glycan profiles between human and porcine islets. Glycan differences may identify novel

gene targets for genetic engineering to generate superior porcine islet donors.
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Introduction

Phase 3 trials of transplantation of human pancreatic islets have highlighted the potential of

cell replacement therapies in type 1 diabetes [1, 2]. Though highly effective, the applicability of

islet transplantation is limited by the shortage of human donor pancreases. Porcine donors are

a promising alternative source of islets in light of their similar physiology and size compared

with humans, their high reproductive capacity, and the potential for genetic manipulation [3,

4]. Preclinical studies and initial clinical trials of islet xenotransplantation have demonstrated

both the safety of porcine islet cell products and the need for developing new and improved

startegies for preventing their rejection [5–16].

Carbohydrates (glycans) are one of the major classes of biomolecules found on cell surfaces

and play a critical role in biological processes such as organ development and immunity [17].

They are synthesized in the endoplasmic reticulum, modified in the Golgi apparatus, and

transferred to the plasma membrane [18]. As glycan expression varies depending on species,

strain, individual, organs, and cell types, detailed qualitative and quantitative structural infor-

mation on the target organ/animal is required. The discovery of the galactose-α-1,3-galactose

(α-Gal) epitope that is present in pigs but is absent in humans and nonhuman primates

(NHPs) allowed the prevention of hyperacute rejections in pig-to-NHP cardiac and renal

xenotransplantation [19, 20]. Recent in vitro studies have demonstrated the importance of

deleting N-glycolylneuraminic acid (NeuGc) and Sda antigen on porcine donor cells for pre-

venting rejection of planned solid organ xenotransplants in humans [21–25].

The tissue-specific expression of glycan antigens in primarily avascular islet cell xenografts

remains incompletely understood. The α-Gal antigen is expressed only on very few adult por-

cine islet enocrine cells and does not cause their hypereacute rejection after xenotransplanta-

tion in NHPs [7, 26, 27]. To identify potential new targets for genetic engineering of porcine

donors tailored for use in islet xenotransplantation, the current study was conducted to com-

pare N- and O-glycan profiles between human and porcine islets using mass spectrometric

analysis. We found unique differences in high-mannose and complex-type N-glycan profiles

between human and porcine islets, as well as the presence of NeuGc structures in N- and O-

glycans of porcine islets.

Materials and methods

Pig and human islet preparation

Seven adult female pigs (Sus scrofa; six Mangalista and one Landrace x Yorkshire), with a

median age of 3 years (range: 3–4) and a median weight of 206 kg (170–247), were evaluated as

donors of islet xenografts. Aliquots of two adult human islet preparations were purchased

from PRODO Laboratories Inc. (Aliso Viejo, CA) and one adult human islet preparation

deemed unsuitable for clinical transplantation was provided with appropriate consent by our

local islet transplant program.

Porcine islets were isolated as previously described [7]. Briefly, donor pig was anesthesized

with tiletamine-zolazepam (Telazol1; Zoetis, Parsippany-Troy Hills, NJ) before exsanguina-

tion, and retrieved pancreas tissue was dissociated with collagenase and neutral protease. Lib-

erated islets were purified from non-islet tissue by continuous density gradient centrifugation

on a COBE 2991 cell separator (Terumo BCT, Lakewood, CO), and cultured free-floating in

ME 199 media supplemented with 10% heat-inactivated porcine serum (HyClone, Logan,

UT), L-glutamine and heparin (10 U/mL) at 37˚C in humidified air without CO2. From each

donor islet preparation, 5,000 islet equivalents of islets were collected and shipped to the Com-

plex Carbohydrate Research Center at the University of Georgia (Athens, GA) in culture
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media for further analysis. All animal procedures were approved by the University of Minne-

sota Institutional Animal Care and Use Committee and conducted in compliance with the

Animal Welfare Act and adhere to principles stated in the Guide for Care and Use of Labora-

tory Animals (Protocol Number: 1907-37282A). For the purpose of using human islets, this

project was reviewed by the Institutional Review Board of the University of Minnesota and

was determined that it does not meet the regulatory definition of human subjects research, as

defined by DHHS and FDA and therefore exempt.

Sample preparation

Islet samples were centrifuged at 400 rcf for 3 min and the pellet was washed five times with 1x

PBS, followed by lipid extraction by the Folch method (using chloroform, methanol, and

water) [28]. After lipid extraction, the sample was subjected to cold acetone:water precipitation

producing a protein-rich powder.

