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Abstract

Background

Alcohol use disorder (AUD) is a chronic disease with a higher recurrence rate than that of

other mental illnesses. Moreover, it requires continuous outpatient treatment for the patient

to maintain abstinence. However, with a low probability of these patients to continue outpa-

tient treatment, predicting and managing patients who might discontinue treatment

becomes necessary. Accordingly, we developed a machine learning (ML) algorithm to pre-

dict which the risk of patients dropping out of outpatient treatment schemes.

Methods

A total of 839 patients were selected out of 2,206 patients admitted for AUD in three hospi-

tals under the Catholic Central Medical Center in Korea. We implemented six ML models—

logistic regression, support vector machine, k-nearest neighbor, random forest, neural net-

work, and AdaBoost—and compared the prediction performances thereof.

Results

Among the six models, AdaBoost was selected as the final model for recommended use

owing to its area under the receiver operating characteristic curve (AUROC) of 0.72. The

four variables affecting the prediction based on feature importance were the length of hospi-

talization, age, residential area, and diabetes.

Conclusion

An ML algorithm was developed herein to predict the risk of patients with AUD in Korea dis-

continuing outpatient treatment. By testing and validating various machine learning models,

we determined the best performing model, AdaBoost, as the final model for recommended

use. Using this model, clinicians can manage patients with high risks of discontinuing treat-

ment and establish patient-specific treatment strategies. Therefore, our model can
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potentially enable patients with AUD to successfully complete their treatments by identifying

them before they can drop out.

Introduction

According to a 2016 Korean epidemiological survey on mental illness, the lifetime prevalence

of alcohol use disorders (AUDs), including alcohol dependence and abuse, was 12.2% (18.1%

for men and 6.4% for women), which is the highest among mental disorders [1]. AUDs result

in significant economic losses, various social problems such as alcohol-related crimes and acci-

dents, and physical diseases such as alcohol-induced physical complications and alcohol-

related dementia [2–4].

AUD is a disease with a higher recurrence rate than that of other mental illnesses [5–7]. To

prevent recurrence, the disorder must be managed over a long time without stopping the treat-

ment at all [8, 9]. Moreover, steady treatment can positively influence the treatment outcome,

such as prevention of recurrence [10–13]. In other words, continuous follow-up from the

patient is an important indicator of prognosis [14].

However, the rate of outpatient treatment duration in patients with AUD is significantly

low. According to a domestic study, 91.7% of patients stopped follow-up within six months of

discharge [14]. In other countries, 52–75% of patients receiving outpatient treatment for alco-

hol abuse and dependence discontinued the treatment upon the fourth installment [15–17].

Therefore, predicting and managing patients with AUDs likely to drop out of follow-up is of

paramount importance.

With the aim of increasing the retention rate of treatments in patients with AUDs, factors

affecting the continuous maintenance of outpatient care have been studied. It was found that

age, sex, physical and mental comorbidities, hospitalization, family history, type of drugs, mar-

ital status, drinking volume, and drinking period were factors that affected continuous outpa-

tient visits [18–20]. However, these studies were mostly prospective, and retrospective studies

focused only on factor analysis, using traditional methodologies such as logistic regression

[14].

In recent psychiatric research, machine learning (ML) models have been used to predict

psychiatric disorders with high accuracy, which is useful for developing clinical decision sup-

port systems and identifying influential variables [21–24]. In the United States, a study pre-

dicted success in treatment of patients with substance use disorders. However, this study was

not very meaningful as it compared the performance of various ML models rather than identi-

fying factors [25]. In this regard, a study was conducted to predict the discontinuation of inpa-

tient treatment for opioid abuse patients using the Treatment Episode Data Set—Discharges

claim data from Substance Abuse and Mental Health Services Administration in the United

States [26]. However, in psychiatry, success criteria for inpatient and outpatient treatment are

defined differently, depending on the duration of treatment [25]. In other words, predicting

treatment discontinuation in outpatients with AUD is challenging.

