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ABSTRACT
African swine fever (ASF) is a lethal and highly contagious viral disease of domestic and wild pigs, listed as a notifiable
disease reported to the World Organization for Animal Health (OIE). Despite its limited host range and absent zoonotic
potential, the socio-economic and environmental impact of ASF is very high, representing a serious threat to the global
swine industry and the many stakeholders involved. Currently, only control and eradication measures based mainly on
early detection and strict stamping-out policies are available, however, the rapid spread of the disease in new countries,
and in new regions in countries already affected, show these strategies to be lacking. In this review, we discuss
approaches to ASF vaccinology, with emphasis on the advances made over the last decade, including the
development of virulence-associated gene deleted strains such as the very promising ASFV-G-ΔI177L/ΔLVR, that
replicates efficiently in a stable porcine epithelial cell line, and the cross-protecting BA71ΔCD2 capable of stably
growing in the commercial COS-1 cell line, or the naturally attenuated Lv17/WB/Rie1 which shows solid protection in
wild boar. We also consider the key constraints involved in the scale-up and commercialization of promising live
attenuated and virus-vectored vaccine candidates, namely cross-protection, safety, lack of suitable animal models,
compatibility with wildlife immunization, availability of established and licensed cell lines, and differentiating infected
from vaccinated animals (DIVA) strategy.
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Introduction

African swine fever (ASF) is a highly infectious and
severe haemorrhagic viral disease of pigs, endemic to
South-Saharan Africa (24 genotypes based on the
sequence of the c-terminus of the p72 surface antigen)
and the island of Sardinia in Italy (p72 genotype I).
The transcontinental spread of ASF occurred on at
least three separate occasions, most significantly to
Georgia, in 2007, where it spread from the Black Sea
port of Poti across the Caucasus region into the
Russian Federation (RF) and Eastern Europe [1].

The following decade saw the disease become epizoo-
tic in the RF, and by 2018 it had spread as far west as
Belgium and east to the People’s Republic of China,
quickly taking over most of Southeast Asia and Ocea-
nia [2,3]. Since then, the epidemiological situation of
ASF has continued to deteriorate; in July 2021, after
an absence of nearly 40 years, ASF was introduced
in the Dominican Republic, and later Haiti, and in
January 2022 reappeared on the Italian mainland. Sev-
eral reoccurrences have since been reported in China,
the RF, Moldova, and Ukraine, and North Macedonia
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reported their first occurrence, as did Thailand, one of
the few countries in the region that had remained
unscathed [3]. These recent events highlight an extre-
mely disconcerting pattern of continuous spread,
exacerbated by the fact that in many of these regions
small-scale and semi-industrial farms account for the
majority of pig production. As such, outbreaks carry
severe socio-economic consequences, causing devas-
tation of rural livelihoods dependent on livestock pro-
duction, and threatening overall market stability and
food security.

The African Swine Fever Virus (ASFV) is a large,
double-stranded nucleocytoplasmic DNA arbovirus,
the only member of the Asfarviridae family. Virions
have a diameter of around 250 nm and consist of a cen-
tral nucleoid enclosed by an icosahedral protein capsid
(or core shell), an internal lipoprotein membrane (or
inner envelope), an icosahedral protein outer capsid,
and a dispensable external lipoprotein envelope (or
outer envelope) that is obtained when the virus buds
out through the plasma membrane [4]. Both intracellu-
lar and extracellular viral forms are infectious. Its natu-
ral host range is limited to soft-bodied ticks of the
genus Ornithodoros and members of the family Suidae,
where it replicates mainly in cells of the mononuclear
phagocytic system, resident macrophages, and specific
reticular cells. Significantly, African wild pigs are not
affected. In domestic pigs and wild boar, however,
clinical signs vary considerably, and the individual out-
come can range from fatal to subclinical. Depending
on the virulence of the strain involved, a graded series
of forms occurs, with lethality ranging from 100% (per-
acute form) to <30% (chronic form). The genotype II
strain currently affecting Europe and Asia is highly
virulent, causing the acute form of the disease,
although there is evidence that some reduced-virulence
isolates may be circulating among wild boar in the Bal-
tic States and domestic pigs in China, with reports of
both naturally mutated genotype II low virulent strains
and genotype I low virulent epidemic strains detected
in the field [5,6]. The latter have longer incubation
periods, cause chronic disease, and infected pigs shed
virus continuously, making early diagnosis more
difficult. We refer the reader to several recent reviews
that detail the epidemiology and control of ASFV
infection [7–11].

Immune response against ASF

Protective immunity against ASFV is poorly under-
stood. As with most viral infections, innate immunity
and both humoral and cellular responses appear to be
important for protection. [NO_PRINTED_FORM][-
NO_PRINTED_FORM]Despite original reports indi-
cating a lack of neutralizing activity of antibodies
against ASFV, evidence of neutralizing antibodies
against the virus seem to be overwhelming [7,12].