Release of N-glycans

An aliquot of the protein-rich powder was digested with trypsin in Tris-HCl buffer overnight.

After protease digestion, the sample was passed through a C18 Sep-Pak cartridge, washed with

a 5% acetic acid, and the glycopeptides were eluted with a blend of isopropanol in 5% acetic

acid.

The glycopeptide eluate was treated with PNGase F to release the N-glycans and the digest

was passed through a C18 Sep-Pak cartridge to separate the N-glycans from O-glycopeptide

fraction. The N-glycans fraction was eluted first with 5% acetic acid followed by elution of O-

glycopeptides into another container with a blend of isopropanol and 5% acetic acid. After

lyophilization, the N-glycans fraction was permethylated for mass spectrometry [29].

Release of O-glycans

The O-glycopeptide fraction from each sample was subjected through reductive beta-elimina-

tion procedure using sodium borohydride in sodium hydroxide solution to cleave the O-linked

glycans from the peptides. Subsequently, released O-glycans were cleaned up using acid foam

(H+) ion exchange resin and permethylated for mass spectrometry [29].

Per-O-methylation of N-linked glycans

The N- and O-glycans were permethylated for structural characterization by mass spectrome-

try [30]. Briefly, the dried eluates were dissolved with dimethylsulfoxide (DMSO) and methyl-

ated with NaOH-DMSO base and methyl iodide. The reaction was quenched with water

and per-O-methylated carbohydrates were extracted with methylene chloride and dried under

N2.

Profiling by Matrix-Assisted Laser-Desorption Time-of-Flight Mass

Spectrometry (MALDI-TOF-MS)

The permethylated glycans were dissolved with methanol and crystallized with α-dihyroxy-

benzoic acid (20 mg/mL in 50% methanol: water) matrix. Analysis of glycans present in the

samples was performed in the positive ion mode by MALDI-TOF-MS using AB SCIEX TOF/

TOF 5800 mass spectrometer (Applied Biosystem/ MDS Analytical Technologies).
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Profiling by Electrospray Ionization Mass Spectrometry (ESI-MS/MS) and

Higher-Energy Collisional Dissociation Tandem Mass Spectrometry

(HCD-MS/MS)

We conducted ESI-MS/MS to confirm the structure of permethylated glycans. In silico frag-

mentation of structures predicted based on common mammalian biosynthetic pathway were

generated through GlycoWorkbench software. The presence of these fragments was examined

on the ESI-MS/MS spectrum of each glycan. If isomers are present or alternate structures are

possible, we changed the structural assignments accordingly in order to match the correspond-

ing ESI-MS/MS spectrum.

Aliquot from each permethylated sample glycans was analyzed by ESI-MS/MS (Thermo

Orbitrap Fusion Tribrid mass spectrometer) to collect both full mass and MS/MS fragmenta-

tion data. Permethylated glycans from the samples were infused into the mass spectrometer

through a nano-electrospray ionization (NSI) probe. The MS1 and MS2 spectra (Higher-

energy Collisional Dissociation, HCD) of the glycans were acquired at high resolution by a

simple precursor scan and total ion monitoring program respectively.

Data processing of MALDI-TOF-MS, ESI-MS and ESI-MS/MS data

Data Explorer 4.5 (MALDI-TOF-MS data) and XCalibur 4.2 (ESI-MS and ESI-MS/MS data)

software were used in order to extract the raw MS data. The quantitation of glycoforms were

conducted from MALDI-TOF-MS spectra by calculating the relative intensity of glycan peaks.

The glycoworkbench analysis were conducted for the structural assignment of glycans without

any further processing of data and by manually entering the values into the software.

Results

Characterization of N-glycans from pig and human islets

The representative MALDI-TOF-MS and ESI-MS full scan spectra of the N-glycans are shown

in Fig 1, and the proposed glycan structures and their percentages are summarized in Fig 2. A

total of 57 and 34 N-glycans were detected from the porcine and human islets, respectively, 21

of which were only observed from pig islets (Fig 2). High mannose type structures, which

included a few fucosylated species, consisted of the majority of the N-glycans detected from

the glycoprotein. Man5GlcNAc2 (m/z 1580) and Man6GlcNAc2 (m/z 1784) showed the largest

signals of all possible N-glycans of porcine islets (Fig 2). Man3GlcNAc2 (m/z 1172) and Man3-

GlcNAc2Fuc1 (m/z 1346), as well as Man5GlcNAc2 and Man6GlcNAc2, showed large signals

in human islets. There were 2 high mannose type N-glycans with core fucosylation (m/z 1550

and 1754) annotated in porcine islets, both of which were only found from porcine islets (Fig

3) [31, 32].

