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5-Methylcytosine (m5C) is an abundant and highly conserved modification in RNAs. The
dysregulation of RNA m5C methylation has been reported in cancers, but the regulatory
network in ovarian cancer of RNA m5C methylation-related genes and its implication in
metabolic regulation remain largely unexplored. In this study, RNA-sequencing data and
clinical information of 374 ovarian cancer patients were downloaded from The Cancer
Genome Atlas database, and a total of 14 RNA m5C regulators were included. Through
unsupervised consensus clustering, two clusters with different m5C modification patterns
were identified with distinct survivals. According to enrichment analyses,
glycosaminoglycan and collagen metabolism–related pathways were specifically
activated in cluster 1, whereas fatty acid metabolism–related pathways were enriched
in cluster 2, which had better overall survival (OS). Besides the metabolism heterogeneity,
the higher sensitivity to platinum and paclitaxel in cluster 2 can further explain the improved
OS. Ultimately, a least absolute shrinkage and selection operator prediction model formed
by ALYREF, NOP2, and TET2 toward OS was constructed. In conclusion, distinct m5C
modification pattern exhibited metabolism heterogeneity, different chemotherapy
sensitivity, and consequently survival difference, providing evidence for risk stratification.

Keywords: ovarian cancer, 5-methylcytosine, RNA modification, metabolism heterogeneity, LASSO cox regression

INTRODUCTION

Ovarian cancer (OVC) is the most lethal gynecological cancer (Siegel et al., 2021). Because of
asymptomatic onset and lack of efficient screening tests, more than 75% of patients are diagnosed at
an advanced stage with a 5-year survival rate of 29%, in contrast to 92% for early stage (Singer et al.,
2003). The standard frontline care is the debulking surgery to no tumor residual and platinum-based
adjuvant chemotherapy, with antiangiogenic therapy applied in patients who have suboptimal tumor
reduction and stage IV disease (Lheureux et al., 2019). The poly-ADP-ribose polymerase (PARP)
inhibitors have been applied in frontline care for maintenance therapy and in patients with
recurrence (Kristeleit et al., 2017; Pujade-Lauraine et al., 2017; Moore et al., 2018). However, the
moderate activity of PARP inhibitors was found in patients with homologous recombination
dysfunction, and a worse therapeutic effect was observed in homologous
recombination–proficient patients (Kaufman et al., 2015). Despite initial response to the first-
line treatment, 25% of patients have a relapse within 6 months (Jemal et al., 2003), and more than
80% of patients eventually have a recurrence (Kim et al., 2020). Immunotherapy has demonstrated
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modest response rates of 10% to 15%, despite a large proportion of
OVCs with high expression of programmed death ligand 1 (Pujade-
Lauraine, 2017). Facing those challenges in diagnosis and treatment,
seeking predictive biomarkers could enable early diagnosis, survival
prediction, and identification of patient subgroups who would
maximally benefit from those treatments (Lheureux et al., 2019).
Consequently, investigations are devoted to molecular and function
profiling of OVC for optimal biomarkers.

Dysregulation of RNA expression profile is an important hallmark
of tumors (Chai et al., 2019a). RNA 5-methylcytosine (m5C)
modification, the methylation of the fifth carbon in cytosine base
in RNA sequences, has emerged as one of the critical
posttranscriptional regulators of gene expression and has been
identified in tRNA, rRNA, and mRNA (Nombela et al., 2021).
The distribution of m5C site in mRNA has been reported to be
mainly deposited in the coding sequences and enriched around the
translation initiation codon (Amort et al., 2017; Yang et al., 2017;
Yang et al., 2019; Tang et al., 2020). RNA m5C modification is a
reversible and dynamic process mediated by a group of proteins
named “writers,” “erasers,” and “readers,” which work as
methyltransferases (NSUN, DNMT, and TRDMT families),
demethylases (TET family), and binding proteins (ALYREF and
YBX1), respectively. RNAm5Cmodification has been involved in the
regulation of gene expression (Roundtree et al., 2017; Chai et al.,
2019b) and thus has participated in a series of physiological and
pathological processes including cancers (Chen et al., 2021).

