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Excessive alcohol consumption during adolescence remains a significant health concern 
as alcohol drinking during adolescence increases the likelihood of an alcohol use dis-
order in adulthood by fourfold. Binge drinking in adolescence is a particular problem as 
binge-pattern consumption is the biggest predictor of neurodegeneration from alcohol 
and adolescents are particularly susceptible to the damaging effects of alcohol. The 
adolescent hippocampus, in particular, is highly susceptible to alcohol-induced struc-
tural and functional effects, including volume and neuron loss. However, hippocampal 
structure and function may recover with abstinence and, like in adults, a reactive burst in 
hippocampal neurogenesis in abstinence may contribute to that recovery. As the mech-
anism of this reactive neurogenesis is not known, the current study investigated potential 
mechanisms of reactive neurogenesis in binge alcohol exposure in adolescent, male 
rats. In a screen for cell cycle perturbation, a dramatic increase in the number of cells 
in all phases of the cycle was observed at 7 days following binge ethanol exposure as 
compared to controls. However, the proportion of cells in each phase was not different 
between ethanol-exposed rats and controls, indicating that cell cycle dynamics are not 
responsible for the reactive burst in neurogenesis. Instead, the marked increase in hippo-
campal proliferation was shown to be due to a twofold increase in proliferating progenitor 
cells, specifically an increase in cells colabeled with the progenitor cell marker Sox2 and 
S-phase (proliferation) marker, BrdU, in ethanol-exposed rats. To further characterize 
the individual subtypes of neural progenitor cells (NPCs) affected by adolescent binge 
ethanol exposure, a fluorescent quadruple labeling technique was utilized to differentiate 
type 1, 2a, 2b, and 3 progenitor cells simultaneously. At one week into abstinence, ani-
mals in the ethanol exposure groups had an increase in proliferating type 2 (intermediate 
progenitors) and type 3 (neuroblast) progenitors but not type 1 neural stem cells. These 
results together suggest that activation of type 2 NPCs out of quiescence is likely the 
primary mechanism for reactive hippocampal neurogenesis following adolescent alcohol 
exposure.
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inTrODUcTiOn

Alcohol use disorders (AUDs) remain a significant public health 
problem. Nearly 14% of the USA population meet the DSM-V 
diagnostic criteria for an AUD in any given year which translates 
into a life-time prevalence of 29% (1). AUDs often originate with 
experimentation with alcohol in adolescence, defined as ages 
10–19 (2, 3). Indeed, DSM-IV based rates of AUDs in adolescence 
(~6%) were remarkably similar to that in adults [8.5% (4–7)]. 
Although rates of adolescent drinking have steadily declined 
over the last two decades (8), they are still high. For example, 
over 60% of adolescents report having consumed alcohol by 12th 
grade and more critically 5.7% (8th graders) to 37.3% (12th grad-
ers) have been drunk in the last year (8). Of those adolescents 
who drink alcohol, over half of them drink in a binge pattern, 
defined as greater than four (females) or five (males) drinks in 
a 2  h period (9, 10). Unfortunately, binge pattern drinking is 
associated with damage to the CNS (11) and adolescents show 
more degenerating neurons in corticolimbic regions than adults 
following binge/bender-like alcohol exposure in animal models 
(12). The adolescent’s greater susceptibility to alcohol-induced 
neurodegeneration may explain why hippocampal pathology 
has been observed in human adolescents with AUDs despite 
only a few years of drinking (13–16).

Drinking in young adolescence increases the risk of develop-
ing an AUD fourfold versus drinking onset at age 18 and older 
(17), which suggests that there are significant developmental 
differences in the effects of alcohol on the brain (16, 18–21). 
This heightened risk is due to a combination of several factors. 
Adolescence is a dynamic time for brain development, especially 
in frontal, cortical, and limbic behavioral control centers (22–24). 
Neurological immaturity coincides with increased risk taking, 
novelty seeking, and a reduced responsiveness to the sedative 
and motor impairing effects of alcohol intoxication [e.g., (25, 26)]  
that essentially create the “perfect storm” to drive excessive 
alcohol intake during adolescence (19, 21). The adolescent hip-
pocampus, in particular, shows greater susceptibility to a host of 
negative effects resulting from excessive alcohol consumption 
including those from the intoxicating effects of alcohol as well 
as from the consequences of prior alcohol exposure (27–31). 
Human adolescents who meet criteria for an AUD demonstrate 
impairments on hippocampal-dependent tasks (32–34), which is 
in agreement with observations of reduced hippocampal volumes 
[(13–15); see also (35) for review]. Animal models of the con-
sequences of adolescent alcohol consumption also demonstrate 
behavioral impairments on hippocampal-dependent tasks  
(36, 37), and have helped elucidate the underlying neurobiology, 
likely impairments in hippocampal structure and function (12, 27,  
31, 38–40). However, others have seen only transient [e.g., (41)] 
or no effect (42) of prior alcohol exposure on hippocampal-
dependent learning and memory behavior in adolescents.

The hippocampus is one of the few regions of the brain that 
contains a pool of neural stem cells (NSCs) that produce new 
neurons throughout the life of the organism (43–45). NSCs, 
located along the subgranular zone (SGZ), are now well accepted 
to produce granule cell neurons that contribute to hippocampal 
structure and function (45–50). The birth of new neurons is 

comprised of four main processes: cell proliferation, differentia-
tion, migration, and survival/integration. Newly born neurons 
originate from a population of radial glia-like NSCs [type 1; (44)]. 
Type 1 NSCs self-renew by dividing asymmetrically to give rise 
to a daughter NSC and a daughter intermediate progenitor cell 
with glial (type 2a) or neuronal (type 2b) phenotypes, that then 
become a more lineage-committed neuroblast [type 3; reviewed 
in Ref. (45)]. Neuroblasts then migrate into the granule cell layer, 
extend axons and dendrites and become integrated as part of 
the hippocampal circuitry as they mature (45). Alcohol affects 
each of these processes depending on the timing (age), dose, 
duration, and pattern of exposure (51–53).