Approximately 4% of the total N-glycans were with terminal neuraminic acid residue,

including the two signals (m/z 2997 and 3027) that appear to be bi-antennary oligosaccharides

contained NeuGc (Fig 4) [33]. Sialylated N-glycans in tri- and tetra-antennary structures and

hybrid-type structure were only found from porcine islets (Figs 4 and 5) [33]. Moreover, tetra-

antennary N-glycans with LacNAc elongations (with or without N-acetylneuraminic acid

[NeuAc] terminal) are only found from porcine islets (Fig 5). Three N-glycans with Lewis type

structures (m/z 2418, 2592, and 3216) were detected from human islets (Fig 2).

Characterization of O-glycans from pig and human islets

The representative MALDI-TOF-MS and ESI-MS full scan spectra of the O-glycans are shown

in Fig 6, and the proposed glycan structures and their percentages are summarized in Fig 7.
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Fig 1. The representative MALDI-TOF-MS and ESI-MS/MS spectrum of N-glycans. MALDI-TOF-MS spectrum of permethylated N-glycans released by

PNGaseF (A) and representative HCD MS2 fragmentation spectra at m/z 884 (3+) [M + Na]1+! 2605.3 (B).

https://doi.org/10.1371/journal.pone.0241249.g001
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The data from two human islet samples were not obtained due to detergent contamination on

the sample which interfered with lower mass O-gycan peaks. A total of 21 porcine and 14

human O-glycans were detected from islet samples, respectively. Core 1 (m/z 534, also known

as T antigen) and sialylated core 1 (m/z 896) showed the largest signals of all possible O-glycans

of porcine islets, followed by disialylated core 1 (m/z 1257). Most of the O-glycans detected

from human islets contained the core 1 structure. Three signals that possibly bear the terminal

NeuGc residue were observed (m/z 722, 926, and 1317) from porcine islets, including sialyl-Tn

antigen (m/z 722). Lewis type structures such as (Gal)-(FucGlcNAc) and (FucGal)-(FucGlc-

NAc) were present on the terminal of O-glycans of higher mass from sample H1081. To deter-

mine the presence of the Sda antigen, all sialic acid bearing ions from MS/MS spectra were

evaluated, however, the presence of the Sda antigen was not detected.

Fig 2. Summary of N-linked glycans detected from adult porcine and human islets by MALDI-TOF-MS and ESI-MS. The structures were confirmed by

ESI-MS/MS. 1All masses (mass+Na) are permethylated and single-charged values measured by MALDI-TOF-MS. The structure assignment were based on

common biosynthetic pathway and ESI-MS/MS fragmentation by HCD. 2% N-glycans were calculated from the area units of detected N-glycans.

https://doi.org/10.1371/journal.pone.0241249.g002
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Discussion

The demonstration of prolonged diabetes reversal after porcine islet xenotransplantation in

NHPs suggests that porcine islets could be developed into a widely available cell source for cell

replacement therapy in diabetes. To work toward this end, safer and more effective startegies

for preventing islet xenograft rejection will be necessary. Understanding the differences in car-

bohydrate antigens expressed on procine and human islets could minimize the immunogenic-

ity of islets from porcine donors custom-engineered for use in islet xenotransplantation.

Our MALDI-TOF-MS and ESI-MS/MS analysis of glycans identified differenes between

porcine and human islets. Our results confirm that porcine islets have NeuGc in N- and O-gly-

can forms, albeit no α-Gal or Sda epitope was detected from any of the islets (Figs 2 and 7).

The study also proposed novel glycan structures that exist only in porcine islets; the high-man-

nose type N-glycans with core fucosylation and complex-type N-glycans with terminal neura-

minic acid residues, which can be potential gene targets for genetic engineering to generate

superior porcine islet donors (Figs 3–5).

Our findings build upon two series of studies that performed qualitative and quantitative

analyses of carbohydrate antigens of porcine islets using mass spectrometry (Table 1) [34–38].