Cancer is considered as a disease characterized by the
accumulation of genetic or epigenetic alterations of different
oncogenes and tumor suppressors (Nombela et al., 2021).
Metabolism reprogramming is another indispensable hallmark of
cancer. Mutation of oncogene and tumor suppressors drives the
reprogramming of metabolism and rewiring of epigenetic
modification. Cancer cell fate can also be modified by epigenetic
modification and alteration of metabolites. m5C regulator
dysregulation has been reported in multiple cancers such as breast
cancer, leukemia, bladder cancer, and skin squamous cell carcinoma
(Freeman et al., 1991; Blanco et al., 2016; Cheng et al., 2018; Chen
et al., 2019). It has also been demonstrated that RNA m5C
modification could promote glucose metabolism through
enhancing PKM2 mRNA stability in bladder cancer (Wang et al.,
2021). However, the role of RNA m5C regulators-mediated m5C
methylation modification, as well as its effect on metabolism
reprogramming in OVC, remains unclear.

In this study, we revealed the landscape of genetic variation
and gene expression of m5C regulators in OVC and established a
prognostic prediction model formed by ALYRER, NOP2, and
TET2 for overall survival (OS). We also dissected the potential
roles of m5C modification in metabolism heterogeneity and
altered chemotherapeutic drug sensitivity, which could result
in survival differences of OVC patients.

MATERIALS AND METHODS

Data Resources
The workflow of our study is shown in Supplementary Figure
S1A . The fragments per kilobase of exon model per million

mapped fragments (FPKM) files of RNA-seq transcriptome data,
as well as clinical information of 374 cases of OVC, were
downloaded from The Cancer Genome Atlas (TCGA)
database. The SOFT formatted matrix files of three Gene
Expression Omnibus (GEO) datasets (GSE27651, GSE52037,
GSE54388, and GSE19829) (Clough and Barrett, 2016) were
downloaded using R package getGEO. The Masked Copy
Number Segment data of DNA copy number variation (CNV)
data of OVC were downloaded from the Genomic Data
Commons (https://portal.gdc.cancer.gov).

RNA m5C Regulators
Fourteen m5C regulators including eight writers (NOP2, NSUN2,
NSUN3, NSUN4, NSUN5, NSUN6, NSUN7, TRDMT1); four
erasers (TET1, TET2, TET3, ALKBH1); and two readers (YBX1,
ALYREF) were enrolled in this study (Chen et al., 2021).
DMNT3A and DMNT3B were excluded because they have
only been reported in Arabidopsis thaliana for now.

m5C Regulators Mutation and CNV Analysis
The somatic mutation investigation of m5C regulators in pan-cancer
and the CNV analysis in OVC were performed using cBioPortal
website (www.cbioportal.org) (Gao et al., 2013). The Pan-Cancer
Project of TCGA was enrolled for somatic mutation evaluation in
pan-cancer. The Pan-Cancer Project of TCGA-OVwith both somatic
mutation and mRNA data was enrolled for CNV analysis in OVC.

Differentially Expressed Gene Analysis
Principal component analysis (PCA) using R package
FactoMineR and differential gene expression analysis using R
package limma (Ritchie et al., 2015) were conducted, in order to
display the different profiles of m5C regulators between human
ovarian surface epithelium (HOSE) and OVC. Differential
analysis was also utilized in seeking DEGs that were
specifically up-regulated in each cluster. DEGs were defined as
genes with p < 0.05 and |fold change| >1.2.

Interaction Between 14 m5C Regulators
The protein–protein interaction (PPI) network plot was
constructed using the STRING 11.0 b website (https://string-
db.org/). The correlation analysis of the m5C regulators among
mRNA expression and CNV level and between them was
conducted by R package corrplot.

Clustering Analysis of 14m5C Regulators
The ConsensusClusterPlus package (Wilkerson and Hayes, 2010)
was performed to identify distinct m5C phenotype based on the
expression of 14 m5C regulators, and 1,000 times repetitions were
conducted to ensure the stability of the classification.

Cluster Function Annotation and
Exploration of Cluster Metabolism
Heterogeneity
The cluster function annotation was conducted using R package
Gene Set Variation Analysis (GSVA) to explore the Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
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enrichment among different m5C clusters. GO hallmark and KEGG
hallmark gene sets were downloaded from MsigDB dataset (http://
www.gsea-msigdb.org/gsea/msigdb). Further functional annotation
of each m5C cluster was performed by R package ClusterProfiler
(Yu et al., 2012) using the top 500 expressed genes and DEGs in
each cluster for GO and KEGG pathways. Then, Gene Set
Enrichment Analysis (GSEA) was performed using cluster DEGs
by ClusterProfiler package to further identify up-regulated
pathways in the individual cluster. The up-regulated pathways
identified in multiple methods were finally visualized in circos
plot using R package circlize. Then, metabolic pathways were
downloaded from KEGG database including 1,653 human genes
assigned to 91 pathways. The GSVA scores of metabolic pathways
were calculated using the GSVA package for further correlation
with mRNA level of m5C regulators.