In animal models of AUDs, alcohol-induced neurodegenera-
tion and recovery of hippocampal structure and function cor-
responds to a similar pattern in alcohol-induced effects on NSCs 
and adult neurogenesis [reviewed in Refs. (52–54)]. Specifically, 
alcohol intoxication inhibits NSC proliferation and adult neu-
rogenesis in a duration-dependent and blood ethanol concen-
tration (BEC)-dependent manner (55–63) while a rebound or 
compensatory effect on adult neurogenesis is observed during 
withdrawal and abstinence (64–68). Indeed, within the first sev-
eral days of abstinence there is a striking burst in cell proliferation 
along the SGZ that results in a significant increase in newborn 
neurons in both adult and adolescent models of AUDs (64, 
66–69). This reactive neurogenesis has been observed in other 
acutely damaging events such as traumatic brain injury (70), 
ischemia (71–73), and seizure (74, 75). Recent work describes 
that reactive NSC proliferation is due to stem cell activation 
in rodent models of traumatic brain injury (76) and alcohol 
dependence in adults.1 Specifically, an increase in the number 
of neural progenitor cells (NPCs) and proliferating NPCs was 
observed, suggesting an expansion of the stem cell pool (see text 
footnote 1). This expansion appears to be due, in part, to more 
type 1 NSCs recruited out of quiescence at 7 days of abstinence 
to help drive this reactive neurogenesis effect in adult rats  
(see text footnote 1). However, findings in adults or adult models 
do not necessarily generalize to adolescents. For example, the 
adolescent brain shows more profound and aberrant effects of 
alcohol on this reactive, adult neurogenesis phenomenon (67). 
In adolescent rats after alcohol dependence (the 4-day binge 
model), newborn neurons are observed in ectopic locations (67) 
and increases in the NSC pool have been observed immediately 
following the last dose of alcohol in adolescent rats but not 
adults (77). Therefore, due to these significant age differences 
in alcohol-induced reactive neurogenesis, we investigated the 
mechanism of reactive hippocampal neurogenesis in adolescent 
male rats after the 4-day binge model of alcohol dependence. 
Specifically, as the mechanism of increased proliferation would 
be either a shortened (accelerated) cell cycle or activation of a 
larger number of NPCs out of quiescence, we screened for cell 
cycle effects and examined which subtype of progenitor cells 
were proliferating at 7 days of abstinence.

1 Hayes DM, Geil Nickell CR, Chen KY, McClain JA, Heath MM, Nixon K. 
Activation of neural stem cells from quiescence drives reactive hippocampal 
neurogenesis after alcohol dependence. Neuropharmacology. (In Review).
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FigUre 1 | Reactive Neurogenesis confirmed with NeuroD1. (a) Experimental timeline is shown. Increased proliferation along the subgranular zone (SGZ) at T7  
(67) is followed by enhanced NeuroD1 expression. (B–g) Representative images show NeuroD1 immunoreactivity present along the inner side of the granule  
cell layer in control (B–D) and ethanol (e–g) rats after 7, 14, and 30 days post the final dose of alcohol. Arrows point to areas represented in insets. Scale 
bars = 100 µm. (h) Profile counts revealed that the number of NeuroD1+ cells located in the SGZ increased significantly 14 days after binge ethanol exposure.  
(i,J) Spearman’s correlation shows a positive relationship between 14-day NeuroD1+ cell counts and peak withdrawal score (i) and mean withdrawal score  
(J). *p < 0.05. †p = 0.058.
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MaTerials anD MeThODs

animal Model
Sixty-two adolescent male Sprague-Dawley rats (Charles River 
Laboratories; n = 32 controls; n = 30 ethanols) were used in this 
study. A timeline of experimental events is shown in Figure 1A. 
Upon arrival, postnatal day (PND) 30, rats were individually 
housed and allowed 5 days to acclimate to an AALAC accred-
ited vivarium at the University of Kentucky with a 12  h light 
(0700)/dark (1900) cycle. All procedures were approved by the 
University of Kentucky’s Institutional Animal Care and Use 
Committee and conformed to the Guide for the Care and Use of 
Laboratory Animals (78).

The 4-day binge model, based on that originated by Maj-
chrowicz (79) was chosen as it uses the common route of con-
sumption in humans, it mimics a binge-bender typical of the 
truly problematic portion of the AUD population and has high 
BECs typical of binge-pattern drinking within the range of that 
reported in adolescents (80). Starting on PND 35, mid adolescence 
(81), rats were orally gavaged every 8  h for 4  days with either 
25% w/v ethanol or isocaloric dextrose in Vanilla Ensure Plus™ 

that followed a procedure modified from Majchrowicz (79) as 
described previously (82). Rats received an initial 5 g/kg dose of 
ethanol with subsequent doses titrated based on the following 
behavioral intoxication scale: 0-normal rat (5  g/kg), 1-hypoac-
tive (4 g/kg), 2-ataxic (3 g/kg), 3-delayed righting reflex (2 g/kg), 
4-loss of righting reflex (1 g/kg), and 5-loss of eye blink reflex (0 g/
kg). Control rats were given the average volume of isocaloric diet 
administered to the ethanol group. Three ethanol rats and one con-
trol died as a result of gavage error and/or treatment (not included 
in the n = 62), leading to unequal group numbers. Tail blood was 
collected 90 min after the seventh dose of ethanol diet, which is 
midway of the 12 total doses as well as when the peak BECs occur  
(82). BECs were analyzed using an AM1 Alcohol Analyser (Analox 
Instruments LTD., London, UK) with a 300 mg/dl standard.