Antibody-mediated neutralization has some uncom-
mon characteristics, however, including loss of sus-
ceptibility to neutralization by cell culture passage
because of changes in the phospholipid composition
of viral membranes and/or the presence of sera block-
ing antibodies that inhibit complete neutralization
[12]. The ASFV hemagglutinin CD2v/EP402R is per-
haps the viral protein most significantly implicated
in protective immunity [11,13]. CD2v, together with
the auxiliary HA viral antigen, C-type Lectin/
EP153R, is also among the most variable gene ortholo-
gues between ASFV isolates, providing potentially sig-
nificant antigens in serogroup-specific immunity.
ASFV hemadsorption inhibiting (HAI) serotype-
specific protective immunity is a recent concept sup-
ported by data indicating that p72-genotyping does
not fully correlate with either homologous or heter-
ologous cross-protection, as distinct strains are some-
times able to induce measures of cross-protection,
while strains that appear closely related fail to cross-
protect. Recent findings demonstrate that CD2v and
C-type lectin are necessary and sufficient for mediat-
ing HAI serologic specificity and that CD2v/C-type
lectin genotyping can reliably group ASFV strains by
serogroup [14]. While important for mediating
cross-protective responses in vivo, however, they do
not confer complete serotype-specific homologous
protection [14,15], and several studies show that atte-
nuated ASFV viruses containing CD2 gene deletion or
N-terminal truncating mutations in CD2v/C-type lec-
tin genes (thus, presumably, lacking the proteins) pro-
tect pigs and wild boar from virulent virus challenge
[16–18], indicating that additional protective antigens
need to be identified. Other potential viral neutralizing
epitopes include viral capsid proteins p30/CP204L,
p54/E183L, and p72/B646L, viral proteins B602L,
C44L, CP312R, E183Lp, K145R, and K205R, as well
as the structural proteins A104R, p10/K78R, and the
non-structural proteins ribonucleotide reductase
(F334L, F778Rp), DNA ligase (NP419L), and thymi-
dine kinase (TK/K169R) [11]. In addition to anti-
body-mediated virus neutralization, other potentially
protective roles of ASFV antibodies have been indi-
cated by mechanisms such as antibody-dependent
cell-mediated cytotoxicity (ADCC) and complement-
mediated cytotoxicity (CDC) [11,12,19,20].

Cellular immunity is also likely to be essential for
protection. Key roles have been indicated for natural
killer (NK) and CD8+ T cells; Leitão et al. [18] demon-
strated elevated NK cell activity in pigs infected with
the naturally attenuated NHV/NHP68 strain, and
that the animals subsequently survived challenge
with the highly virulent L60 isolate, while Alonso
et al. [21] showed CD8-dependent lysis of ASFV-
infected cells in experimental models with attenuated
virus isolates and Oura et al. [16] that antibody-
mediated depletion of this cell subset abrogated
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protection. Schäfer et al. [22] and Hür et al. [23]
additionally demonstrated that the immune response
in wild boar and domestic pigs is based primarily on
increases of CD4−/CD8α+ during infection with mod-
erately virulent ASFV and of CD4+/ CD8α+ (DP) T
cells during infection with the highly virulent Arme-
nia08 isolate. Further, increases in effector γδ T cell
frequencies in wild boar were suggested as an expla-
nation for the higher virulence in this subspecies.
The authors also demonstrated significant alterations
in invariant NK T cell (iNKT) frequency [24] and acti-
vation patterns [22] during infection, supporting the
findings of Leitão et al. and the notion that this cell
subset takes part in the antiviral response against
ASFV. Despite complications arising from the hetero-
geneity of the T cell population [25] and the variability
of MHC peptide presentation within the outbred pig
population [11], ASFV-specific CD8+ T cell determi-
nants with protective potential have been identified
in the G1340L, p30, p72, CD2v, and C-type lectin
viral proteins [15,21,26–29]; their role in protection
is not fully elucidated, however. Further work towards
the identification of other CD8+ T cell determinants in
both attenuated and virulent strains and clarification
of their protective potential is being developed
[30,31]. In conclusion, the evidence available indicates
that induction of protection involves both antibody-
and cell-mediated mechanisms, but the antigens and
types of cellular responses required need further
characterization. For more detailed information on
cellular and humoral immune responses to
ASFV infection we direct readers to two excellent
reviews [12,32].

