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Acute myeloid leukemia (AML) is an aggressive, 
heterogeneous, myeloid malignancy; in 2018 an 
estimated 19,520 new cases and 10,670 deaths 
occurred in the US.1 The disease is particularly 
difficult to treat in older adults who account for 
the majority of patients; thus, the 5-year overall 
survival is only approximately 27%.2 Since the 
1970s, initial standard therapy, for those fit 
enough to receive it, consisted of the ‘7 + 3’ regi-
men, which includes 7 days of continuous infu-
sion cytarabine and 3 days of an anthracycline.3 
Over the next 35 years, a plethora of clinical trials 
attempting to augment AML treatment have 
been performed with little change in the standard 
of care. However, recent data detailing the molec-
ular ontogeny of AML have elucidated causal 
pathways which have led to targeted drug devel-
opment;4,5 new guidelines emphasize molecular 
studies in both diagnostic and relapsed settings.6 
Owing to these discoveries, eight new drugs in a 
variety of classes were approved between 28 April 
2017 and 28 November 2018 (Table 1).7 This 
novel arsenal of diverse therapies, sometimes in 
combination with previously used chemotherapy, 
have drastically altered the landscape of AML 

treatment and has promulgated new treatment 
paradigms. This paper reviews the novel therapies 
approved for AML as well as the pipeline of com-
pounds likely to affect treatment in the near 
future.

Conventional chemotherapy
While an anthracycline and cytarabine have been 
the mainstay of treatment, novel packaging of 
these agents has led to an important therapeutic 
advance. CPX-351, a liposomal formulation of 
daunorubin and cytarabine which releases the 
drugs in fixed 5:1 molar ratio, was evaluated in a 
randomized phase II trial followed by a rand-
omized phase III trial compared with standard 
induction.8,9 In a population 60–75 years of age 
with newly diagnosed secondary AML, CPX-351 
was associated with a superior overall remission 
rate (47.7% versus 33.3%, two-sided p = 0.016) 
and overall survival (OS; 9.56 months versus 
5.95 months, HR 0.69; 95% CI 0.52–0.90; one-
sided p = 0.003) with an improved safety profile 
except for more prolonged myelosuppression. 
These results led to FDA approval of this drug in 
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adult patients of any age with secondary AML 
[after myelodysplastic syndrome (MDS) or prior 
anticancer therapy] plus those with MDS-related 
chromosomal abnormities and/or background 
marrow dysplasia.

Smoothened inhibition
The Hedgehog (Hh) signaling pathway is vital for 
embryogenesis and fetal development.10 Aberrant 
signaling in this pathway affects the proliferation 
of leukemia stem cells, and upregulation results in 
chemoresistance in AML cell lines.11 Furthermore, 
Hh signaling is vital in the maintenance of murine 
leukemic stem cells in chronic myeloid leukemia 
(CML) models.12,13 FLT3 signaling also interacts 
with the Hh pathway in myeloid leukemias.14 
This pathway is tightly regulated by two trans-
membrane proteins, patched (PTCH), which is a 
negative regulator, and smoothened (SMO), a 
positive regulator.15

Glasdegib is an oral agent that inhibits the Hh 
pathway by interacting with smoothened.16 In 
vitro and in vivo studies with this agent demon-
strated growth inhibition of AML cell lines and 
human leukemia stem cells.17 In two phase I tri-
als in adult patients with myeloid malignancies, 
glasdegib was well-tolerated and was associated 
with a response rate as high as 49%.18,19 A mul-
ticohort phase Ib study evaluated glasdegib in 
combination with low-dose cytarabine, decit-
abine, or standard induction therapy. These 
combinations were deemed to be well tolerated 
with a recommended phase II dose of 100 mg 
daily. A total of 31% of patients across all three 
arms of the study achieved complete response 
(CR) or complete response with incomplete 
blood count recovery (CRi), with responses of 
8.7%, 28.5%, and 54.5% in the low-dose cyta-
rabine, decitabine, and standard induction 
arms, respectively.20 A separate phase II study 
designed to evaluate the combination of 

Table 1. Recent approved drugs for AML with indications.7

Drug Date of approval Indication

Midostaurin (Rydapt)
Novartis

28 April 2017 Treatment of adult patients with newly diagnosed AML who are FLT3+* 
in combination with standard cytarabine and daunorubicin induction and 
cytarabine consolidation

Enasidenib (Idhifa)
Celgene

1 August 2017 Treatment of adult patients with relapsed or refractory AML with an isocitrate 
dehydrogenase-2 (IDH2) mutation*

CPX-351 (Vyxeos)
Jazz Pharmaceuticals

3 August 2017 Treatment of adults with newly diagnosed therapy-related AML (t-AML) or 
AML with myelodysplasia related changes (AML-MRC)

Gemtuzumab 
ozogamicin (Mylotarg)
Pfizer

1 September 2017 Treatment of adults with newly diagnosed CD33-ositive AML and for 
treatment of relapsed or refractory CD33-positive AML in adults and in 
pediatric patients 2 years and older. May be used in combination with 
daunorubicin and cytarabine for adults with newly diagnosed AML.

Ivosidenib (Tibsovo)
Agios

20 July 2018 Adult patients with relapsed or refractory AL with a susceptible IDH1 
mutation*

Glasdegib (Daurismo)
Pfizer

21 November 2018 In combination with low-dose cytarabine for the treatment of newly diagnosed 
AML in adults who are aged 75 years or older, or who have comorbidities that 
preclude use of intensive induction chemotherapy.

Venetoclax (Venclexta)
Abbvie/Genetech

21 November 2018 In combination with azacitidine or decitabine or low-dose cytarabine for 
the treatment of newly diagnosed AML in adults who are aged 75 years or 
older, or who have comorbidities that preclude use of intensive induction 
chemotherapy.