Ten hours after the last dose of ethanol, animals underwent 
monitored withdrawal. Rats were observed for behavioral signs 
of alcohol withdrawal for 30 min of every hour, for 17 h exactly 
as reported previously (82). Animals were scored according to 
an established rubric of behavioral signs of withdrawal modified 
from Majchrowicz (79) as described previously (82, 83). Each 
hour the highest observed score was recorded and was then 
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TaBle 1 | Antibodies.

Primary antibody antibody concentration; source, product number incubation period (h) secondary antibody

DaB (individual)
Mouse α-Ki67 1:200; Vector, VP-K452 48 Horse α-mouse, Vector
Rabbit α-pHisH3 1:1,000; Millipore, 06-570 16 Goat α-rabbit, Vector
Mouse α-BrdU 1:5,000; Millipore, MAB3424 16 Horse α-mouse, Vector
Goat α-NeuroD1 1:1,000; Santa Cruz, sc-1054 48 Rabbit α-goat, Vector

Fluorescent
Double
Sox2 1:200; Millipore, AB5603 48 AlexaFluor goat α-rabbit 488, Invitrogen
BrdU 1:400; Accurate; OBT0030 48 AlexaFluor goat α-rabbit rat 546, Invitrogen
Quad
Mouse α-Ki67 1:100; Vector, VP-K452 96 Donkey α-mouse 405, Jackson ImmunoResearch
Chicken α-GFAP 1:1,000; Abcam, ab467m 96 Donkey α-chicken 488, Jackson ImmunoResearch
Goat α-NeuroD1 1:500; Santa Cruz, sc-1054 96 Donkey α-goat 633, Invitrogen
Rabbit α-Sox2 1:200; Millipore, AB5603 96 Donkey α-rabbit 546, Invitrogen
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averaged across all 17 h of withdrawal (“mean WD”). For each 
animal, the maximum withdrawal score each rat achieved was 
reported as “peak WD” score.

Tissue collection
Based on our previous studies on reactive cell proliferation 
(64, 67, see text footnote 1) and important timelines in adult 
neurogenesis, the thymidine analog, 5-Bromo-2′-deoxyuridine 
(BrdU, 300 mg/kg;Roche) was injected at 2 h prior to sacrifice 
at 7 (T7), 14 (T14), or 30 (T30) days after their last dose of 
ethanol to detect changes in cell proliferation. The dose of BrdU 
and 2 h exposure was chosen to maximally label cells in S-phase 
in adolescent rats based on estimates of its half-life at around 
30 min (46, 84). Rats were overdosed with sodium pentobarbital 
(Nembutal®; MWI Veterinary Supply, Nampa, ID, USA, or Fatal-
Plus®; Vortech Pharmaceuticals, Dearborn, MI, USA) followed 
by transcardial perfusion using 0.1 M phosphate-buffered saline 
(PBS; pH 7.4) and 4% paraformaldehyde. Brains were extracted, 
postfixed in paraformaldehyde for 24 h and then stored in PBS 
at 4°C. Brains were sliced coronally into 40 µm sections with a 
vibrating microtome (Leica Microsystems, Wetzlar, Germany) 
using unbiased tissue collection methodologies. Twelve equally 
spaced series of sections (every 12th section) were collected 
beginning at a random starting point around Bregma 1.6 through 
approximately Bregma 6.3. Sections were stored in a cryoprotect-
ant at −20°C until immunohistochemistry (IHC) was performed. 
Brains were coded so that the experimenter was blind to treat-
ment conditions at all times.

immunohistochemistry
3,3′-Diaminobenzidine Tetrahydrochloride  
(DAB) Labeled IHC
For antibodies to the neurogenesis-related and cell cycle-related 
markers, adjacent sections of every 12th (Ki67, pHisH3, and 
NeuroD1) or 6th (BrdU) tissue section were processed for free-
floating IHC. To examine the number of cells in each phase of 
the cell cycle and calculate the percentage of cells in G1, S, and 
G2/M phases of the cell cycle, the following combination of cell 
cycle markers was measured: (1) Ki67, expressed during all stages 

of the cell cycle, was used to determine the number of actively 
dividing cells in the SGZ (85, 86); (2) BrdU, which is incorporated 
into the DNA during DNA synthesis [S-phase; (87)], was used to 
quantify cells in S-phase; (3) pHis-H3 was used to quantify the 
number of cells in G2 and M [G2/M-phase; (88)]; (4) the popula-
tion of dividing cells in G1 phase was estimated by subtracting 
the total number of pHis-H3

+ and BrdU+ cells from the number 
of Ki67+ cells. Minichromosome maintenance 2, typically used to 
identify G1 phase cells, was not specific for G1 phase in our hands 
(not shown). Thus, sections were rinsed in Tris-buffered saline 
(TBS) to remove traces of the cryoprotectant and incubated in 
0.6% H2O2 for 30 min to quench endogenous peroxidase activity. 
An antigen retrieval step in Citra® buffer (BioGenex, Freemont, 
CA) at 65°C (1 h for Ki67 or 20 min for NeuroD1 and pHisH3) 
was followed by washes in TBS then sections were blocked in 
3–10% normal serum for 30  min. For BrdU, DNA-denaturing 
steps were included as previously described (55, 64, 77). Sections 
were then incubated in primary antibody for 1–2 nights at 4°C 
(refer to Table  1). Tissue was then washed in blocking buffer, 
incubated for 1 h in secondary antibody (1:200; Table 1), incu-
bated in avidin-biotin-peroxidase complex (Vector Laboratories, 
Burlingame, CA, USA) for 1 h, and colorized with nickel enhanced 
DAB (Polysciences, Waltham, MA, USA) as previously described 
(55, 64, 77). Sections were mounted onto glass slides and BrdU 
and Ki67 were counterstained with cresyl violet and neutral red, 
respectively. Slides were coverslipped using Cytoseal® mounting 
media (Richard Allen Scientific, Kalamazoo, MI, USA).