ASF vaccine approaches

Inactivated vaccines

Virus inactivation is an established approach to vac-
cine production, relatively straightforward to achieve
and with a higher safety profile when compared to
live vaccines. The inactivation process negates rever-
sion to a virulent phenotype and vaccine viruses are
nontransmissible, the two major drawbacks of attenu-
ated vaccines. Inactivation, however, does not necess-
arily translate into a vaccine that elicits protective
immunity. Attempts at immunization of pigs with a
variety of inactivated ASF antigens, using traditional
methods, while in some cases capable of inducing a
serological immune response, ultimately did not lead
to sufficient protection [33,34]. This is perhaps not
entirely surprising, given that cellular immunity
seems essential for protection and that effective virus
neutralization is difficult to achieve in primary infec-
tions [11]. Researchers at the International Livestock
Research Institute in Kenya (ILRI) in collaboration
with Colorado State University (CSU) are now

attempting to develop an inactivated vaccine using a
novel method [35], originally developed for the treat-
ment of blood products. If successful, benefits will
include a well-established toxicological safety profile,
with little to no toxicity or disposal risk to facility per-
sonnel or the environment, and the rapid and afford-
able production of vaccine candidates using
commercially available equipment, reagents, and dis-
posables, which makes it attainable in both high-
and low- income locations around the world, as
close to endemic areas as possible. A variety of
ASFV vaccine preparations, using specific adjuvants,
are currently being assessed for immune responses
Figures 1 and 2.

Subunit, DNA and virus-vectored vaccines

Subunit vaccines use purified recombinant proteins
or synthetic peptides encoding specific viral epitopes
capable of inducing a protective immune response.
This is accomplished by using conventional bio-
chemical or recombinant DNA technologies to gen-
erate an antigen that is formulated with an
adjuvant. Alternatively, the technology can be used
to generate a plasmid or a live virus-vectored recom-
binant construct containing the DNA encoding the
antigen(s) of interest for in vivo expression. These
DNA and viral-vectored vaccines have an advantage
over antigen-based inactivated formulations in that
they are capable of inducing cell-mediated immune
responses. Moreover, viral vectors have the added
advantage of being able to actively penetrate the
host’s cells and replicate as a live attenuated vaccine
(LAV) and are well-suited for differentiating infected
from vaccinated animals (DIVA) with vector
encoded immunogens serving as vaccine markers
Tables 1 and 2.

As described in the previous section, several ASFV
antigens have been evaluated for their protective
potential, including structural proteins p54, p30, p72
and the hemagglutinin CD2v, and these proteins
have traditionally been the main targets of subunit
and DNA vaccine strategies. Preliminary antigen-
based vaccination experiments using recombinant
p54 and p30 expressed in baculovirus conferred a vari-
able degree of protection against lethal challenge, ran-
ging from a delay in disease onset to complete
protection [36]. A chimeric p54/p30 expressed in the
same system also had some success, with pigs develop-
ing neutralizing antibodies and surviving challenge
with the virulent virus [37]. In a different study, how-
ever, a combination of baculovirus-expressed p54,
p30, and p72 failed to induce protection against chal-
lenge [38]. Baculovirus-expressed CD2v also demon-
strated some degree of protection against challenge
with the virulent virus [13], though protection was
induced in the absence of neutralizing antibodies.
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Contrary to what was shown with the antigen-
based subunit formulations recent work with a
DNA vaccine encoding a p54/p30 fusion protein
failed to induce protection, producing neither neu-
tralizing antibodies nor T cell responses [29] and
while specific T cells against ASFV proteins were
detected in pigs vaccinated with a construct encoding
a fusion of the swine leukocyte antigen II (SLA-II)
with p54/p30, they were also not protected from
challenge [39]. Fusion of a gene fragment encoding
the extracellular soluble domain of CD2v with the
p54/p30 chimaera, to replicate the protection pre-
viously observed, induced both humoral and cellular
responses in pigs but was ultimately not successful;
however, a fusion of ubiquitin to the three ASFV
determinants induced a strong CD8+ T cell response
and conferred partial protection in the absence of
specific antibodies [29]. Immunization of pigs with
an ASFV expression library containing over 4000
random DNA fragments fused to ubiquitin,

excluding the p54, p30, and CD2v open reading
frames, also conferred partial protection [40]. In
this case, protection likewise correlated with the
detection of specific T cell responses, indicating
that these antigens, though necessary, are likely not
sufficient for protection.

Still more recent studies with antigen cocktails of
up to 47 different ASFV genes delivered by adeno-
virus, alphavirus and vaccinia virus vectors were
able to demonstrate induction of strong antigen-
specific cellular responses [31,41–43]. One study
reported that a pool comprised of eight ASFV
genes including B646L (p72), CP204L (p30),
CP530R (pp62), and MGFs 110-4L and 110–5 vec-
tored by replication-deficient human adenovirus 5
prime and modified vaccinia Ankara boost led to
reduced clinical signs and reduced levels of viremia
in a proportion of pigs after challenge with the viru-
lent OUR T88/1 isolate [31]. A combination of the
ASFV genes B646L (p72), CP204L (p30), CP530R