Prediction of Drug Sensitivity
The drug sensitivity was predicted using calcPhenotype function
in R package oncoPredict (Maeser et al., 2021) based on
Genomics of Drug Sensitivity in Cancer cell line dataset
(https://www.cancerrxgene.org/). The prediction ability by
drug sensitivity score calculation was validated in OVC clinical
trial (GSE51373) with area under the curve (AUC) of 0.786.
Imputed lower sensitivity score represents higher sensitivity of
the drug.

Cell Culture and Cell Growth
OVCAR3 cells were cultured in Dulbecco modified eagle medium
(GIBCO, United States) supplemented with 10% fetal bovine
serum (GIBCO, United States), penicillin (GIBCO,
United States), and streptomycin (GIBCO, United States) and
maintained at 37°C in 5% CO2 cell culture incubator. The cells
transfected with siRNA targeting TET2 or control
(TsingkeBiotechnology, China) were seeded in 96-well plates
for the cell viability test. CCK-8 reagent (DOJINDO, Japan)
was added into the plate and incubated for 2 h. The cell
absorbance at 450-nm wavelengths was measured by using the
microplate reader (BioTek, United States) at 0, 1, 2, 3, and 4 days.
All experiments were performed in triplicate.

Western Blot
Cells were collected and lysed with cell lysis buffer (Beyotime,
China) on ice for 30 min, and the lysate was obtained by
centrifugation at 12,000g for 10 min. Proteins were
fractionated by sodium dodecyl sulfate–polyacrylamide gel
electrophoresis and then transferred onto 0.22-μm NC
membranes. The membranes were blocked with 5% nonfat
milk in TBS/Tween-20 and blotted with the antibody (anti-
TET2; ProteinTech) at 4°C overnight. Corresponding
secondary antibodies (ZSGB-BIO, China) were added on the
membrane at room temperature for 1.5 h. Immunoreactive bands
were visualized using enhanced chemiluminescence detection
reagent (Millipore, United States).

Statistical Analysis
Correlations among different m5C regulators were evaluated
by Spearman correlation analyses using R package corrplot.

Correlations between m5C regulators and clinicopathological
parameters were evaluated by Spearman correlation analyses
using SPSS 25.0. A χ2 test was conducted to compare the
clinicopathological parameters of clusters. Kruskal–Wallis
test was used to compare gene expression among different
samples. R packages survival and survminer (Scrucca et al.,
2007) were used to perform the univariate Cox proportional
hazards analysis and Kaplan–Meier analysis for OS. R package
forestplot and survminer were used for visualized the Cox
analysis results and survival curves, respectively. Genes with
p < 0.05 in univariate analysis were selected to the least
absolute shrinkage and selection operator (LASSO) method
regression analysis using R package glmnet. Patients with
survival information were randomly divided into two
groups (75% in the training group and 25% in the test
group) by createDataPartition function from R package
caret. Three gene signature and their corresponding
coefficients were determined in the training group by
glmnet package, and the risk score was calculated for each
patient using the prediction function. The AUC of receiver
operating characteristic (ROC) curve was calculated by R
package survivalROC (Heagerty and Zheng, 2005). True
positive (TP) and false positive (FP) of every patient in the
training group were calculated through survivalROC
function, and the minimum value of the formula (TP-1)*2
+ FP*2 was determined as the best cutoff value. This cutoff
value was used in the internal training set, internal testing set,
and external testing set to divide the samples into the high-
score group and the low-score group. R 4.0.3 was used for all
the statistical analyses in this study. p < 0.05 is the significance
threshold for all the data.