Fluorescent IHC
In order to examine the number of proliferating NPCs or differentiate 
type 1, 2a, 2b versus 3 progenitor cells, a series of every 12th section 
of T7 tissue was processed for double (Sox2+/BrdU+) or quadruple 
(Ki67, GFAP, Sox2, and NeuroD1) fluorescent IHC as described (see 
text footnote 1). Briefly, tissue was washed in TBS, followed by antigen 
retrieval steps [BrdU: DNA denaturing as in Ref. (64), Quad label: 
sodium citrate buffer at 65°C for 1 h]. Sections were washed, blocked 
in 3% or 10% normal serum, and incubated in primary antibodies 
(Table 1) for 48 h (double) or 96 h (quad). Sections were then rinsed 
in blocking buffer and incubated in fluorescent secondary antibody 
for 1 h (double) or overnight (quad) in the dark (Table 1). Following 
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TaBle 2 | Binge intoxication parameters.

Time point (days post etOh) n intoxication score etOh dose (g/kg/day) Bec (mg/dl) Mean withdrawal Peak withdrawal

T7 (1-Quad label) 8 1.0 ± 0.1 11.9 ± 0.4 372.5 ± 18.7 1.0 ± 0.3 3.1 ± 0.3
T7 (2—all other) 7 0.7 ± 0.1 13.0 ± 0.3 363.3 ± 21.7 1.2 ± 0.2 3.5 ± 0.1
T14 6 1.4 ± 0.1a 10.9 ± 0.3a 388.6 ± 22.0 1.4 ± 0.4 2.6 ± 0.5
T30 9 1.0 ± 0.1 12.3 ± 0.2b 309.7 ± 11.7b  0.3 ± 0.1b 2.1 ± 0.3

All controls n = 8.
ap < 0.05 vs. T7 group 2.
bp < 0.05 vs. T14.
EtOH, ethanol; BEC, blood ethanol concentration.
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additional washes in TBS, sections were mounted onto glass slides, 
dried, and coverslipped with ProLong® Gold anti-fade reagent (Life 
Technologies, Eugene, OR, USA).

Quantification of ihc
DAB-Based IHC
The number of immunoreactive cell profiles (BrdU, Ki67, 
NeuroD1, and pHisH3) within hippocampal SGZ were quanti-
fied using a 100x objective and an Olympus BX-41 microscope 
(Olympus, Center Valley, PA). A profile counting approach was 
chosen over stereology for several reasons besides expediency: 
(a) the question of interest is relative difference versus controls 
which we have previously shown to be identical for profile counts 
versus stereology for proliferation markers (89), (b) stereology is 
not appropriate for proliferation markers as they are heterogene-
ously scattered along the SGZ and relatively few in number (90), 
and (c) the volume of the hippocampus is not different between 
ethanol and controls (91). The SGZ was defined as a ~50 μm thick 
ribbon of tissue between the granule cell layer and hilus of the 
dentate gyrus. As tissue is collected in an unbiased procedure, 
immunopositive profiles were counted across 6–8 sections (every 
12th) or 8–10 sections (every 6th) per brain and presented as 
mean number of immunopositive profiles ± SEM.

Double Fluorescent-Labeled IHC
Colabeled BrdU+ and Sox2+ cells were quantified along the SGZ 
using a 100x objective lens with an Olympus BX51 microscope 
(Olympus, Center Valley, PA, USA) with epifluorescence 
and bandpass filter cubes to visualize red (546  nm) and green 
(488 nm). Similar to above, as tissue was collected in an unbi-
ased procedure, colabeled cells were counted across six to eight 
sections per brain as follows: Analysis started with BrdU+ cells, 
which were then evaluated for the presence or absence of Sox2 
expression and reported as the mean number of colabeled cells 
per section ± SEM.

Quadruple Fluorescent-Labeled IHC
Sox2 labels multiple types of progenitor cells and the subtypes 
respond differently to neurogenic stimuli (92, 93). To determine 
the subtypes of NPCs responding during the proliferation burst 
at T7, a quadruple fluorescent IHC scheme was devised to dif-
ferentiate proliferating type 1, 2a, 2b, and 3 cells simultaneously 
in tissue (see text footnote 1). To identify type 1, 2a, 2b, and 3 
progenitor cells, a Leica TCS SP5 confocal microscope (Wetzlar, 
Germany) was used to collect z-stack images of 40 cells across five 

to six sections per brain under a 63.4x lens at 0.8 µm thickness, 
similar to previous (60, see text footnote 1). Proliferating cells 
(Ki67+) were defined as type 1 (GFAP+/Sox2+/NeuroD1−), type 
2 (type 2a = GFAP−/Sox2+/NeuroD1−; type 2b = GFAP−/Sox2+/
NeuroD1+), and type 3 (GFAP−/Sox2−/NeuroD1+) according to 
published definitions identical to our previous work in adults 
(61, 92, see text footnote 1). Cells were evaluated for colabeling 
in z-stack images rendered into a 3D model by ImagePro Plus 
3D software (6.3, Media Cybernetics, Silver Springs, MD, USA). 
Due to software limitations, only three channels could be com-
pared simultaneously. Therefore, two separate 3D renderings 
were made for each z-stack. The first included NeuroD1, Sox2, 
and Ki67 and were used to quantify type 2a, 2b, and 3 NPCs 
(Figure  4A). The second included GFAP, Sox2, and Ki67 and 
were combined with data collected from the first rendering to 
differentiate type 1 from type 2a progenitors. Each channel’s 
surface values were adjusted to minimize background signal 
while maintaining visibility of the fluorescent immunoreactiv-
ity. To ensure accuracy, the 3D renderings were compared side 
by side with the raw z-stack images during quantification. The 
percentage of cells of each subtype ±  SEM is presented along 
with an estimate of the number of proliferating cells generated 
by multiplying the percentages obtained with actual counts of 
DAB-labeled Ki67+ cells.