Figure 1. Immune responses to ASFV infection. Both humoral and cellular immune responses appear to be important for protec-
tion against ASFV infection. T cells have been shown to play a particularly important role in survival with key roles identified for
natural killer (NK) and CD8+ T cells. CD4+ T helper cells seem to support B cell responses and essential antibody (Ab) maturation,
particularly in infection with highly virulent isolates. Studies on nonconventional T cells, such as effector γδ T cells and invariant
Natural Killer T (iNKT) cells, indicate these cell subsets also take part in the antiviral response against ASFV. In wild boar, the sig-
nificant bias towards γδ T cells has been suggested as an explanation for the higher disease severity and lethality in this species.
Several studies have also revealed the relevance of antibodies in the protection against ASF. Antibody-mediated neutralization has
some uncommon characteristics in ASFV infection, namely loss of susceptibility to neutralization by cell culture passage because of
changes in the phospholipid composition of viral membranes and/or the presence of sera blocking antibodies that inhibit com-
plete neutralization. A number of ASFV proteins have been implicated in the induction of neutralizing antibodies during infection,
most notably the ASFV hemagglutinin CD2v/EP402R. Other antibody driven protective mechanisms include antibody-dependent
cell-mediated cytotoxicity (ADCC) and complement-mediated cytotoxicity (CDC). Created with BioRender.com (accessed on 01
July 2022).
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(pp62), and E183L (p54) with the mature p37 pro-
duct and two sections of the mature p150 protein
of the pp220 polyprotein (CP2475L gene) using the
same prime-boost strategy with two different adju-
vants were evaluated in another study [41], with
roughly half of the animals in one of the adjuvanted
groups surviving challenge with the Georgia 2007/1
isolate. A follow-up study [30] of two immunization
protocols using pools of eight of these viral vectored
ASFV genes ultimately achieved 100% protection
from fatal disease in animals challenged with the
OUR T88/1 strain.

In the long run, subunit, DNA, and viral vectored
vaccines show promise and several candidates have
been shown to induce specific humoral and/or cellular
immune responses which appear to confer partial to
full protection. However, the different nature of the
immunization protocols used in these studies, includ-
ing the type of vaccine, vaccination strategy and chal-
lenge model, makes results difficult to compare.
Further work will be needed to identify which immune
mechanisms need to be triggered to confer complete,
lasting protection, which antigens (or combination
of) should be included in a potential vaccine, and
the most appropriate delivery method.

Live attenuated vaccines (LAVs)

LAVs circumvent a key issue presented by both inac-
tivated and subunit or DNA preparations. Because
they can successfully replicate within the host, they
mimic natural infection thereby triggering both
humoral and cellular pathways, and do not require
adjuvants with co-stimulatory activity to enhance the
magnitude and quality of the immune response.
Additionally, some LAVs have been shown to elicit
mucosal IgA antibodies, an important feature for vac-
cines administered via the oral route (oral immuniz-
ation is a requirement for vaccines aimed at the wild
boar population). That being said, LAVs pose a slight
risk, as in rare cases attenuated strains may regain
pathogenicity, causing the spread of disease, and
they have the potential to cause post-vaccination reac-
tions and side effects. Three main strategies have been
employed in the generation of ASF LAVs, attenuation
by cell passage, screening for naturally attenuated
strains, and deletion of virulence-associated genes.
To overcome some of the safety issues presented by
LAVs, namely residual virulence, attempts have also
been made at further deletion of virulence-associated
genes in naturally attenuated strains, or adaptation

Figure 2. Different approaches for the development of vaccine candidates against ASFV. Three main strategies have been
employed in the development of ASFV vaccine candidates: whole inactivated ASF virus vaccines; live virus-vectored recombinant,
subunit, and mammalian expression plasmid vaccines; and live attenuated virus vaccines (LAVs), which we have further subca-
tegorized into naturally attenuated or attenuated by cell passage, and gene deleted vaccines. The figure highlights the main
advantages and disadvantages of each approach, as well as existing examples under development. DIVA – Differentiating Infected
from Vaccinated Animals. Created with BioRender.com (accessed on 01 July 2022).
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to heterologous cell lines of gene deleted viruses.
Depending on the immunogenicity of the deleted
genes, these candidates may also be suitable for DIVA.

Attenuation by cell passage has its foundation in
the observations of Manso and Sánchez that continu-
ous passage of the circulating genotype I virulent
ASFV strains in porcine bone marrow and kidney
cells resulted in attenuation. Challenge experiments
showed that pigs immunized with the attenuated
strain were protected against the virulent strain, how-
ever, subsequent field trials were disastrous, with ani-
mals developing chronic ASF. Recent attempts using
this strategy on genotype II strains currently circulat-
ing in Europe include attenuation of the Stavropol 01/
08 strain by passage in the porcine lymphocyte hybrid
cell line A4C2/9k and in the African green monkey
kidney cell line CV-1 [44]. Although the resulting
viruses lost pathogenicity, they failed to protect pigs
against virulent challenge. Similarly, complete attenu-
ation of an ASFV Georgia field isolate was achieved by

passage in Vero cells, but infection with the attenuated
strain did not confer protection [45]. The cell cultured
adapted strain E75CV1, obtained from passage in the
CV-1 cell line, conversely, was protective against the
homologous E75 virus and demonstrated poor cross-
protection against the heterologous BA71 [46].