RESULTS

Profiles of Genetic Variation and Gene
Expression of RNA m5C Regulators in
Ovarian Cancer
First, we comprehensively studied the profile of the genetic
variation frequency of m5C regulators in the pan-cancer
cohort. The amplification is the prevalent variation pattern of
m5C regulator genes in OVC, and 13 of 14 (92.9%) regulators
were amplified (Figures 1A,B). Among those regulators, YBX1,
NOP2, and NSUN4 genes exhibited the highest amplification
frequencies of 7%, 6%, and 5%, respectively (Figure 1B). The
significant positive correlation of CNV among regulators was
demonstrated especially between ALYREF and writers, as well as
TET2 and writers (Figure 1C). Then, we explored the correlation
between CNV and mRNA levels of each regulator and found a
significant positive correlation in all 14 regulators (Figure 1D).
Differential analysis was further performed to profile the
expressions of 14 m5C regulators between HOSE and OVC.
Consistent with the CNV pattern, most regulators were
significantly up-regulated in OVC compared with HOSE
tissues, whereas TET2 expression was decreased in two GEO
cohorts (Figures 1F,G). Besides, a significant distinction of m5C
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FIGURE 1 |Genetic variation and gene expression of RNAm5C regulators in ovarian cancer. (A)Genetic alteration frequencies of m5C regulators in pan-cancer. (B)
Copy number variation of m5C regulators in ovarian cancer. (C) Correlation of copy number variations among m5C regulators. (D) Principal component analysis for the
expression profile of m5C regulators to distinguish OVC from HOSE samples in GSE54388 cohort. OVC, ovarian cancer, HOSE, human ovarian surface epithelium. (E)
The differential expression analysis of 14 m5C regulators between OVC and HOSE samples in three independent GEO cohorts. Up-regulated in OVC: orange; up-
regulated in HOSE samples: blue. (F)Correlation between copy number variation andmRNA level of m5C regulators. (G) The boxplot of expression of 14 m5C regulators
in OVC and HOSE samples in GSE27651 cohort.*p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 2 | The interaction and correlation analysis between RNA m5C regulators in ovarian cancer. (A) Correlation of mRNA levels among m5C regulators. (B)
Protein–protein interaction plot among the 14 m5C regulators. (C–J) Correlations between “writers” (NUSN1, NSUN2, NSUN3, NSUN4, NSUN5, NSUN6, NSUN7,
TRDMT1) and “erasers” (TET1, TET2, TET3, ALHBK1) at mRNA level (RPKM). (K–M) Differential mRNA levels of “erasers” between amplified type and wild type of
“writers” with the highest CNV frequencies (NOP2, NSUN4, and NSUN2).
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regulators’ expression profiles among HOSE and OVC was
illustrated by PCA (Figure 1E).

The Interaction and Correlation Analysis of
RNA m5C Regulators in Ovarian Cancer
To testify whether m5C regulators have correlations among each
other, Spearman correlation analysis of mRNA levels of 14
regulators indicated significant positive correlation among
most regulators (Figure 2A). The comprehensive landscape of
m5C regulators was depicted with the PPI network according to
the STRING 11.0 b website (Figure 2B). The writers and erasers
had remarkable interactions within each other except the readers

(YBX1 and ALYREF). To further investigate the correlations of
writers and erasers who work as methyltransferases and
demethyltransferases and affect the amount and distribution of
m5C modification, comparisons of writer gene expression were
performed in patients with high and low eraser gene expression
(Figures 2C–J) (Zhang et al., 2020). The results showed that
writer genes exhibited different correlations with eraser genes.
NSUN6 expression was positively correlated with TET1/2/3,
whereas NSUN7 expression was negatively correlated with
eraser genes TET1/2 (Figures 2H,I). As writer genes NOP2,
NSUN4, and NSUN2 have relatively higher amplification
(Figure 1B), we analyzed whether the CNV of those writer
genes is correlated with eraser genes. Of these, only TET3 was

FIGURE 3 | Unsupervised consensus clustering analysis of RNA m5C regulators. (A) Consensus clustering matrix for the most suitable k (k = 2). (B) Relative
changes in the area under the clustering cumulative function (CDF) curve at k = 2–10. (C) Consensus clustering CDF for k = 2–10. (D) The m5C regulator expression
profiles and clinicopathological characteristics in two clusters. (E) Kaplan–Meier overall survival curves for ovarian cancer patients of two clusters in the TCGA cohort.
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FIGURE 4 |Metabolic heterogeneity in ovarian cancers with distinct m5Cmodification patterns. (A,B) Bubble plot showing GSVA enrichment analysis of the top 30
changed GO and KEGG hallmark pathways between two m5C clusters. (C) The most enriched metabolism-related GO pathways using differentially expressed genes in
each m5C cluster. (D) The most enriched metabolism-related GO pathways using the top 500 up-regulated genes in each m5C cluster. (E,F)GSEA analysis showing the
significant metabolism-related pathways up-regulated in eachm5C cluster. (G)Correlation analysis between GSVA enrichment scores of the changedmetabolism-
related pathways in each m5C cluster and mRNA levels of m5C regulators.
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significantly down-regulated in patients with NSUN2
amplification compared with wild type (Figures 2K-M). These
data indicate the complex cross-talk among m5C regulators
in OVC.