Gilteritinib (Xospata)
Astellas Pharma

28 November 2018 Treatment of adult patients who have relapsed or refractory AML with a FLT3 
mutation*

*Mutational analysis detected by an FDA approved test.
AML, acute myeloid leukemia.
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glasdegib given at 100 mg daily for 28 days with 
standard induction cytarabine and daunoru-
bicin in patients over 55 years of age demon-
strated a CR rate of 46.4%.21 The median 
survival in this older population was 14.9 months. 
In an important randomized phase II study of 
low-dose cytarabine 20 mg subcutaneously twice 
daily for 10 days with or without glasdegib 
100 mg daily, the experimental arm demon-
strated a statistically significant improved CR 
rates (15% versus 2.3%) and OS (8.3 months 
versus 4.3 months).22 Owing to the results of this 
phase II study, glasdegib was approved by the 
FDA in combination with low-dose cytarabine 
for unfit AML patients on 21 November 2018. 
Glasdegib is currently being studied in combi-
nation with standard induction therapy in fit 
patients, or with azacitidine in unfit patients 
(ClinicalTrials.gov identifier: NCT03416179). 
Given the high response rates seen with use of 
a hypomethylating agent plus venetoclax as 
described in the following, the common use of 
the glasdegib/low-dose cytarabine combination 
remains unclear.

Mutationally targeted inhibitors

FLT3
FLT3 is a transmembrane tyrosine kinase that has 
two mutational subtypes, an internal tandem 
duplication which results in the duplication of 3 to 
over 100 amino acids in the juxtamembrane region 
of the protein (ITD) or point mutations in the 
tyrosine kinase domain, that are present in approx-
imately 30% of AML cases.23 At least six different 
FLT3 inhibitors are currently in clinical develop-
ment, including sorafenib, midostaurin, lestaurti-
nib, quizartinib, crenolanib, and gilteritinib. 
Midostaurin is the only FLT3 inhibitor that, to 
date, has demonstrated an overall survival benefit 
in combination with induction chemotherapy. In 
the RATIFY trial, 717 patients age 18–59 with 
FLT3 ITD or TKD mutations underwent rand-
omization to receive standard induction chemo-
therapy or induction with midostaurin 50 mg orally 
bid given on days 8–22.24 Patients in remission 
then received high-dose cytarabine consolidation 
± midostaurin according to the original phase; the 
trial also included a maintenance phase where pla-
cebo or midostaurin was given for 12 28-day 
cycles. Whether or not to perform an allogeneic 
transplant was left to investigator discretion, but 

post-transplant midostaurin was not given. 
Though there was no statistically significant 
improvement in the CR rate as defined in the pro-
tocol, the primary endpoint of OS was met, with a 
median OS in the midostaurin group reaching 
74.7 months versus 25.6 months in the placebo 
group (HR for event or death 0.78, one-sided 
p = 0.009 favoring the midostaurin arm). This piv-
otal data has led to its approval in the United States 
with induction and consolidation chemotherapy, 
and for induction, consolidation, and maintenance 
in Europe. A similarly designed trial of chemo ± 
the more specific FLT3 inhibitor quizartinib (does 
not inhibit the TKD mutation) has recently met 
accrual, but results are not available (ClinicalTrials.
gov identifier: NCT02668653).

A phase III trial of induction chemotherapy ± 
sorafenib in older adults demonstrated that 
sorafenib was ineffective and was associated with 
increased toxicity in older adults;25 however, a 
similarly designed trial in younger adults showed 
an improved event-free survival (EFS) but not 
OS with use of sorafenib; there was also substan-
tial increased toxicity in the sorafenib arm.26 A 
major concern is whether a FLT3 inhibitor more 
specific than midostaurin would be a better drug 
to combine with chemotherapy in the upfront set-
ting. Ongoing trials of chemo+midostaruin versus 
gilteritinib and crenolanib (ClinicalTrials.gov 
identifier: NCT03258931) are either planned or 
underway.

Responses to the nonspecific FLT3 inhibitors 
midostaurin27 and lestaurtinib in relapsed refrac-
tory patients have been modest.28 However, two 
second-generation FLT3 inhibitors have demon-
strated a survival benefit compared with chemo-
therapy in prospective randomized trials in 
relapsed refractory patients. Quizartinib was asso-
ciated with an overall survival advantage com-
pared with physician’s choice of 27 weeks (95% 
CI 23.1–31.3) versus 20 weeks (95% CI 17.3–
23.7), and OS HR of quizartinib to physician’s 
choice was 0.76 (95% CI 0.58–0.98; stratified 
log-rank test, one-sided p = 0.0177).29 In a simi-
larly designed trial that also allowed patients with 
TKD mutations to enroll, gilteritinib demon-
strated a 29% CR or CRi rate (ClinicalTrials.gov 
identifier: NCT02421939), leading to its approval 
in the relapsed setting by the FDA in late 2018, 
although full results of this trial are highly 
anticipated.
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Sorafenib, approved in hepatocellar carcinoma 
and renal cancer owing to its vascular endothelial 
growth factor receptor (VEGFR) inhibitory activ-
ity, in combination with azacitidine in an older 
unfit or relapsed predominantly FLT-ITD popu-
lation yielded an overall response rate of approxi-
mately 46%.30 A recently presented randomized 
trial of sorafenib versus placebo in the post-
allotransplant maintenance setting showed a 
marked improvement in 2-year relapse-free sur-
vival (85% versus 53.3%).31 A phase III study 
evaluating gilteritinib in the post-transplant set-
ting is ongoing (ClinicalTrials.gov identifier: 
NCT02997202).