Kim et al. detected 80 N-glycans, which includes NeuGc epitopes and a negligible amount of

α-Gal epitope, but they did not include in their analysis a direct comparison between porcine

and human islet glycan profiles [34, 35]. Miyagawa et al. compared porcine and human islets

and reported that 12 of 28 and 9 of 24 N-glycans found from adult and neonatal wildtype pigs

were detected exclusively on porcine islets, respectively [36, 38]. Within a larger number of 7

Fig 3. Possible biosynthetic pathways of high-mannose type N-glycans with the fucosylated core. FUT8,

α1,6-fucosyltransferase; MI, α-mannosidase I.

https://doi.org/10.1371/journal.pone.0241249.g003
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porcine donors, we demonstrated 57 N-glycans and 21 O-glycans including the NeuGc epitope

and other potential non-α-Gal antigens, although further studies are needed to confirm these

findings as comparison to only 3 and 1 human samples were performed with respect to N- and

O-glycan analysis, respectively. All these studies including ours confirm a negligible amount of

α-Gal epitopes and a considerable amount of NeuGc epitopes expressed on adult porcine

islets. The number of identified glycans differs between the porcine donors used in our study

and donors used in previous studies, which may be attributed to the culture conditions or islet

isolation methods. Although direct comparison between the studies may be difficult because

of these reasons, the two tri-antennary N-glycans (m/z 2157 and 2402) were only found in

adult porcine islets in ours and Miyagawa’s studies [36].

An abundance of high-mannose type N-glycans is assumed to be a typical feature of islets

[36]. In the current study, among the high-mannose type N-glycans, a rare type of the high-

mannose N-glycan that has a fucosylated core (m/z 1550 and 1754) were measured from por-

cine islets. These glycans are previously detected from porcine cathepsin D or lamia bean lectin

[39, 40]. Burlak et al. has recently described that anti-fucose antibodies in human serum are

Fig 4. Biosynthetic pathways of bi- and tri-antennary N-glycans. β4GalT, beta-1,4-galactosyltransferase; Cmah, cytidine monophospho-N-acetylneuraminic acid

hydroxylase; GnT, N-Acetylglucosaminyltransferases; SiaTs, Sialyltransferases.

https://doi.org/10.1371/journal.pone.0241249.g004
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involved in the antibody-mediated rejection of xenogeneic porcine tissue from donors lacking

α-Gal and NeuGc epitopes [23]. It may be reasonable to include high-mannose N-glycans with

the fucosylated core in future studies to more thoroughly understand xenograft rejection.

In the current study, up to 16% of total N-glycans on porcine islets had terminal neuraminic

acid residues. Interestingly, all detected sialylated N-glycans in tri- and tetra-antennary forms

or the hybrid form, which were also detected by Kim et al. [34], were only measured from por-

cine islets but not from human islets. Human islet sialylated N-glycans were only found in the

bi-antennary form. These findings are in line with the previous study by Komoda et al. that

demonstrated that the origin of xenoantigenicity of porcine islets is mainly N-glycans includ-

ing sialic acid antigens (NeuAc and NeuGc) [41].

In addition to the antigens that we discussed above, it has been proposed that Thomsen-

Friedenreich antigen (T antigen), T and sialyl-Tn antigens, P antigen, and I or i antigens are

potential non-α-Gal carbohydrate antigens against which humans have naturally occurring

antibodies [42]. Among these antigens, we successfully observed sialyl-Tn antigens (m/z 692

and 721) exclusively in porcine islets (Fig 7), which also can be a target of rejection. To the best

of our knowledge, this is the very first study that analyzed O-glycan structures of pig and human

islets. However, as mentioned above, the condition of the islet isolation and culture might affect

the result of the analysis and further studies are warranted to confirm these findings.

In this study, islets from 3-year old adult pigs were examined for N- and O-glycan analyses

building on studies of glycan expression previously reported by age [43] Future studies should

examine the glycan expression of neonatal porcine islets to describe alternative age donors for

clinital transplantation.

In conclusion, evidence presented in this study indicates that core-fucosylated high-man-

nose N-glycans and complex-type N-glycans with terminal neuraminic acid residue are unique

structures found on porcine islets. Also, the structural analysis suggested that NeuGc struc-

tures are found as a part of mature bi-antennary N-glycans or sialylated Tn antigens in O-gly-

cans. This study underscores the opportunities associated with improved understanding of

specific N- and O-glycans expressed on porcine islets. Future studies will focus on the antigen-

specific reactions against these novel glycan structures, which can be a potential target of

xenoreactive antibodies.