Complementary to attenuation by cell passage is
the screening of naturally attenuated non-hemadsorb-
ing (non-HAD) strains and/or strains with reduced
virulence which occur naturally during ASF epi-
demics. Examples include the non-HAD genotype I
ASFV strains NH/P68 [18,47] and OURT88/3 [48]
isolated in the Iberian Peninsula from chronically
infected pigs and soft ticks, respectively, and which
may have derived from the Manso cell passaged vac-
cine virus [49]; and the genotype II strain Lv17/WB/
Rie1 isolated from wild boar in Latvia [17,50]. Pigs
immunized with these strains were protected against
challenge with homologous virulent strains [16–
18,50], and in some cases, partial cross-protection

Table 1. Summary of the number of outbreaks and animal losses caused by ASF in the different world regions (2016-2022). Data
reported since January 2020 covers only epizootic situation. * Losses (deaths + animals killed and disposed of): this figure refers to
losses in the establishments affected by the outbreaks and it does not include the animals culled in areas around the outbreak for
controlling the disease. Source WHOA/OIE WAHIS.

Outbreaks Cases Losses*
Total OutbreaksDomestic pigs Wild boar Domestic pigs Wild boar Domestic pigs

Africa 277 74 085 105 509 277
Americas 210 8 592 14 972 210
Asia 10 967 2 149 204 344 2 746 7 132 038 13 116
Europe 7 607 33 565 1 553 645 57 185 2 643 923 41 172
Oceania 4 500 397 4
Total 19 065 35 714 1 841 166 59 931 9 896 839 54 779

Table 2. Promising Live Attenuated Vaccines developed in 2015–2022. PBMs porcine blood monocyte/macrophages; BMs pig
bone marrow cells; COS-1 monkey kidney tissue-derived cells; PAMs primary porcine alveolar macrophages; PIPEC Plum Island
porcine epithelial cells, a porcine fetal kidney cell line engineered to express the bovine αVβ6 integrin.

Candidate ASFV strain Virulence
p72

genotype Attenuation strategy Protection
Production
system References

NH/P68 NH/P68 High I Naturally attenuated Homologous and
heterologous strain
(L60, Arm07)

PBMs Gallardo et al., 2012; Leitão
et al., 2001a

OURT88/3 OURT88/3 Low I Naturally attenuated Homologous and
heterologous strain
(OURT88/1, Ug65)

BMs Boinas et al., 2004b; King
et al., 2011; Mulumba-
Mfumu et al., 2016;
Sánchez-Cordón et al.,
2017

Lv17/WB/Rie1 Lv17/WB/Rie1 Low II Naturally attenuated Homologous strain
(Armo7)

PBMs Barasona et al., 2019;
Gallardo et al., 2019

BA71ΔCD2v BA71 Low I Gene deleted (CD2v) Homologous and
heterologous strain
(E75, Georgia 2007)

COS-1 Lopez et al., 2020;
Monteagudo et al., 2017

HLJ/18-7GD HLJ/18 High II Gene deleted (MGF505-1R,
MGF360-12L, MGF360-13L,
MGF360-14L, MGF505-2R,
MGF505-3R, and CD2v)

Homologous strain
(ASFV HLJ/18)

PAMs Chen et al., 2020

ASFV-G-ΔI177L Georgia 2007 High II Gene deleted (I177L) Homologous strain
(Georgia 2007)

PAMs Borca, Ramirez-Medina,
et al., 2020

ASFV-G-ΔI177L/
ΔLVR

ASFV-G-
ΔI177L

High II Gene deleted (I177L) and
cell passage

Homologous strain
(Georgia 2007)

PIPEC Borca, Rai, et al., 2021

SY18ΔI226R ASFV-SY18 High II Gene deleted (I226R) Homologous strain
(ASFV-SY18)

PAMs Zhang et al., 2021

ASFV-G-ΔA137R Georgia 2010 High II Gene deleted (A137R) Homologous strain
(Georgia 2010)

PAMs Gladue et al., 2021

ASFV-G-ΔE184L Georgia 2010 High II Gene deleted (E184L) Homologous strain
(Georgia 2010)

PAMs Ramirez-Medina et al., 2022
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against heterologous viruses was shown [14,47], with
protection levels ranging from 66 to 100%. Though
these naturally attenuated strains have the potential
to be developed as LAVs, concern exists over their
residual virulence, as a substantial proportion of the
vaccinated pigs, at least at certain doses, develop unac-
ceptable post-vaccination reactions.