One possible reason for resistance to a FLT3 
inhibitor in combination with chemotherapy is 
the increase in FLT3 ligand, which competes 
with the small-molecule inhibitor after exposure 
to cytotoxic stress.32,33 Based on in vitro studies, 
both the AKT/FLT3-ITD dual inhibitor, 
A674563 and MDM2 inhibitors may overcome 
FL-mediated resistance.34,35 Another potential 
mechanism for resistance is upregulation of 
fibroblast growth factor 2 (FGF2), which acti-
vates the mitogen-activated protein kinase 
(MAPK) pathway.36

IDH2/IDH1
The isocitrate dehydrogenase (IDH) family of 
enzymes are involved in cellular energy generation 
in the oxidative decarboxylation cycle by catalyz-
ing the conversion of isocitrate to α-ketoglutarate. 
While IDH1 is localized in peroxisomes in the 
cytosol and IDH2 resides in mitochondria.37,38 
Mutant IDH has become a viable target in AML 
treatment. Such mutations occur in blasts from 
approximately 20% of AML patients [IDH1 (8%) 
and IDH2 (12%)]. Somatic mutations in catalyti-
cally active arginine residues in these enzymes 
lead to the formation of alternative or ‘neomor-
phic’ product, 2-hydroxyglutate (instead of alpha-
ketoglutarate the reaction product generated by 
the wild-type enzyme), which results in pro-leu-
kemic epigenetic changes similar to those 
observed in cells with TET2 mutations. The oral 
agents ivosidenib and enasidenib, inhibitors of 
mutant IDH1 and IDH2, respectively, decrease 
cellular 2-hydroxyglutarate by more than 90%, 
thus reducing histone hypermethylation and rees-
tablishing myeloid differentiation.39 In a phase I/II 
study, IDH2 mutated relapse/refractory AML 
patients were treated with enasidenib at 100 mg 

daily resulting in an overall response rate of 40.3% 
with a median OS of 9.3 months; the 19.3% who 
achieved a CR had an OS of 19.7 months.40 
Similarly, the phase I/II study of ivosidenib in 
IDH1 relapsed/refractory mutant AML demon-
strated a CR/CRi rate of 30.4% and overall 
response rate of 41.6%.41 These studies led to the 
approval of enasidenib and ivosidenib for relapsed 
AML. Further studies combining enasidenib with 
azacitidine in relapse (ClinicalTrials.gov identi-
fier: NCT03683433) or ivosidenib with azaciti-
dine in upfront AML patients (ClinicalTrials.gov 
identifier: NCT03173248) are ongoing. Preliminary 
results of a phase II study in which these inhibitors 
were tested in combination with standard induc-
tion chemotherapy in upfront patients with the 
appropriate mutation demonstrated a response 
rate of 93% in the ivosidenib arm and 73% in the 
enasidenib arm, with mutational clearance of 
41% and 30% respectively.31 A randomized phase 
III trial comparing induction chemotherapy to 
chemotherapy plus the relevant inhibitor is cur-
rently being planned.

Pro-apoptotic agents

BCL-2 inhibition
B-cell leukemia/lymphoma-2 (BCL2) is an anti-
apoptotic protein that promotes leukemic blast 
survival through regulation of the mitochondrial 
apoptotic pathway. Sensitizer BCL-2 homology 3 
(BH3) proteins are antagonists of these antiapop-
totic proteins and therefore promote apoptosis 
via mitochondrial outer membrane permeabiliza-
tion.42 Venetoclax, an oral small-molecule BCL-2 
inhibitor demonstrated on-target BCL-2 inhibi-
tion by BH3 profiling and an overall response rate 
of 19% in a single-agent trial in very advanced 
AML; patients with IDH mutations appeared to 
be more responsive (33%) to venetoclax.43 In an 
effort to take advantage of the drug’s ability to 
help cells undergo apoptosis in the presence of 
cytotoxic stress, venetoclax was paired with either 
azacitidine or decitabine (institutional prefer-
ence), in an elderly population of patients that 
were unfit for standard induction chemotherapy. 
The combinations were well tolerated, yielding a 
61% CRi rate at the recommended phase II dose 
of 400 mg daily.44 The phase II data revealed a 
CR+CRi rate of 73% and a median OS for the 
entire cohort of 17.5 months.45 This combination 
of venetoclax with hypomethylating agents 
(HMA) may be becoming the new standard of 
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care for patients who are elderly or unfit for 
standard induction chemotherapy. A second 
study evaluated venetoclax with low-dose cytara-
bine in a phase I/II trial in combination with low-
dose cytarabine yielding CR/CRi rates of 35% for 
secondary AML and 71% for de novo AML.46 
Given these encouraging data, a plethora of 
studies have opened or proposed using veneto-
clax in combination with other agents, including 
combination with standard ‘3 + 7’ induction 
(ClinicalTrials.gov identifier: NCT03709758), 
although other ‘novel–novel’ combinations 
including but not limited to the multi-CDK 
inhibitor dinaciclib (ClinicalTrials.gov identifier: 
NCT03484520), gilteritinib (ClinicalTrials.gov 
identifier: NCT03625505), 10-day decitabine 
(ClinicalTrials.gov identifier: NCT03404193), 
and the mcl-1 inhibitor S64315 (ClinicalTrials.
gov identifier: NCT03672695). A full list of the 
novel venetoclax trials can be found in Table 2.

Myeloid cell leukemia-1 (MCL-1) inhibitors
MCL-1, like BCL-2, is capable of blocking pro-
apoptotic proteins such as BAX and BAK, which 
do not interact with BCL-2, and upregulation 
may provide a resistance mechanism to veneto-
clax. MCL-1 inhibitors have been tested mini-
mally in the clinic. MCL-1 inhibitory agents 
under investigation include AMG176 with vene-
toclax (in planning) or as a single agent 
(ClinicalTrials.gov identifier: NCT02675452), 
and AMG397 (ClinicalTrials.gov identifier: 
NCT03465540), S64315 with venetoclax 
(ClinicalTrials.gov identifier: NCT03672695) 
or single agent (ClinicalTrials.gov identifier: 
NCT02979366), and AZD5991 (ClinicalTrials.
gov identifier: NCT03218683).47