statistics
All data were initially assembled in Microsoft Excel with statistical 
tests performed using either Prism (GraphPad, LaJolla, CA, USA) 
or SPSS (IBM, Version 22, Armonk, NY, USA) software. Data are 
graphed as mean ± SEM. BECs and mean ethanol dose per day were 
analyzed by one-way analysis of variance (ANOVA) followed by 
post hoc Tukey’s tests. Intoxication and withdrawal behavior scores 
were analyzed by the non-parametric Kruskal-Wallis. Histological 
data were analyzed by appropriate ANOVA followed by Bonferroni 
post  hoc tests. Correlation between histology and withdrawal 
behavior was assessed by the non-parametric, Spearman correla-
tion. p-values were accepted as significantly different at p < 0.05.

resUlTs

Binge Data
Ethanol intoxication parameters including mean intoxication 
scores, daily ethanol dose, BECs, and mean and peak withdrawal 
scores for each cohort are presented in Table 2. While all binges 
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were conducted identically, groups occasionally differ in some 
parameters. Table 2 illustrates that the mean BECs [F(3,27) = 4.17; 
p  <  0.05] and mean WD scores [F(3,29)  =  3.09; p  <  0.05] were 
significantly lower in the animals at the T30 timepoint (30 days 
postbinge alcohol exposure) than those in the T14 group (14 days 
postbinge). Despite the T30 group having a lower BEC, the aver-
age daily dose of ethanol was significantly higher compared to T14 
[F(3,29) = 4.73; p < 0.001]. T14 animals also received a lower mean 
dose per day than T7 group 2 (p < 0.05), reflecting the increased 
intoxication scores of the T14 group [F(3,29) =  6.95; p <  0.005]. 
Despite higher BEC’s and mean WD scores in the T14 group, there 
was no difference between T14 and T30’s intoxication score. The 
variable dosing in this model is to maintain high blood alcohol 
levels (>200 mg/dl) across the 4 days of alcohol exposure, which 
these measures confirmed did occur. Importantly, all values were 
within the range previously reported for this model (82).

reactive neurogenesis confirmed  
with neuroD1
Our prior report on reactive adult neurogenesis after 4-day 
binge ethanol exposure in adolescent rats utilized Doublecortin 
expression to identify immature neurons (67). As Doublecortin 
may not be specific for newborn neurons (94), NeuroD1 IHC 
was used to identify late stage progenitor cells committed to a 
neuronal fate (95). NeuroD1 immunoreactivity was observed in a 
distinct line along the dentate gyrus SGZ in all groups as expected 
(Figures  1B–G). In the T14 group, those ethanol-exposed rats 
with the most severe withdrawal scores also had ectopic expression 
of NeuroD1+ cells in the hilus and molecular layer of the dentate 
gyrus (data not shown) as expected based on our prior report of 
ectopic Doublecortin and Prox-1 expression in high withdrawal 
severity adolescent rats only (67). The number of NeuroD1+ cells 
was counted along the SGZ only at T7, T14, and T30 days fol-
lowing 4-day binge ethanol exposure and reported as mean cells 
per section (Figure 1H). A two-way ANOVA (diet x time point) 
revealed significant main effects of diet [F(1,40) = 11.35, p < 0.005], 
time [F(2,40)  =  34.29, p  <  0.001], and a significant diet  ×  time 
interaction [F(2,40) = 9.24, p < 0.001]. A post hoc Bonferroni test 
for multiple comparisons showed that the number of NeuroD1+ 
cells was significantly increased in the ethanol-treated group at 
T14 versus its respective control [F(1,12) = 11.34, p < 0.01]. There 
was no difference in the number of NeuroD1+ cells between 
ethanol and control rats at 7 (T7) or 30 (T30) days postbinge. 
Next, we examined the relationship between NeuroD1 expression 
at T14 and ethanol withdrawal severity, similar to our previous 
report (67). The results showed a positive relationship between 
the number of NeuroD1+ cells at T14 and peak withdrawal score 
(r  =  0.941; p  =  0.017, Figure  1I), and mean withdrawal score 
(r = 0.829; p = 0.058, Figure 1J).

cell cycle Distribution in adolescent  
rats during early abstinence
Alcohol-induced reactive neurogenesis originated, in part, 
from a striking burst in cell proliferation at T7 of abstinence in 
the adolescent rat (67). Such increases in proliferation are due 
to either an increase in the number of proliferating progenitor 

cells and/or an acceleration (shortening) of the cell cycle. As we 
previously identified that alcohol accelerates the cell cycle during 
intoxication with 4 days of binge alcohol exposure in adolescent 
male rats (77), we screened for cell cycle effects remaining 7 days 
later, though in abstinence. The screen is sensitive to changes in 
the cell cycle based on the expression of various cell cycle specific 
markers, but uses a much smaller number of animals than is 
required for the saturate and survive methods used to study cell 
cycle kinetics (96).

Representative photomicrographs show that clusters of 
Ki67+, BrdU+, and pHisH3

+ cells were visible along the SGZ 
of the dentate gyrus (Figures  2A–F). Similar to previous 
work (67), ethanol animals showed a 2-fold increase in the 
number of Ki67+ cells compared to controls [F(1,14)  =  15.934, 
p  =  0.001], a 2.5-fold increase in the number of BrdU+ cells 
compared to controls [F(1,12) = 15.382, p < 0.01], and a 2.4-fold 
increase in the number of pHis-H3

+ cells compared to controls 
[F(1,14) = 4.655, p < 0.05]. The calculated number of cells in G1 
phase [i.e. G1 = Ki67+ – (BrdU+ + pHisH3