A third strategy, critical to current ASF LAV
research, is the rational deletion of virulence-associ-
ated genes or genes involved in the evasion of immune
response by homologous recombination or CRISPR/
Cas9 gene editing. This approach is being developed
to improve the safety profile of naturally attenuated
strains and for the attenuation of circulating virulent
strains. Thus far several genes have been targeted:
the hemagglutinin CD2v/EP402R, the thymidine
kinase TK/K169R, the NF-κβ and NFAT inhibitor
A238L, the apoptosis inhibitors A179L and A224L,
the protein phosphatase-1 activator NL/DP71L, the
genes involved in inhibiting the induction of Type I
interferons such as MGFs 360 and 505 and the non-
homologous I329L, K205R, DP148R and A276R, and
genes implicated in the virulence of different ASFV
virulent strains but whose mechanism of action is
unclear, including 9GL/B119L, UK/DP96R, I177L,
I226R, A137R, and E184L [8,51–53]. However,
rational deletion does not always produce the
intended result. For example, recent studies showed
that deletion of the CD2v/EP402R gene (also known
as 8DR) from the genotype I BA71 isolate attenuated
the virus and that the resulting BA71ΔCD2 strain con-
ferred protection against challenge with homologous
and heterologous virulent viruses [54,55]. A similar
deletion from the genotype II Georgia2010 isolate,
ASFV-G-Δ8DR, however, did not significantly alter
the virulence of the virus and produced clinical disease
indistinguishable from that induced by the virulent
parental strain [56]. Deletion of other specific viru-
lence genes, such as TK/K169R [57,58], and NL/
DP71L [59] has yielded similarly inconsistent out-
comes, resulting in different phenotypes depending
on the virus strain used. Depletion of specific virulence
factors from naturally attenuated LAVs may likewise
decrease their ability to protect against challenge
with the parental virulent virus, as has been shown
for OURT88/3 and NH/P68 [60,61]. These studies
confirm that the results of ASFV genetic modifications
may be unpredictable and that the effect of gene del-
etions on the ability of the virus to elicit immune pro-
tection is many times strain-specific. Also,
concomitant deletion of virulence factors may, on
occasion, yield weak viruses which cannot be grown
in vivo or lack the ability to induce protective
responses. This is the case with the experimental vac-
cine strains ASFV-G-Δ9GL/ΔCD2v [62], ASFV-G-
Δ9GL/ΔMGF [63], and ASFV-GΔ9GL/ΔNL/ΔUK
[64], all of which had significantly reduced protective

potential compared to experimental strains lacking the
individual ORFs. A notable exception is the Geor-
gia2010 double mutant lacking 9GL and UK ASFV-
G-Δ9GL/ΔUK which provided robust protection
during challenge [65].

Another significant success with multiple gene del-
etions is the seven gene deleted attenuated strain HLj/
18-7GD constructed by Chen et al. [66] which, accord-
ing to the authors, was unable to revert to a virulent
phenotype and provided complete long-term immu-
nity (ten weeks) against a lethal ASFV challenge in
pigs; safety of administration in pregnant sows was
verified in this study, however only the absence of
the targeted gene was assessed, hence, the involvement
of off-target mutations cannot be ruled out. Efficacy
against heterologous strains, safety after per os admin-
istration in wild boar, and absence of wild-type virus
in tissues of vaccinated animals at longer times post
challenge (more than one month) are other key factors
that need to be evaluated and may determine this
experimental vaccine’s effectiveness in real-world
scenarios. Perhaps the most promising LAV candidate
to date, however, is the ASFV-G-ΔI177L strain pro-
posed by Borca et al. [67]; it can be administered by
the intramuscular and oronasal route [68], inducing
robust sterile immunity against challenge with the
virulent parental ASFV Georgia isolate, involved in
recent outbreaks, and proved effective in follow up
field trials against the virulent Vietnamese strain
TTKN/ASFV/DN/2019 [69]. Early this year, the Viet-
namese Dabaco Group announced that testing of a
commercial vaccine based on the ASFV-G-ΔI177L
prototype was completed and they hoped to bring it
to market in the second quarter of 2022, however,
similar claims were made by Navetco National Veter-
inary JSC the previous year and failed to materialize
[70]. Development of an ASFV-G-ΔI177L derivative
strain, ASFV-G-ΔI177L/ΔLVR, that replicates
efficiently in a stable porcine epithelial cell line and
maintains the same level of attenuation, immunogenic
characteristics, and protective efficacy in challenge
studies [71], as well as real-time PCR assays to be
used as genetic DIVA tests associated with the use of
ASFV-G-ΔMGF, ASFV-G-Δ9GL/ΔUK, and ASFV-
G-ΔI177L or cell culture adapted ASFV-G-ΔI177L/
ΔLVR live attenuated vaccines in the field [72], are
other recent advancements that make the develop-
ment of a commercial ASF LAV vaccine in the near
future a very likely occurrence. The ASFV-G-Δ9GL,
ASFV-G-ΔMGF, ASFV-G-Δ9GL/ΔUK, ASFV-G-
ΔI177L, and ASFV-G-ΔI177L/ΔLVR experimental
vaccines were engineered and patented by the U.S.
Department of Agriculture’s (USDA) Agricultural
Research Service (ARS).