P53 reactivation
More than 50% of human cancers possess a p53 
mutation, which is often a missense mutation 
that leads to protein unfolding and prevents this 
transcription factor from responding to cellular 
stress to elicit cell cycle arrest and apoptosis. p53 
mutations are found in 18% of AML overall, in 
70% of patients with complex karyotype, and is 
associated with very short median survival 
(5.4 months).4,48,49 APR-246 is one of the first 
agents to specifically target mutated p53. The 
drug is given IV and is converted into a Michael 
acceptor, methylene quinuclidinone, which 
covalently binds to the p53 core domain 

promoting refolding, and the reinstitution of 
wild-type p53 function and, thus, cell cycle 
arrest and apoptosis may occur.50 In an ongoing 
phase I/II clinical trial of MDS and AML with 
<30% blasts, APR-246 in combination with 
azacitidine induced an overall response of 100% 
(11 of 11 patients) with a CR rate of 82%. While 
the duration of remission is not yet known a 
phase III trial of aza±APR 246 in MDS is 
planned as is a similar trial in older adults with 
AML. A further study in an AML population is 
being planned.

Mouse double minute 2 inhibitors
Mouse double minute 2 (MDM2) is the primary 
regulator of p53 stability, activity in part by con-
trolling p53 degradation. RG7112 was the first 
MDM2 inhibitor evaluated in a phase I trial for all 
leukemias. As expected p53 mutated patients 
failed to have durable responses. In the AML 
cohort, the overall response rate was 13%.51 A 
second-generation oral MDM2 inhibitor 
(RG7388, Idasanutlin) was evaluated in a phase I/
Ib trial which demonstrated a 22% overall 
response rate, and in combination with cytarabine 
the CR+CRi rate was 24%.52,53 These data have 
led to a phase III study of idasanutlin plus cytara-
bine versus cytarabine alone (ClinicalTrials.gov 
identifier: NCT02545283). Given preclinical data 
demonstrating potential synergy between idasa-
nutlin and bcl-2 inhibition,54 another ongoing trial 
combines venetoclax with idasanutlin for relapsed 
or refractory AML patients (ClinicalTrials.gov 
identifier: NCT02670044). Preliminary data pre-
sented in 2018 demonstrated an antileukemic 
response rate of 37% with a median time to 
response and duration of response of 1.8 and 
8.1 months, respectively.55

Two other inhibitors of this pathway have been 
evaluated. MK-8242, a human double minute 2 
(HDM2) inhibitor was evaluated in a phase I trial 
for refractory/recurrent AML, but only 1 of 24 
patients responded.56 A second compound, 
HDM201 (Novartis) which selectively inhibits 
the HDM2-p53 interaction has been under eval-
uation in p53-wt AML at multiple dosing sched-
ules and is ongoing. The preliminary results 
demonstrate as CR+CRi+PR rate of 20.6%.57 A 
study evaluating HDM201 and chemotherapy in 
both a front-line and relapsed/refractory popula-
tion is planned (ClinicalTrials.gov identifier: 
NCT03760445).
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Microenvironment targeting

Uproleselan (GMI-1271)
E-selectin is a cell adhesion molecule involved in 
the migration of leukocytes along vascular 
endothelial cells and is highly expressed on leuke-
mic blasts, especially those with advanced dis-
ease.58 Uproleselan (GMI-1271) is an antagonist 
of E-selectin which enhances chemotherapy 
response while ameliorating chemotherapy toxic-
ity in animal models. In the phase I/II trial com-
bining Uproleselan with MEC chemotherapy in 
relapsed/refractory patients, the CR/CRi rate was 
41%, with a 30- and 90-day mortality of 2% and 
9% respectively, and a grade 3/4 mucositis rate of 
<4%.59,60 Similarly, an elderly high-risk treat-
ment-naïve AML population was treated with 

Uproleselan combined with standard induction; 
68% (73% de novo, 64% sAML) achieved CR/
CRi. The 30- and 90-day mortality was 8% and 
12%, respectively, with no reports of grade 3/4 
mucositis.60,61 A phase III randomized trial is 
ongoing for r/r patients comparing Uproleselan 
with MEC versus MEC alone (ClinicalTrials.gov 
identifier: NCT03616470), and a separate phase 
II–III trial evaluating Uproleselan with induction 
versus induction alone was recently activated 
(ClinicalTrials.gov identifier: NCT03701308).

Cell cycle checkpoint inhibitors
Whereas AML is caused in part by dysregulation 
of cell proliferation, a series of targets involve 
the cell cycle regulation and DNA repair. One 

Table 2. AML-specific actively recruiting Venetoclax trials.

ClinicalTrials.gov 
identifier

AML population Phase Study

NCT03466294 TN elderly II Venetoclax + Azacitidine with venetoclax maintenance in MRD-
negative patients

NCT03214562 r/r Ib/II Venetoclax with FLAG-IDA

NCT03484520 r/r I Venetoclax + Dinaciclib

NCT03625505 r/r I Venetoclax + Gilteritinib

NCT03441555 r/r I Venetoclax + Alvocidib

NCT03404193 TN elderly, r/r, or 
relapsed high-risk MDS

II Venetoclax + 10-day decitabine

NCT03672695 TN or r/r I Venetoclax + S64315 (MCL-1 inhibitor)

NCT03471260 r/r I/II Venetoclax + Ivosidenib

NCT02670044 r/r, age ⩾60 I/II Venetoclax + Cobimetinib or Idasanutlin

NCT02993523 TN elderly or unfit III Venetoclax + Azacitidine versus Azacitidine alone

NCT03069352 TN elderly or unfit III Venetoclax + LODAC versus LODAC alone

NCT03586609 TN II Venetoclax + cladrabine plus LODAC alternating with azacitidine

NCT03709758 Untreated, fit I Venetoclax + Daunarubicin/cytarabine

NCT03629171 TN or r/r II Venetoclax + liposomal encapsulated daunorubicin-cytarabine

NCT03214562 r/r Ib/II Venetoclax with FLAG-IDA

NCT03586609 TN, non-elderly II Venetoclax + Azacitidine

AML, acute myeloid leukemia; FLAG-IDA, fludarabine, cytarabine, GCSF, idarubicin; MRD, minimal residual disease; r/r, relapsed/refractory; TN, 
treatment naïve.
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mechanism of chemotherapy resistance involves 
cell cycle regulators’ recognition of DNA damage 
which delays mitosis to allow repair to be initi-
ated.62 Thus, inhibiting this pathway could have a 
synergistic effect with chemotherapy.