Consensus Clustering of m5C RNA
Methylation Regulators Identifying Two
Clusters With the Distinct OS
Based on the expression profile of m5C regulators in 374 OVC
patients (TCGA), we used unsupervised consensus clustering
analysis to distinguish different m5C modification patterns,
and two clusters were identified (Figures 3A–C). k = 2 is the
optimal stable clustering when compared with k = 3–8
(Supplementary Figure S1B). Distinct expression profiles of
m5C RNA methylation regulators, clinicopathological
parameters, and log2 (fold change) of regulators are illustrated
in Figure 3D. According to χ2 test results, no statistical
differences were found in lymphatic invasion (p = 1), venous
invasion (p = 0.60), tumor residual (p = 0.28), International
Federation of Gynecology and Obstetrics stage (p = 0.59), and
grade (p = 0.13) between two clusters. TET2 was significantly up-
regulated in cluster 1; ALYREF, NOP2, NSUN4, NSUN5, and
YBX1 were substantially up-regulated in cluster 2. Despite similar
clinicopathological parameters, the OS of patients in cluster 2 was
better than cluster 1 (p = 0.015) (Figure 3E). We also examined
the correlations of m5C regulators and clinicopathological
parameters, and the results showed weak correlation between
them (Supplementary Figure S2A).

Functional Annotation Revealing the
Metabolism Heterogeneity of the Two
Subtypes
To further investigate the activated biological processes that may
result in distinct survival in each cluster, functional annotations
were conducted through three different methods. First, GSVA
scores of GO and KEGG hallmark gene sets were calculated, and
the differential analysis was performed to explore the
discrepancies in pathways among two clusters, of which
metabolism-related pathways occupied more than half of the
top 30 enriched pathways (Figures 4A,B). Then, the top 500
expressed genes of each cluster and phenotype-related DEGs were
selected for GO enrichment analysis. The results revealed that
glycosaminoglycan and collagen metabolism–related pathways
were up-regulated in cluster 1, whereas fatty acid
metabolism–related pathways were up-regulated in cluster 2,
which were further supported by the GSEA results (Figures
4C–F). To further explore the metabolism heterogeneity
between the two clusters, the enrichment scores of 91
metabolic pathways downloaded from the KEGG database
were calculated, and the varied metabolic pathways between
the two clusters were analyzed. Differences were found in 27
of 91 (29.7%) metabolic pathways between two clusters. In
addition, a correlation analysis was performed between those
metabolic pathway enrichment scores and mRNA levels of m5C
regulators. A significant negative correlation with these

metabolism processes was found in eraser genes and positive
correlation in writer genes except for NSUN6 and NOP2
(Figure 4G). Taken together, these results indicate that m5C
modification might contribute to OVC survival difference
through regulating metabolism heterogeneity.

Representative Metabolism-Related Genes
With the Prognostic Value in Different m5C
Modification Patterns
An overlapping analysis was made to explore the leading
metabolic genes that contributed to survival difference of two
clusters (Figure 5A). 13 m5C cluster-specific metabolism genes
with prognostic values were identified, as is illustrated in the
Venn plot. According to the results of GO enrichment analysis
using phenotype-related DEGs, GSEA, and GSVA, the collagen,
glycosaminoglycan, and aminoglycan metabolism were up-
regulated in cluster 1, whereas fatty acid metabolism was up-
regulated in cluster 2. We visualized those genes in activated
pathways of two m5C modification phenotype clusters (Figures
5B,C), and those important genes with prognostic value were
marked in the circos plot. The fold change and p of 13
representative genes are shown in the volcano plot
(Figure 5D). Kaplan–Meier analysis curves for OS in eight
representative genes are presented (Figures 5E–L).