Also of note are: the already mentioned
BA71ΔCD2, which in addition to conferring solid pro-
tection against homologous and heterologous
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genotype I and II viruses presents the added advantage
of being capable of stably growing in the commercial
COS-1 cell line without needing previous adaptation;
the genotype II naturally attenuated strain Lv17/WB/
Rie1 which was the first to show solid protection in
wild boar and also induces 100% protection in dom-
estic pigs against virulent challenge with minimal
and no clinical signs, respectively [73,74]; the geno-
type I naturally attenuated strain NH/P68 adapted to
a cell line which has demonstrated a significant
reduction of side effects and 100% protection against
genotype II virulent virus [73]; and at earlier stages
of development, but also showing effective immune
responses in pigs, and providing complete protection
against challenge with the parental strain, ASFV-
SY18-ΔCD2v/ΔUK [75], SY18ΔI226R [76], ASFV-G-
ΔA137R [77], and ASFV-G-ΔE184L [52], the first
ASFV gene product experimentally shown to be a
functional DIVA antigenic marker.

Discussion

Veterinary vaccines are recognized as a cost-effective
way to control infectious diseases, enhance the
efficiency of food production, and prevent or reduce
the transmission of zoonotic and foodborne infections
to people. Efforts to design an effective vaccine against
ASF, however, have been encumbered by several
factors.

Strain diversity is a difficulty involved in the devel-
opment of a vaccine against ASF. As already discussed,
cross-protection is a multifactorial phenomenon that
depends on numerous variables. Most experimental
ASF vaccines target genotypes circulating in Europe
and Asia with little attention paid to the 24 genotypes
endemic in Africa, though, and they are unlikely to
cross-protect against these more phylogenetically dis-
tant strains. Genetic variability amongst different
breeds of pigs is another factor at play, reflected by
the different patterns of pathogenesis and clinical out-
comes observed across different regions of the world.
The high level of genetic mutations that drive strain
diversity in ASFV, coupled with the characterization
of recombinant ASFV variants among Italian and
South African isolates, and the identification of the
MGF variable regions and other recombination hot-
spots, add to a growing body of evidence of the high
genome plasticity of ASFV; detection of genotype II
variants harbouring multiple natural mutations or del-
etions in recent disease outbreaks in China, the
Dominican Republic andWest Africa provides further
evidence of this genome instability [78]. The ASF
LAVs being developed are all based on modifications
of ASFV genotype II and, to a lesser extent, genotype
I strains, and reasonable concern has emerged over
their use in non-endemic regions because of the
potential for reversion to virulence. A potential

already demonstrated by a six gene deleted exper-
imental vaccine strain HLJ/18-6GD in the study by
Chen et al. [66] that became more virulent during
replication in pigs. Furthermore, there is a significant
danger that because of the heavy socio-economic
impact of ASF, stakeholders will be tempted to use
apparently promising vaccine candidates before their
effectiveness has been thoroughly evaluated. This
may, in fact, already be happening. Over the past
year, reports of genotype II gene deleted strains and
genotype I strains highly similar to naturally attenu-
ated European strains causing chronic disease in Chi-
nese farms raised concerns about circulating
unlicensed vaccines [79]. Although the number of
know infections is low, if these hard-to-diagnose,
low virulent strains were to spread widely, it could
have severe consequences. Not the least of which is
the potential for recombination events between the
unlicensed strains and/or with future licensed vac-
cines, exacerbating concerns over vaccine safety and
reversion to virulence.

Another safety issue is the risk of vaccine virus
shedding which might occur under field conditions,
with a proportion of naïve pigs becoming severely
infected by exposure to large amounts of a live attenu-
ated vaccine. This was recently demonstrated in a
study by Lacasta et al. [46] comparing the course of
in vivo infection caused by the two homologous
ASFV strains E75 and the cell cultured adapted
E75CV1, where two of the pigs inoculated with a
lower dose of E75CV1 succumbed to challenge, an
event which the authors speculated might have
occurred because of direct in contact- transmission
with pigs administered the high infectious-dose.
Guidelines indicate that safety evaluation of LAVs
should include long studies with many animals to
assess the degree and stability of attenuation and
assays be implemented that distinguish attenuated
from both fully virulent and partially virulent strains
to assess reversion. The production process should
also be designed in such a way as to assess the stability
of attenuation and for vaccines based on genetically
modified organisms, an environmental risk assess-
ment including the possibility of shedding of vaccine
organisms following administration should also be
included. This presents an added problem because
the results of experiments with animal models do
not always translate from the model animal to the
pig [29,39] and experiments with pigs require strict
biosafety level 3 (BSL3) biocontainment laboratories,
tend to be extremely expensive, and are also environ-
mentally and ethically difficult, considering the mod-
erate to severe suffering associated with disease
development, and the requirement that all animals
be slaughtered at the end of the experiment, factors
which hinder long-term monitoring of animals post-
challenge [11]. Nevertheless, considering the results
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of studies such as Chen et al. and Lacasta et al.,
increasing biosafety tests for ASFV LAV prototypes
should be mandatory in the future if they are to be
commercialized.