Aurora kinase inhibitors
Aurora kinases play an essential role in mitosis 
regulation, centrosome function, chromatid seg-
regation, and bipolar spindle assembly.63 Alisertib 
(MLN8273) is an oral Aurora A kinase inhibitor 
that increases efficacy of cytarabine.64 A single-
agent phase II trial dosing at 50 mg BID for 7 days 
every 21 days was associated a 17% overall 
response rate in unselected patients with advanced 
AML.65 Given single-agent safety a phase I trial 
combined alisertib with 7 + 3 yielding a maxi-
mum-tolerated dose (MTD) of 30 mg bid.66 In 
the phase II trial evaluating that alisertib dose 
plus ‘3 + 7’ in high-risk AML results included 
aCR+CRi rate of 64% with a 30-day and 60-day 
mortality rates of 8% and 13%, respectively, and 
a median OS of 12.2 months.67 A phase III trial is 
under discussion.

Barasertib, an Aurora B kinase inhibitor delivered 
by IV continuous infusion, was also found to be 
active as a single agent and in combination with 
other chemotherapeutic agents.68 A five patient 
single-agent phase I trial demonstrated safety with 
one patient achieving a CR, and a second phase I 
study combining barasertib with low-dose cytara-
bine (LODAC) demonstrated an overall response 
rate of 45% but at a cost of a 73% rate of signifi-
cant infections.69,70 The SPARK-AML1 trial was 
a 2:1 randomized phase II trial comparing bara-
sertib with LODAC in elderly unfit patients, with 
the barasertib arm demonstrating a CR/CRi rate 
of 35.4% and an OS of 8.2 month. This com-
pound can be given in a nanoparticle delivery sys-
tem (AZD2811), which may achieve improved 
bioavailability and is currently under investigation 
as a phase I clinical trial (ClinicalTrials.gov iden-
tifier: NCT03217838).

Polo-like kinase-1 inhibitors
Polo-like kinase-1 (PLK1) plays an integral role 
in mitosis, DNA replication, and DNA repair. If 
PLK1 function is impaired, polo-arrest occurs, 
leading to cell cycle arrest in pro-metaphase.71 
The initial PLK-1 inhibitor volasertib was studied 
in a randomized phase II trial low-dose cytarabine 

+/– the drug in untreated high-risk, older AML 
patients. CR+CRi rate for LODAC + volasertib 
was 31%.72 A second PLK-inhibitor, rigosertib, 
which also inhibits PI3-kinase and the RAS/
MEK/ERK pathway, has been compared in a 
negative large phase III trial (ONTIME) to stand-
ard care in HMA-failed MDS. Rigosertib achieved 
a similar OS (8.2 months, 95% CI 6.1–10.1) 
compared with best supportive care (5.9 months, 
95% CI 4.1–9.3) that did not reach statistical 
significance (HR 0.87, 95% CI 0.67–1.14; 
p = 0.33).73 A phase I/II single-agent trial in 
patients with MDS or MDS progressed to AML 
showed only one responder of 13 AML patients.74

Other cell cycle inhibitors
Cyclin-dependent kinases (CDK) are a group of 
proteins that promote transition through the 
cell cycle. Perturbation in the regulation of cell 
cycle flow between S phase and G2/M is thought 
to be essential for tumorigenicity in at least 
some settings.75 Palbociclib is a CDK4/6 inhibi-
tor approved in breast cancer and also is active 
against FLT3-ITD AML cells. A phase I trial of 
single-agent palbociclib in advanced AML was 
disappointing; however, this trial now includes 
cohorts of patient treated with palbociclib plus 
either dexamethasone, decitabine, or sorafenib 
(ClinicalTrials.gov identifier: NCT03132454).76,77 
A second single-agent trial limited to mixed line-
age leukemia (MLL)-rearranged acute leukemias 
(ClinicalTrials.gov identifier: NCT02310243) is 
ongoing. Dinaciclib is a CDK9 inhibitor that also 
promotes apoptosis in MLL-rearranged AML, 
promoting studies in combination with venetoclax 
(ClinicalTrials.gov identifier: NCT03484520) 
and pembrolizumab (ClinicalTrials.gov identi-
fier: NCT02684617) in this setting.78

CHK1 is a multifunctional protein kinase and reg-
ulator of the DNA damage response.79 In response 
to DNA damage, CHK1 mediates cell-cycle arrest 
to allow time for DNA repair, or if the damage is 
extensive, to trigger apoptosis. CHK1 is also essen-
tial for homologous recombination-mediated repair 
of double-strand DNA breaks, initiation of DNA 
replication origin firing, stabilization of replication 
forks, resolution of replication stress, and coordina-
tion of mitosis, even in the absence of exogenous 
DNA damage.80 Analysis of AML patient samples 
has demonstrated that the CHEK1 gene is upregu-
lated in AML with high expression associated with 
shorter responses and overall survival. Moreover, 
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when these cells were treated with a CHK1 inhibitor 
in combination with cytarabine, DNA replication 
was reduced.81 Prexasertib (LY2606368) is an ATP-
competitive inhibitor of CHK1 that causes double-
stranded DNA breaks in S-phase cells leading to 
replication catastrophe.82 Two ongoing studies are 
evaluating prexasertib in the relapsed/refractory 
AML setting with either FLAG (ClinicalTrials.gov 
identifier: NCT02649764) or MEC (ClinicalTrials.
gov identifier: NCT03735446).