+)] was only slightly 
but not significantly higher in the ethanol rats versus controls 
[F(1,14) = 1.931, p = 0.186; Figure 2H]. Next, to determine the 
effect of alcohol on the distribution of cells across each phase of 
the cycle (detailed in Figure 2G), the proportion of cells within 
G1, S, and G2/M of all actively cycling hippocampal NPCs was 
calculated (Figure 2I). The results show that 7 days after binge 
alcohol exposure there were no changes in the proportion of 
hippocampal NPCs in each cell cycle phase in adolescent rats 
(Figure 2I), which suggests that the cell cycle was not altered 
by prior ethanol exposure at this time point (T7), similar to that 
observed in adult rats (see text footnote 1).

characterization of Proliferating 
Progenitors
The similar fold increase in the number of Ki67+, BrdU+, and 
pHis-H3

+ cells supported that binge ethanol exposure in adoles-
cent rats activates hippocampal NPCs and leads to NPC prolifera-
tion. This reactive proliferation may be due to an expansion of the 
proliferating progenitor pool. Therefore, to test this hypothesis, 
the number of proliferating progenitor cells was examined by 
exhaustively counting the number of BrdU+/Sox2+ colabeled cells 
in the SGZ. Sox2+ and BrdU+ cells lined the SGZ as expected and 
similar to past work [data not shown; see text footnote 1]. The 
number of BrdU+ cells copositive for Sox2 was counted in each 
group and ethanol-exposed rats showed a significant twofold 
increase in the number of BrdU+/Sox2+ cells at T7 compared to 
controls [F(1,12) =  16.6, p <  0.005; Figure 3]. The magnitude of 
this increase was similar to BrdU alone and confirmed that, at 
the T7 time point in male adolescent rats, the proliferating cells 
were NPCs.

As Sox2 labels multiple types of progenitor cells, a quadruple 
fluorescent IHC scheme was devised to differentiate proliferating 
type 1, 2a, 2b, and 3 cells simultaneously in tissue (Figure 4A; 
see text footnote 1). Thus, 40 Ki67+ cells (cells in active cycle) for 
each rat hippocampus were examined for colabeling with GFAP, 
Sox2, and NeuroD1 in 3D renderings of Z-stacks obtained from 
a confocal microscope. Representative confocal images for each 

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive


FigUre 2 | Binge ethanol exposure during adolescence and cell cycle distribution of subgranular zone neural progenitor cells (NPCs) at day 7 of abstinence.  
(a–F) Representative images from sections stained for Ki67, BrdU, and pHis-H3. Arrows denote area represented in the inset. (g) Cell cycle diagram showing the 
stages of the cell cycle labeled by Ki67, BrdU, and pHis-H3. BrdU labels cells in S-phase, pHis-H3 labels cells in G2 and M phase, and Ki67 labels actively dividing 
cells of all stages. G1 population is calculated by subtracting total BrdU+ and pHis-H3+ cells from Ki67+ cell numbers. (h) Quantification data of dividing cells in Ki67+ 
(total), BrdU+ (S phase), and pHisH3

+ (G2/M) cells. Calculated number of cells in G1 was obtained by subtracting the number of BrdU+ and pHisH3
+ cells from the 

number of Ki67 cells. (i) Calculated distribution of dividing NPCs within each phase of the cell cycle based on total number of Ki67 cells.

FigUre 3 | Binge ethanol exposure during adolescence increases the number of subgranular zone neural progenitor cells at day 7 of abstinence. (a) Quantification 
data of BrdU+ and Sox2+ co-positive cells in control and alcohol rats. (B–D) Representative fluorescent images for BrdU [red (B)] and Sox2 [green (c)] and colabel  
(D). Scale bars = 100 µm. *p < 0.05.
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FigUre 4 | Characterization of hippocampal neural progenitor cells. (a) Quadruple fluorescent immunohistochemistry was applied to identify each of the various 
progenitor cell subtypes as defined in the schematic as follows: GFAP+/Sox2+/NeuroD1− cells are considered as type 1; GFAP−/Sox2+/NeuroD1− cells are 
considered as type 2a; GFAP−/Sox2+/NeuroD1+ cells are considered as type 2b; GFAP−/Sox2−/NeuroD1+ cells are considered as type 3 cells. (B–e) Representative 
confocal images of each of the subtypes show Ki67+ cells colabeled with GFAP, Sox2, and/or NeuroD1 according to that defined in (a). Scale bars = 20 µm.
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subtype is presented in Figure  4. Quadruple-label immuno-
fluorescence for Ki67/GFAP/Sox2/NeuroD1 IHC demonstrated 
that the majority of cells were type 2 (type 2a = GFAP−/Sox2+/
NeuroD1−; type 2b  =  GFAP−/Sox2+/NeuroD1+) with low 
percentages of type 1 cells (GFAP+/Sox2+/NeuroD1−) and type 
3 cells (GFAP−/Sox2−/NeuroD1+) as expected (61, 92, see text 
footnote 1). No differences between control and ethanol groups 
were observed in the proportion of all four subtypes (type 1, 2a, 
2b, 3; Figure  5A) as analyzed by one–way ANOVA. Next, the 
number of cells in each of the four subtypes was calculated: n, 
the number of Ki67+ cells in the SGZ (Figure 2H) was multiplied 
by the cell subtype proportions (in 5 A). The twofold increase in 
the number of Ki67+ cells resulted in similar significant increases 
in the numbers of type 2a, 2b, and 3 cells in ethanol-treated rats 
compared with controls according to one-way ANOVAs [type 2a: 
F(1,15) = 22.79, p < 0.001; type 2b: F(1,15) = 13.79, p < 0.005; and type 
3: F(1,15) = 23.01, p < 0.001]. There was no significant difference in 
the number of type 1 cells between control and ethanol-exposed 
rats (Figure 5B). Thus, type 2a cells were activated into the cell 
cycle as expected (92) but there were also significantly more pro-
liferating type 2b and 3 cells that underlie reactive neurogenesis 
in abstinence.