Fig 5. Biosynthetic pathways of tetra-antennary N-glycans. β4GalT, beta-1,4-galactosyltransferase; SiaTs, Sialyltransferases.

https://doi.org/10.1371/journal.pone.0241249.g005
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Fig 6. The representative MALDI-TOF-MS and ESI-MS/MS spectrum of O-glycans. MALDI-TOF-MS spectrum of permethylated O-glycans released

by β-elimination (A) and representative HCD MS2 fragmentation spectra at m/z 895 [M + Na]1+ (B).

https://doi.org/10.1371/journal.pone.0241249.g006
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Spectrometry; N/A, not available; SPF, specific pathogen-free; WT, wild-type.
1detected in ESI-q-TOF MS analysis but the quality was negligible. Zero α-Gal epitope was observed in HPLC analysis.
2Islets from several pigs may be combined into one analysis.
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5. Groth CG, Korsgren O, Tibell A, Tollemar J, Möller E, Bolinder J, et al. Transplantation of porcine fetal

pancreas to diabetic patients. Lancet. 1994; 344(8934):1402–4. https://doi.org/10.1016/s0140-6736

(94)90570-3 PMID: 7968077

6. Wang W, Mo Z, Ye B, Hu P, Liu S, Yi S. A clinical trial of xenotransplantation of neonatal pig islets for

diabetic patients. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2011; 36:1134–40. https://doi.org/10.3969/j.

issn.1672-7347.2011.12.002 PMID: 22246351

7. Hering BJ, Wijkstrom M, Graham ML, Hårdstedt M, Aasheim TC, Jie T, et al. Prolonged diabetes rever-

sal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman pri-

mates. Nat Med. 2006; 12:301–3. https://doi.org/10.1038/nm1369 PMID: 16491083

8. Cardona K, Korbutt GS, Milas Z, Lyon J, Cano J, Jiang W, et al. Long-term survival of neonatal porcine

islets in nonhuman primates by targeting costimulation pathways. Nat Med. 2006; 12:304–6. https://doi.

org/10.1038/nm1375 PMID: 16501570

9. van der Windt DJ, Bottino R, Casu A, Campanile N, Smetanka C, He J, et al. Long-term controlled nor-

moglycemia in diabetic non-human primates after transplantation with hCD46 transgenic porcine islets.

Am J Transplant. 2009; 9:2716–26. https://doi.org/10.1111/j.1600-6143.2009.02850.x PMID:

19845582

10. Thompson P, Badell IR, Lowe M, Cano J, Song M, Leopardi F, et al. Islet xenotransplantation using gal-

deficient neonatal donors improves engraftment and function. Am J Transplant. 2011; 11:2593–602.

https://doi.org/10.1111/j.1600-6143.2011.03720.x PMID: 21883917

11. Bottino R, Wijkstrom M, van der Windt DJ, Hara H, Ezzelarab M, Murase N, et al. Pig-to-monkey islet

xenotransplantation using multi-transgenic pigs. Am J Transplant. 2014; 14:2275–87. https://doi.org/10.

1111/ajt.12868 PMID: 25220221

12. Hawthorne WJ, Salvaris EJ, Phillips P, Hawkes J, Liuwantara D, Burns H, et al. Control of IBMIR in neo-

natal porcine islet xenotransplantation in baboons. Am J Transplant. 2014; 14:1300–9. https://doi.org/

10.1111/ajt.12722 PMID: 24842781

13. Thompson P, Badell IR, Lowe M, Turner A, Cano J, Avila J, et al. Alternative immunomodulatory strate-

gies for xenotransplantation: CD40/154 pathway-sparing regimens promote xenograft survival. Am J

Transplant. 2012; 12:1765–75. https://doi.org/10.1111/j.1600-6143.2012.04031.x PMID: 22458586

14. Thompson P, Cardona K, Russell M, Badell IR, Shaffer V, Korbutt G, et al. CD40-specific costimulation

blockade enhances neonatal porcine islet survival in nonhuman primates. Am J Transplant. 2011;

11:947–57. https://doi.org/10.1111/j.1600-6143.2011.03509.x PMID: 21521467

15. Valdes-Gonzalez R, Rodriguez-Ventura AL, White DJ, Bracho-Blanchet E, Castillo A, Ramı́rez-Gonzá-
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