Epigenetic regulators
Epigenetic dysregulation associated with muta-
tions in genes such DNMT31, TET2, and 
ASXL1 which lead to aberrant methylation, dem-
ethylation, and acetylation contribute to myeloid 
leukemogenesis. Restoring the function of such 
mutations either directly or indirectly has 
remained an elusive but potentially interesting 
therapeutic strategy.

Disrupter of telomeric silencing 1-like
Rearrangements of the MLL gene (newly termed 
KMT2A) on chromosome 11q23 convey a poor 
prognosis in AML.83 Mutant MLL proteins lead 
to high levels of histone 3 at lysine 79 (H3K79) 
and thereby directing disrupter of telomeric silenc-
ing 1-like (DOT1L) to aberrant targets. Inhibition 
of DOT1L disrupts leukemogenesis in mouse 
models, led to a single-agent phase I study with 
pinometostat (EPZ-5676), a small-molecule 
inhibitor of DOT1L, by continuous IV infusion.84 
Of the 51 patients with hematologic malignancies 
(84% AML, 82% of these with an MLL muta-
tion) who were treated, pinometostat appeared 
safe; two patients, each of whom with t (11; 19) 
leukemia, achieved a CR. Evidence for target inhi-
bition, based on reduction of H3K79 methylation 
in blasts, was also noted in all dose levels.85 
Further studies evaluating pinometostat with 
azacitidine (ClinicalTrials.gov identifier: 
NCT03701295) or with induction chemotherapy 
(ClinicalTrials.gov identifier: NCT03724084) in 
MLL mutated patients are planned.

Bromodomain and extraterminal protein family 
inhibitors
The bromodomain (BRD) and extraterminal 
(BET) protein family is integral for transcription 
through its association with enhancers and 

positive transcription factor b (P-TEFb), which 
promote the transition from RNA polymerase 
from the paused to the elongating state.86,87 BET 
inhibitors have preclinical activity against MLL 
mutant cell lines; most MLL fusion partners are 
members of the super elongation complex (SEC), 
required for downstream transcription of the pro-
leukemic genes such BCL2, C-MYC, and CDK6, 
which is blocked by displacement of BRD3/4 and 
the SEC components from chromatin.88 Further 
preclinical studies also demonstrate promising 
activity against NPM1 and FLT3-ITD mutant 
AML.89,90

Clinical studies with BET inhibitors have shown 
modest single-agent efficacy. In a phase I trial 
using the oral BET inhibitor OTX015, there were 
three patients with a CR among 36 AMLs treated 
across 6 dose levels. Dose-limiting toxicities 
(DLTs) included fatigue, rash, and gastrointesti-
nal (GI) effects.91 Other BET inhibitors undergo-
ing evaluation include TEN-010 (ClinicalTrials.
gov identifier: NCT02308761) and GSK535762 
(ClinicalTrials.gov identifier: NCT01943851). 
Like many of the other examples noted above, 
combinations of BET inhibitors in combination 
with other agents such as venetoclax or MCL 
inhibitors may be optimal based on preclinical 
data.92

Immunotherapy
Allogenic stem-cell and donor lymphocyte infu-
sions represent two forms of immunotherapy that 
have been effective in the therapy of AML.93,94 
Building on the benefit of novel agents such as 
monoclonal antibodies and chimeric antigen 
receptor (CAR) T cells seen in other diseases, 
multiple agents have been evaluated to take 
advantage of this native immune response.

Antibody-based therapy

Gemtuzumab ozogamicin
Gemtuzumab ozogamicin (GO) is a humanized 
anti-CD33 monoclonal antibody conjugated to 
the antibiotic calicheamicin, which is toxic to leu-
kemic cells. The drug was approved in 2001 for 
relapsed non-chemo-eligible relapsed AML based 
on trials using a dose of 9 mg/m2 every 2 weeks 
yielding a 26% CR rate.95 However, the increased 
hematologic and hepatic toxicity including high 
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rates of veno-occlusive disease especially after allo 
SCT lead Pfizer to withdraw the drug from the 
US market in 2010. Further studies continued in 
Europe with the most prominent being the phase 
III ALFA-0701 study employing standard induc-
tion chemotherapy with or without a lower dose 
of GO. This study demonstrated significant 
improved 2-year event-free survival (40.8% versus 
17.1%), relapse-free survival (50.3% versus 
22.7%) and OS (53.2% versus 41.9%); the addi-
tion of gemtuzumab to chemotherapy appears 
especially beneficial in cytogenetically favorable 
risk AML.96 Similarly, in a relapsed population, 
fractionated dosing of GO mitigated hematologic 
and hepatic toxicities, and demonstrated a CR rate 
of 26% and CRp of 6%.97 Further evaluations are 
ongoing including use in the minimal residual dis-
ease (MRD) setting (ClinicalTrials.gov identifier: 
NCT03737955), and in combination with azaciti-
dine,98 cytarabine (ClinicalTrials.gov identifier: 
NCT02473146), decitabine (ClinicalTrials.gov 
identifier: NCT00882102), MRD (ClinicalTrials.
gov identifier: NCT03737955) and multiple 
induction regimens.

Vadastuximab talirine (SGN-33A)
Vadastuximab talirine (VT) also targets CD33 
but the cysteine residues of the antibody are con-
jugated to a DNA cross-linking agent pyroloben-
zodiazepine (PBD) dimers via a cleavable 
maleimidocaproyl–valinealanine dipeptide linker. 
In the phase I study in advanced AML, a dose of 
40 µg/kg was selected; the CR+CRi rate was 
28%.99 A second phase I trial combined VT with 
hypomethylating agents in an elderly population 
and demonstrated a CR+CRi rate of 70%, but 
significant myelosuppression was noted. Similar 
toxicity was noted in a study combining VT with 
7 + 3 chemotherapy with dosing of 10–20 µg/kg 
on days 1 and 4.100 This led to the phase III 
CASCADE trial, which was discontinued due to 
higher mortality in the VT arm.