DiscUssiOn

In this study, we demonstrate that adolescent rats exhibit reactive 
hippocampal neurogenesis after 4-day binge ethanol exposure, 
confirmed by the enhanced expression of the immature neuronal 
marker, NeuroD1, 14  days after ethanol exposure (Figure  1). 
As previous work (67) demonstrated that reactive neurogenesis 
originated with an increase in hippocampal cell proliferation at 
7 days following 4-day binge ethanol exposure, we examined two 
potential mechanisms of this increase: either via a shortened 
(accelerated) cell cycle or activating a larger number of NPCs out 
of quiescence and into the cell cycle. First, we investigated the 
effect of prior ethanol exposure on the number and distribution 
of hippocampal NPCs across the G1, S, and G2/M phases of the 
cell cycle. Prior binge alcohol exposure significantly increased 
NPC cell numbers in S and G2/M phases (G1 was increased, but 
not statistically) without changing the proportion of cells in each 
phase (Figure 2I). Therefore, the effects of alcohol on the number 
of cells in S and G2/M phases was more likely due to an increase 
in the number of actively cycling cells. These data ruled out an 
accelerated (shortened) cell cycle underlying alcohol-induced 
reactive neurogenesis in adolescent rats. Next, we showed that 
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FigUre 5 | Quantification of progenitor cell subtypes at day 7 of abstinence. 
(a) The graph shows the proportion of sampled Ki67+ cells that were type 1 
(GFAP+/Sox2+/NeuroD1−), type 2a (GFAP−/Sox2+/NeuroD1−), type 2b 
(GFAP−/Sox2+/NeuroD1+), and type 3 (GFAP−/Sox2−/NeuroD1+). (B) The 
graph shows calculated NPC subtypes based on the number of Ki67+ cells 
present in the SGZ multiplied by the NPC subtype proportions. * indicates 
p < 0.05.
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the reactive increase of cell proliferation seven days after alcohol 
exposure in adolescent rats was in actively proliferating NPCs, 
evidenced by a twofold increase in the number of BrdU+/Sox2+ 
colabeled cells (Figure 3). As Sox2 is expressed in multiples sub-
types of progenitors (93) we probed further to examine whether 
prior alcohol affected any subtype of progenitor differentially. 
A quadruple fluorescent labeling scheme to differentiate prolif-
erating type 1, 2a, 2b versus 3 cells revealed that prior alcohol 
exposure did not alter the percentage of cells classified as any of 
the four subtypes, but did increase the estimated numbers of pro-
liferating type 2a, 2b, and 3 cells (Figure 5). These data support 
that alcohol-induced reactive neurogenesis is due to prior alcohol 
dependence, or its sequelae, activating NPCs out of quiescence 
and into active cycling at day 7 (T7) of abstinence.

The first experiment examined the number of NeuroD1+ cells 
as our prior reports on reactive neurogenesis used Doublecortin, 
the former gold standard marker for neuroblasts, though recently 
observed in oligodendrocyte progenitors (94, 97, 98). NeuroD1, 
a basic helix-loop-helix transcription factor necessary normal 
neuronal development (95, 99–101), has an expression profile 
very similar to Doublecortin; it is expressed in mid- to late-stage 
NPCs committed to a neuronal cell fate (102). A further benefit 
of NeuroD1, as it is a transcription factor as opposed to the 

microtubule-associated protein, Doublecortin, NeuroD1 has a 
nuclear pattern of immunoreactivity and is therefore easier to 
quantify with profile cell counts or colabeling analysis of cell phe-
notype. At T14, the increased number of NeuroD1+ cells along 
the SGZ in ethanol rats compared to control rats followed the 
increase in proliferation at T7, a pattern identical to that reported 
previously for Doublecortin immunoreactivity in both adult 
and adolescent rats exposed to the 4-day binge ethanol model  
(64, 67, see text footnote 1). Ectopic NeuroD1+ cells were also 
observed as expected from our previous report of ectopic 
Doublecortin in the molecular and hilus layers (67). Ectopic 
NeuroD1 was not quantified for the current report as this 
work focuses on the progenitor cells of the SGZ. As adult born 
granule cells do not become fully integrated into existing hip-
pocampal circuitry until 4–8 weeks following birth (103, 104) 
and the increased NeuroD1+ cells were observed at only 2 weeks 
post ethanol, additional work should determine if these newly 
generated “reactive” neurons integrate properly into the exist-
ing hippocampal circuitry.

Next (Figure 3), we determined that cells proliferating in the 
SGZ, indicated by immunoreactivity for the S-phase marker, 
BrdU, were proliferating NPCs. We observed an increase in the 
number of cells colabeled for Sox2 and BrdU in the SGZ in the 
ethanol group as compared to controls, which supports that 
prior alcohol dependence results in an increase in the number 
of proliferating NPCs. As Sox2 labels multiple subtypes of 
proliferating NPCs (93) and each of these subtypes respond 
distinctly to neurogenic stimuli [e.g., (92)], we hypothesized 
that the type 2a progenitor would respond robustly. Our results 
show that increases in proliferation are largely seen in type 2 
cells, in agreement with work that this cell type rapidly prolifer-
ates to neurogenic stimuli (92). Both the type 1 and type 3 cells 
generally accounted for less than 5% of the proliferating pool of 
cells, similar to our observations in adult rats (see text footnote 
1). The lack of alcohol effect on the number of proliferating 
type 1 cells at T7 could be rooted in the low number of type 1 
progenitors that actively proliferate coupled with our random 
sampling of 40 Ki67+ cells. As such, a limitation in our approach 
is that only cells immuno-labeled with Ki67 are assessed and 
Ki67 may be undetectable during portions of early G1 phase 
(86). Additionally, prior alcohol could theoretically affect the 
expression of Ki67. However, in adults, type 1 cells are recruited 
out of quiescence to a greater extent in 4-day binge alcohol rats 
as opposed to controls at this same time point (see text footnote 
1), an observation that mirrors that seen in other brain insults 
(76, 105–107). Furthermore, only one time point in abstinence 
after alcohol dependence was assessed. In adults, NPC prolifera-
tion begins as early as T5 with only type 2 progenitors activated 
as predicted, though progressing to all four types by T7 (see text 
footnote 1). Therefore, different populations of NPCs could be 
activated into the cell cycle in a time line distinct from adults 
and should be assessed in future studies. Activation of differ-
ent pools of progenitors has implications for mature neuronal 
phenotypes that arise from these progenitors (108).