Different Sensitivity to Chemotherapies
Between Two Clusters
In order to detect whether the two clusters with m5Cmodification
patterns had different drug sensitivity, we made the sensitivity
prediction of 199 drugs for 374 OVC patients from TCGA
dataset. Two clusters exhibited different sensitivities in a total
of 44 drugs via t test for imputed sensitivity score, including
Paclitaxel_1,080, Docetaxel_1,007, and Cisplatin_1,005, which
were included in the standard chemotherapy of OVC. Higher
sensitivities of these three chemotherapeutic drugs were observed
in cluster 2 (Figure 6).

Establishment and Evaluation of a Risk
Score Signature With RNA m5C Methylation
Regulators
As clusters with different m5C modification patterns exhibited
altered metabolism pathways and chemotherapeutic drug
sensitivity that were associated with the differences in
prognosis, we further explored the predictive value of RNA
m5C methylation regulators for OS. The univariate survival
analyses using Cox proportional hazards models were
performed, and three genes with p < 0.1 were selected for the
LASSO Cox algorithm (Supplementary Figure S2B). Then, the
LASSO algorithm with 10 folds of cross-validation was applied to
establish a risk score prediction model for OS. Two hundred
eighty of 374 OVC patients in TCGA cohorts formed the internal
training set, and the rest of 94 patients formed the internal testing
set. The GSE19829 formed the external testing set. ALYREF,
NOP2, and TET2 finally entered in the model (Figures 7A,B),
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FIGURE 5 | Selection of representative genes differentially expressed in m5C cluster, related tometabolism and with prognostic significance. (A) Venn plot showing
the overlapping analysis of genes that were differentially expressed (fold change >1.5 and p < 0.05) in two clusters, enriched in up-regulated metabolic pathways in each
cluster, and had the prognostic significance. (B,C) Circus plot exhibiting the metabolic pathways up-regulated in each m5C cluster and those 13 genes with prognostic
value were marked. Blue, up-regulated in cluster 1. Orange, up-regulated in cluster 2. (D) Volcano plot distributes the relative expressions 13 representative genes
with log2 (fold change) and log10 (FDR). The reference is gene expression of cluster 1. Blue, up-regulated in cluster 1. Orange, up-regulated in cluster 2. (E–L)
Kaplan–Meier overall survival curves of eight representative genes.
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and the risk core model is (ALYREF*-0.00349425170618238) +
(NOP2*0.0200758391547147) + (TET2*0.145822477408262).
Patients were then divided into subgroups of low score and
high score according to the cutoff value. The distribution of
risk scores in the internal training set and internal testing set is
demonstrated in Figure 7C and Supplementary Figure S2C, and
the results suggest the risk score model could distinguish those
patients with poor survivals. Patients with high score exhibit poor
OS, which were verified in internal training set (p = 0.016, hazard
ratio [HR] = 3.2), internal testing set (p = 0.012, HR = 10), and
external testing set (p = 0.02, HR = 2.1) (Figures 7D–F). The
AUCs of ROC curves of the prediction were approximately 0.6
(Supplementary Figures S2D,E). To confirm the role of key
genes in the risk score signature, in vitro experiments were
performed. The results showed that knockdown of TET2 in
OVC cells could hinder the cell malignant growth, suggesting
its potential in the prediction of OS prognosis (Supplementary
Figure S2F). Furthermore, multivariate analysis of Cox
proportional hazards was performed to further confirm the
performance of m5C risk score prediction for OS, and the
results showed that the m5C risk score was an independent
prognostic factor (p = 0.014, HR = 38.34) (Figure 7G).

DISCUSSION

In the present study, the metabolism heterogeneity in two clusters
based on m5C expression profile was annotated through
enrichment analyses and found to be significantly correlated
with the mRNA levels of m5C regulators. Then,
13 metabolism-related DEGs of two m5C clusters related RNA
m5Cmethylation were identified, which were also associated with
OS. Besides metabolism reprogramming, RNA m5C regulators
could also trigger altered chemotherapeutic drug sensitivity and
consequently influence survival in OVC. Ultimately, a prognostic
model comprising of ALYREF, NOP2, and TET2 for OS was
developed for further verifying predictive value of m5C regulators
for prognosis in OVC.

As the present diagnosis and screening program in OVC still
have limitations, efforts have been made to seek predictive

biomarkers related to cancer occurrence and progression.
Through these biomarkers, the distinction of subtypes with
different prognoses and molecular characteristics will make the
identification of patient subgroups who could well respond to a
certain treatment or who had worse survival. In the present study,
incorporating mRNA data of ALYREF, NOP2, and TET2 could
well stratify those patients with worse survivals, providing
evidence for clinical practice. The predictive value of m5C
regulators has also been confirmed in glioma (Wang et al.,
2020), breast cancer (Huang et al., 2021), and head and neck
squamous cell carcinoma (Xue et al., 2020), and our study made
extending support for their predictive role in OVC.