Anti-CD123
CD123 is the interleukin 3 receptor alpha chain 
(IL-3α) and found to be overexpressed on mye-
loid blasts and leukemic stem cells. There have 
been multiple agents targeting this receptor. 
While the initial phase I study of the naked anti-
body CSL360 demonstrated minimal efficacy,101 
anti-CD123 molecules are continually being 
explored. SGN-CD123A, an antibody using the 

same linker and warhead as Vadastuximab, dem-
onstrated preclinical promise and is currently 
under investigation in AML (ClinicalTrials.gov 
identifier: NCT02848248).102 Similarly, the anti-
body–drug conjugate IMG632, a humanized 
anti-CD123 antibody conjugated to a mono-
alkylating payload of the indolinobenzodiazepine 
pseudodimer (IGN) class, and is in phase I 
(ClinicalTrials.gov identifier: NCT03386513).103

SL-401
SL-401 (Tagraxofusp) is a recombinant fusion 
protein combining human IL-3, the CD123 
ligand, with a truncated diphtheria toxin that has 
demonstrated activity against CD34+CD123+ 
AML and MDS cells.104 It is highly effective in 
blastic plasmacytoid dendritic cell neoplasm 
(BPDCN),104 and has modest single-agent activity 
in AML.105 Current studies are ongoing with com-
bination therapy with azacitidine (ClinicalTrials.
gov identifier: NCT03113643) and also as a 
 single-agent consolidation for eradication of min-
imal residual disease (ClinicalTrials.gov identi-
fier: NCT02270463).106

Bispecific antibodies
Bispecific antibodies utilize two different variable 
regions, one binding to the T-cell subunit CD3 
and the other to the tumor surface antigen to pro-
vide contact between the cells and create a T-cell 
activation against tumor cells. The success of bli-
natumomab, a bispecific antibody to CD19 and 
CD3, in acute lymphoblastic leukemia107 has led 
to attempts to use this technology in AML. 
AMG330 is a bispecific antibody against CD3 
and CD33 that demonstrates AML cell cytotoxic-
ity, particularly in favorable-risk disease, and also 
has synergy with blockade of the PD-1/PD-L1 axis, 
thereby preventing immune exhaustion.108,109 
Owing to the intriguing preclinical data, phase I 
clinical trials are underway (ClinicalTrials.gov 
identifier: NCT02520427). Similarly, flotetu-
zumab (MGD006 or S80880) is a dual-affinity 
retargeting antibody (DART), which employs two 
independent polypeptides fusing the heavy-chain 
variable domain of one antibody to the light-chain 
variable domain of the other to connect CD3 and 
CD123. Preclinical studies demonstrated a dose- 
dependent killing of AML cells.110 Preliminary data 
of a phase I/II trial of flotetuzumab in advanced 
AML/MDS patients, with an acceptable safety pro-
file, and demonstrated a CR/CRi rate of 31% (4/13 
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patients) with primary refractory disease, but no 
responses in relapsed patients (0/11). Another 
phase I trial in patients with a variety of hemato-
logic malignancies is ongoing (ClinicalTrials.gov 
identifier: NCT03739606).111

CAR-T-cell therapy
CAR-T-cell therapy hast had a dramatic effect on 
the management of lymphoid malignancies and 
thus while there is great interest in adapting this 
technology for AML, the lack of target that is 
ubiquitously expressed in AML yet dispensable 
has created challenges.112–114 In a phase I study 
using CAR-T cells targeting the Lewis-Y antigen, 
three of four patients had evidence of an ephem-
eral biological response.115 A report described a 
CD33 directed CAR-T cell in one patient with 
relapsed/refractory AML; this patient had a dra-
matic cytokine release syndrome and experienced 
a decrease in blasts 2 weeks after treatment but 
then progression at 9 weeks.116 Budde et al. pre-
sented data on six patients who received anti-
CD123 CAR-T cells, which demonstrated safety 
and activity with one morphologic leukemia-free 
state, two CR, and two reduction in blast 
counts.117 This trial is ongoing (ClinicalTrials.
gov identifier: NCT02159495). NKG2DL has 
also been evaluated as a target for CAR-T cells. 
In a phase I trial in myeloma and AML, one 
patient had a transient response but otherwise no 
tumor responses were observed.118 A second 
phase I trial used CYAD-01, a similar product to 
that used in the aforementioned study but at a 
much higher dose of cells evaluated 8 r/r AML 
patients. The drug displayed promising efficacy 
as well as cytokine release syndrome that was suc-
cessfully managed. An overall response rate of 
42% was noted (ClinicalTrials.gov identifier: 
NCT03018405).119 There are currently other 
ongoing studies with variations of CAR-T cells 
from AML in both the United States and China, 
including UCART123 (ClinicalTrials.gov identi-
fier: NCT03190278) which is an allogeneic or 
‘off-the-shelf’ product and a novel CD33 CAR 
(ClinicalTrials.gov identifier: NCT03126864).

Checkpoint inhibitors

Anti-CTLA-4
Immune checkpoint inhibitors have been widely 
studied on solid tumors, and their migration to 
the hematologic malignancies has become more 

prominent since the success in Hodgkin’s 
Lymphoma,120 and in the relapsed hematologic 
malignancy post-transplant setting.121 In the lat-
ter study using ipilimumab, an anti-CTLA-4 
antibody, 5 of the 12 AML patients had responses, 
including four patients with extramedullary dis-
ease. While a phase Ib single agent ipilimumab 
trial demonstrated minimal effect as monother-
apy after hypomethylating agent failure,122 further 
studies combining ipilimumab with decitabine 
(ClinicalTrials.gov identifier: NCT02890329) in 
the de novo and post-transplant setting are cur-
rently enrolling.