A previous study from our laboratory in the same 4-day 
binge model demonstrated that ethanol intoxication specifi-
cally reduces the length of the S-phase in hippocampal NPCs 
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without altering the G1 or G2/M phases (77). Utilizing the same 
screening approach as employed above, it was clear that the cell 
cycle was affected (BrdU+ cells reduced, while Ki67+ cells were 
the same between adolescent alcohol and controls). Thus, the 
positive screen justified full study of cell cycle kinetics using the 
cumulative BrdU injection method (87). At T0, which is during 
intoxication, immediately after the last dose of alcohol in the 
4-day binge, alcohol reduced NPC cell cycle duration by 36% 
and shortened S-phase by 62%, suggesting that binge alcohol 
exposure accelerates NPC cell cycle progression in adolescent 
rats (77). This acceleration resulted in an expansion of the 
NPC pool as indicated by a significant increase in the number 
of Sox2+ NPCs in the hippocampal SGZ immediately follow-
ing binge alcohol exposure. Therefore, 4-day binge ethanol 
intoxication in adolescent rats, specifically, shortens cell cycle 
length [at T0; (77)] which should increase the NPC pool, which 
is exactly what we then detected at T7 of abstinence (Figures 3 
and 5). Interestingly, the cell cycle appears to return to control 
levels as cells were in similar proportions across the phases of 
the cell cycle for both prior ethanol exposed and control rats 
(Figure 2).

Neural progenitor cells along the SGZ of the hippocampus 
continuously generate new granule neurons throughout life,  
a phenomenon critical to hippocampal structure and func-
tion, namely, hippocampal-dependent learning and memory  
(45, 48, 109). Increases in adult neurogenesis are associated with 
improved hippocampal functions such as learning, memory, 
and mood (45, 49, 50, 110–112). Reactive neurogenesis and/or 
activation of NPCs after insult also contributes to recovery in 
other models of CNS insult (113–116). However, reactive neu-
rogenesis in seizure appears to contribute to epileptogenesis (74, 
75). Therefore, as alcohol dependence in adolescence results in 
withdrawal seizures in some animals (82), it is not known whether 
reactive neurogenesis after alcohol dependence is a beneficial 
repair mechanism or a pathological phenomenon (117). Data sup-
port both sides: reactive neurogenesis after alcohol dependence 
in adult rats correlates to recovery of dentate gyrus granule cell 
number (see text footnote 1) but reactive neurogenesis in adoles-
cents can be ectopic if withdrawal is severe, similar to the ectopic 
new neurons observed in seizure models (67, 74). As speculated 
in Ref. (67), ectopic neurogenesis may be yet another aspect of 
the adolescent’s susceptibility to alcohol-induced hippocampal 
dysfunction as ectopic neurogenesis is thought to contribute 
to hippocampal pathology in epilepsy (117). Fortunately, overt 
signs of alcohol withdrawal are less common in adolescents than 
adults (118), though behavioral symptoms of severity are identical 
between adult and adolescent rats in the model used (82). In sum, 
a critical future direction is to elucidate the role of reactive neu-
rogenesis after alcohol dependence in adolescent rats specifically.

Another important question that arises from this body of 
work concerns the cause of reactive neurogenesis. That reactive 
neurogenesis is common to many forms of CNS insult suggests 
that cell death may be a common trigger of the phenomenon, 
especially since there is significant cell death in the 4-day binge 
model used here (12, 119–121). However, reactive neurogenesis 
has been observed in milder alcohol dependence models where 

there is less acute cell death than in this binge model (65, 66, 68).  
Seizure or excitatory activity in the hippocampus also results in 
reactive neurogenesis and seizure is observed in some animals 
in this model as discussed above. Intriguingly, in adults at 
least, eliminating overt seizures with diazepam did not prevent 
reactive cell proliferation from occurring (64). Diazepam does 
not suppress all behaviors that result from withdrawal-induced 
over-excitation though (122). Therefore, residual excitatory 
activity could continue to drive reactive neurogenesis through 
the recruitment of progenitors, as in other models (123–125). 
Indeed, the development of alcohol dependence is due, in part, 
to chronic inhibition of the N-methyl-d-aspartate (NMDA) 
receptor (126), while alcohol dependence-induced reactive 
neurogenesis mirrors NMDA receptor blockade effects on 
NPC proliferation and neurogenesis (127, 128). Thus, alcohol 
dependence and specifically, alcohol withdrawal-induced hyper-
excitability, likely plays a major role in reactive neurogenesis in 
models of AUDs (64, 67, 68).

The resulting effect of increased neurogenesis detected in 
abstinence clearly requires further investigation in both adult 
and adolescent models of AUDs. It is worthy to note that the 
effects described occur with one 4-day exposure. Those with 
AUDs do not merely binge once or become dependent once. 
Therefore, future studies should consider models where there 
are cycles of dependence and withdrawal. That reported by 
Somkuwar et  al. (68), however, highlights that long-term 
dependence facilitated by cycles of ethanol vapor inhalation, 
induces similar effects on reactive neurogenesis. Indeed, it is 
the similar results in these two models, besides the very dif-
ferent routes to dependence, that support our conclusion that 
an aspect of alcohol dependence is likely the major player in 
reactive neurogenesis.
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