Metabolism reprogramming in OVC has been implicated in
the pathogenesis, progression, and target therapy for cancer. In
our study, glycosaminoglycan and collagen metabolism–related
pathways were activated in cluster 1 and fatty acid
metabolism–related pathways were activated in cluster 2. Fatty
acids are important components of lipids such as fats, sterol
esters, and phospholipids. Lipid metabolism dysregulation has
been verified to participate in cancer progression (Li et al., 2021),
but it has a more special implication in OVC, as an almost
symbiotic relationship exists between OVC and the fat-
containing cells in the omentum. FABP4, ELOVL2, and
ACSL5 as important genes involved in biosynthesis and
transport of fatty acids were found to be up-regulated in
cluster 2. FABP4 was highly expressed on the membrane of
metastasis OVC cells at the adipocyte–cancer cell interface and
mediated lipid accumulation and effect on invasion (Zhao et al.,
2019). ELOVL2 has been reported to participate in the
biosynthesis of polyunsaturated fatty acids and be involved in
tumorigenicity in glioma cancer stem cells (Gimple et al., 2019).
ACSL family is responsible for activating long-chain fatty acids,
and family members have opposite functions toward
carcinogenesis. ACSL5 is nuclear-coded and expressed in the
mitochondria and physiologically participates in the proapoptotic
sensing of cells acting as a tumor suppressor, which could
possibly explain the relatively better prognosis of cluster 2
where ACSL5 was dominantly up-regulated (Quan et al.,
2021). The collagen metabolism alteration influences the
distribution of collagen and extracellular matrix (ECM)

FIGURE 6 | The boxplot of imputed sensitivity score of three chemotherapeutic drugs in two clusters.
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FIGURE 7 | Construction and evaluation of prognostic prediction model with three RNA m5C regulators in TCGA cohort and GEO cohort (GSE19829). (A,B)
LASSO Cox regression analysis results showing the identification of three prognostic risk signature genes, and the risk score model is (ALYREF*-
0.00349425170618238) + (NOP2*0.0200758391547147) + (TET2*0.145822477408262). (C) The distribution of prognostic signature-based risk score in internal
training set. (D–F) The Kaplan–Meier overall survival analysis for patients with high score and low score in internal training set, internal testing set, and external
testing set. (G) The m5C risk score in Cox multivariate analysis for OS of ovarian cancer patients.
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structure, thus affecting cancer progression (Xu et al., 2019). The
glycosaminoglycans, another important component of ECM,
were found to be involved in multiple signaling pathways
related to angiogenesis, cancer invasion, and metastasis
(Morla, 2019). VCAN, which is one member of
glycosaminoglycan gene sets with leading expression in cluster
1, was previously reported to be up-regulated in ovarian stromal
cells and associated with increased microvessel density and
poorer survival (Ghosh et al., 2010). In this study, we found
the heterogeneity of lipid, glycosaminoglycans, and collagen
metabolism in two clusters with distinct m5C modification.
The stepwise accumulation of altered metabolism at mRNA
levels in different m5C clusters eventually resulted in distinct
prognoses, indicating that the metabolism alteration has
prognostic significance.

The role of epigenetic modifications in cancer metabolism
reprogramming has been broadly reported, but there is still a lack
of disclosure of how RNA m5C modification functions in cancer
metabolism. It was demonstrated that ALYREF binds the 3′-UTR
of PKM2 mRNA and promotes the glucose metabolism of
bladder cancer in an m5C-dependent manner (Wang et al.,
2021). In this study, we found 13 representative metabolic
genes that were related to m5C RNA methylation in OVC. All
of them have positive or negative correlations with RNA m5C
regulators at the mRNA level (Supplementary Figure S2G).
Consequently, experimental verification could be done in the
future to verify the regulatory role of RNA m5C methylation of
those metabolism genes in cancer.

In conclusion, our study depicted the landscape of genetic
variation and gene expression of m5C regulators in OVC and
established a prognostic prediction model formed by ALYRER,
NOP2, and TET2 for OS. We also uncovered the indispensable
roles of m5C modification in metabolism heterogeneity and
altered sensitivity to chemotherapeutic drugs.
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