In addition to being able to cross-protect, LAV for-
mulations should also be compatible with wildlife
immunization campaigns. Wild boar are highly sus-
ceptible to ASF and have been the major source of
the spread of the disease in the current epizootic in
Europe. In China, outbreaks in wild boar have also
been reported, although there seems to be no direct
connection with the infection in domestic pigs, as
the causative strain is different from previously
reported strains [80]. Still, given the large wild boar
population, which is estimated to be in the millions,
and its wide distribution, there is a high risk of ende-
micity, which would severely complicate control and
eradication efforts. A specific vaccine for wild boar is
thus a necessary investment. Unfortunately, most
experimental LAVs have been administered by intra-
muscular injection and few studies on oral immuniz-
ation have been carried out. To date, only the
naturally attenuated strain Lv17/WB/Rie1 [17,74]
has been shown to effectively protect wild boar against
virulent challenge. However, only a small group of
animals was used for the study, and evidence of vac-
cine virus shedding from orally vaccinated animals
could mean that wild boar may be persistent carriers
of the virus. A vaccine aimed at the wild boar popu-
lation must be administered orally, thus a suitable
delivery vehicle in the form of bait is needed, and it
must also be sufficiently stable in the external environ-
ment to maintain potency when exposed to extreme
environmental factors [51]. Following laboratory
experiments, controlled field trials emulating free-ran-
ging conditions should be performed before vacci-
nation of natural populations is attempted.

Availability of an established, licensed porcine
macrophage cell line and optimization of culture con-
ditions for vaccine scale-up is another key constraint
for ASFV vaccine development. With few exceptions
[55,71], the reported LAV vaccine candidates rely on
primary porcine macrophage and monocyte culture
systems, and large-scale vaccine production using pri-
mary cells from animals is neither ethically acceptable
nor feasible from a production perspective. Primary
cells are laborious and costly to obtain and significant
batch-to-batch variation occurs [11]. Further, there is
evidence of genetic recombination between attenuated
vaccine strains grown together in porcine alveolar
macrophages (PAM)[81], which poses a risk of such
events also occurring in vivo if or when different
ASFV PAM vaccines start circulating. Although
attempts have been made at the adaptation of some
ASFV isolates to stable primate cell lines, such as
VERO and CV-1, this process has generally resulted
in genomic and phenotypic changes in the virus,

sometimes negating protection [45]. Others have
attempted to characterize porcine cell lines for suscep-
tibility to ASFV infection and virus production
capacity, but efficient production seems to be strain-
dependent. Of note is the growth factor-dependent
ZMAC-4 porcine macrophage cell line developed by
Portugal et al. [82] which is susceptible to infection
with eight different genotype I, II and VIII field iso-
lates and supports high levels of replication of
OURT88/3 without reducing its protective ability. In
addition to a stable cell line, vaccine virus scale-up
also requires high biocontainment for the production
of the attenuated virus, ensuring vaccines are pro-
duced under high-quality standards and following
the policy of the corresponding regulatory agencies.

It should be noted that even if all these challenges are
surpassed, a vaccine against ASFwould still be only one
tool to control the disease. Since reporting of ASF out-
breaks in disease-free regions results in trade restric-
tions and confirmation of freedom from disease is
required to regain permission to export, a critical factor
in the decision to vaccinate would be the disease status
of the region andwhether a diagnostic test was available
to confirm freedom from disease. Thus, a DIVA strat-
egy is essential. Two DIVA strategies for ASF LAVs
have been discussed in the recent literature, one a mul-
tiplex real-time PCR targeting both the p72 gene of the
wild-type ASFV strain and the deleted gene(s) of the
LAV, the other the detection of antibodies induced by
the deleted gene-encoded protein by enzyme-linked
immunosorbent assay (ELISA) [8].

Conclusion

Recent promising results with recombinant LAVs
provide hope for a safe and effective vaccine against
ASF. Coupled with specific, high-throughput DIVA
diagnostic technologies and integrated into an ASF
control and prevention policy based on a sound
understanding of ASF epidemiology within the
local socio-economic context, it may provide the
basis for preventing, controlling, and eradicating
ASF. It will be up to the scientific community, inter-
national agencies, governments, and industry to
decide under which epidemiological scenarios they
should be implemented considering the benefits pro-
vided by and disadvantages associated with the new
vaccines as well as the different sensitivity for the
ASF problem around the globe.
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