PD-1 blockade agents
Preclinically, PD-1 blockade demonstrated 
PD-L1 upregulation in murine AML cells in vivo 
with response to PD-L1 blocking antibodies.123 
Further studies have demonstrated the potential 
to enhance cytotoxicity in adoptive T-cell therapy 
by combining PD-1 with cytotoxic T-cell infu-
sions.124 A phase IB/II study combined nivolumab 
with azacitidine in 51 relapsed/refractory AML 
patients. Fourteen patients had grade 2 or higher 
immune-mediated toxicities with 12 responding 
to steroids; 6 of 25 evaluable patients achieved a 
CR, Cri, or hematologic improvement.125 Another 
study in high-risk AML patients ineligible for 
stem cell transplant who were in CR received 
nivolumab every 2 weeks for 6 months, then every 
4 weeks for 6 months, and every 3 months thereaf-
ter. In the 14 evaluable patients, the 12 and 
18 month OS estimates were 86% and 67%, 
respectively (ClinicalTrials.gov identifier: 
NCT02532231).126 Lastly, a phase II nonrand-
omized study was performed evaluating safety, 
efficacy, and biomarkers using azacitidine with 
either nivolumab or nivolumab + ipilimumab in 
relapsed/refractory AML. In the azacitidine/
nivolumab arm, the CR/CRi rate was 22%, while 
the azacitidine/nivolumab + ipilimumab arm 
revealed a CR/CRp/CRi rate of 43%. Responders 
had a higher frequency of CD3+ and CD8+ cells 
in bone marrow by flow cytometry, making these 
potential predictive biomarkers for this regimen 
(ClinicalTrials.gov identifier: NCT02397720).127

Nivolumab (every 2 weeks) has also been evalu-
ated in an induction regimen containing idaru-
bicin and cytarabine in AML or high-risk MDS 
(⩾10% blasts). Response rates were 77%, with 
responders again having higher frequency of 
CD3+ cells (ClinicalTrials.gov identifier: 
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NCT02464657).128 Further studies in relapsed/
refractory AML utilizing nivolumab involve combi-
nations with oral cyclophosphamide (ClinicalTrials.
gov identifier: NCT03417154), and a phase I vac-
cine trial combining a novel vaccine with nivolumab 
and decitabine (ClinicalTrials.gov identifier: 
NCT03358719).

Pembrolizumab is another anti-PD-1 antibody 
researched for the treatment of AML. In a relapsed/
refractory AML population, the group at University 
of North Carolina evaluated age-adjusted high-
dose cytarabine followed by pembrolizumab, an 
anti-PD-1 antibody, on day 14, with responders 
receiving maintenance pembrolizumab every 
3 weeks for up to 2 years (ClinicalTrials.gov identi-
fier: NCT02768792). Preliminary data showed a 
CR/CRi rate of 40%; two patients went to mainte-
nance with a median duration of CR 3.9 months.129 
Pembrolizumab was also combined with decit-
abine in a relapsed/refractory AML population, 
with 1 of 10 reported patients responding with a 
MRD-negative CR after 8 cycles.130 A relapsed/
refractory AML study using azacitidine and pem-
brolizumab in elderly patients is ongoing 
(ClinicalTrials.gov identifier: NCT02845297).

Vaccine therapy
Concepts being explored include vaccines to trig-
ger an immune response to tumor-associated anti-
gens by peptide vaccinations, or through fusion 
with dendritic cells that present antigen in the 
proper context may elicit a primary immune 
response.131,132 A systematic review of the 9 
Wilms’ Tumor-1 (WT-1) antigen trials demon-
strated correlations between induction of T cells 
specific to WT-1 and response, and a moderate 
response rate (22 responses of 67 patients).133 The 
most advanced of these vaccines is the multiva-
lent WT1 peptide galinpepimut-S. In a phase II 
trial, the vaccine was administered 6 times over 
10 weeks followed by 6 monthly doses in patients 
who achieved CR1. The vaccine was deemed 
well tolerated, with a median disease-free sur-
vival of 16.9 months and a relapse rate of 68%.134 
Another vaccine utilized OCV-501, an HLA 
class II restricted helper peptide derived from 
the WT1 protein. The phase II trial of this vac-
cine conducted in AML patients over 60 in CR1. 
A total of 133 patients were randomized to vac-
cine or placebo, and although well tolerated, 
there was no significant difference in disease-
free survival.135

Multiple dendritic cell-based vaccines have been 
evaluated for AML. DCP-001 is a vaccine devel-
oped from an AML cell line having epitopes for 
the disease but not patient specific. In a phase I 
trial in patients in CR or with smoldering disease, 
the treatment was well tolerated, and patient with 
no circulating blasts had an OS of 36 months.136 
An international phase II trial utilized dendritic 
cells electroporated with WT1 messenger RNA, 
and found an antileukemic response in 43% of 
patients.137 A third trial developed a personalized 
vaccine fusing patient-derived AML cells with 
autologous dendritic cells. In 17 patients who 
achieved a remission to chemotherapy, 12 
remained alive with a median follow up of 
57 months at the time of publication (ClinicalTrials.
gov identifier: NCT03679650).138

Conclusion
In summary, the elucidation of pathways that 
promote proliferation, inhibiting apoptosis, tar-
geting cause mitogenesis due to mutations in spe-
cific genes, and limit the native immune system 
have each provided a much-needed burst of novel 
agents for the treatment of AML over the past 
2 years. New pharmacologic breakthroughs, such 
as venetoclax, or targeted therapies such as 
midostaurin or enasidenib have transformed the 
paradigm of AML treatment. The intense col-
laboration between benchwork and bedside has 
prompted a more rational approach compared 
with the sledgehammer of conventional chemo-
therapy; the ongoing BEAT AML trial and 
planned US cooperative group studies have 
acknowledged the heterogeneity of AML by 
assigning patients to therapies bases on their 
molecular subtype. The plethora of clinical trials 
using novel small-molecule inhibitors is intrigu-
ing: while history has taught that only a small 
fraction of these trials will be paradigm changing, 
the further development of some of these novel 
agents will surely build on these recent 
successes.
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