Currently, no studies that predict treatment dropout rates in outpatients with AUDs in

Korea have been published. Therefore, this study aimed to predict the discontinuation of out-

patient treatment in patients with AUD via ML. The obtained model can aid personalized

patient management so that patients with AUDs can maintain treatment steadily. Ultimately,

the model could prevent recurrence and increase the success rate of treatments for such

patients.
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Materials and methods

Experimental data

This was a multicenter retrospective study of patients visiting Seoul St. Mary’s Hospital,

Uijeongbu St. Mary’s Hospital, and Bucheon St. Mary’s Hospital in Korea. The study consid-

ered data from 2,206 patients, hospitalized between January 2006 and March 2020, for mental

and behavioral disorders due to alcohol use (F10, ICD-10). The study protocol was approved

by the institutional review board of the Catholic University of Korea (IRB No. XC20WI-

DI0079K). Data were collected through the Clinical Data Warehouse (CDW), which incorpo-

rates eight affiliated hospitals under the Catholic Medical Center (CMC) in Korea. The CDW

is a database that has completely anonymized approximately 15 million electronic medical rec-

ords, and can extract data based on research characteristics. Thus, this study proceeded with

consent exemption. The selection of the participants follows the process shown in Fig 1.

For this study, patients with AUD were defined as those with a hospitalization period of

more than two weeks. Thus, the study focused on patients requiring continuous outpatient

treatment. If more than two hospitalizations had occurred for more than two weeks, the first

hospitalization was defined as the date of hospitalization. Follow-up success in patients with

AUD was defined as outpatient visits at least once a month, for six months after discharge

Fig 1. Flow chart of inclusion of subjects.

https://doi.org/10.1371/journal.pone.0255626.g001
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[14]. Therefore, patients with discharge dates before October 31, 2019 were excluded. Patients

who died within six months of discharge were excluded, and only those who had a history of

hospital visits before hospitalization were included to determine whether they had comorbidi-

ties. Consequently, the final dataset comprised 839 patients.

Variable selection

In this study, we selected 11 variables based on prior research [16–18] and consultation with

clinicians. Furthermore, we computed the variance inflation factor and constructed the vari-

ables without multicollinearity between them. The final variables determined were age, sex,

length of hospitalization, address, medical department, comorbidities diagnosed within a year

before hospitalization (diabetes, liver disease, depressive disorder, and anxiety disorder), out-

patient treatment for AUD before hospitalization, and prescription of naltrexone.

Statistical analysis

The data set of 839 patients was divided into ‘follow-up’ and ‘follow-up loss’ groups, depending

on the duration of outpatient treatment and the number of outpatient visits. The follow-up

group consists of patients who visited outpatient care for more than six months and more than

once a month. In all other cases, it was classified as a follow-up loss group. As a result, the fol-

low-up group and follow-up loss group consisted of 126 (15%) and 713 (85%) patients respec-

tively. We performed chi-square tests for 11 categorical variables to determine the differences

between the groups(p-value < 0.05, chisq.test in R). To evaluate the model, we split the data

into 2 datasets: 80% for training and 20% for testing [27]. The collected data had a class imbal-

ance problem of 85:15. The data imbalance problem was solved before training the model.

When the ML model was applied to a highly imbalanced dataset, most learners exhibited a

bias towards the majority classes, while ignoring minority classes [28]. Therefore, we applied

oversampling to the training set to balance the classes [29]. Subsequently, we applied the ML

model using 11 predictors from the training set. The ML models used were logistic regression

[30], support vector machine [31], k- nearest neighbor (KNN) [32], random forest [33], neural

network [34], and AdaBoost decision tree [35]. The evaluation of the models considered accu-

racy, sensitivity, specificity, and area under the receiver operating characteristic curve

(AUROC). The development of a machine learning model follows the process shown in Fig 2.

The ML analysis was implemented in Python (version 3.8), and the analysis package Scikit-

learn was used [36]. The ML algorithms used in the analysis are described below.

Logistic regression. Logistic regression is a model of association between a dependent

variable and independent variables when the dependent variable is binary [37]. Logistic regres-

sion coefficients can be easily interpreted as indicators of variable importance [38]. Therefore,

it is a widely used model in healthcare. Furthermore, logistic regression can improve perfor-

mance by considering regularization (L1, L2), to prevent overfitting. However, logistic regres-

sion has limitations in terms of solving nonlinear problems because linearity between

dependent and independent variables must be assumed. For this study, the LogisticRegression

algorithm in Scikit-Learn is used to model the dataset and l2 regularization specified.

Support vector machine. SVM is available for both classification and regression analysis,

and is a supervised learning model for pattern recognition and data analysis in ML. SVM is a

method of computing hyperplanes that optimally separate data belonging to two classes [39].

In addition to linear classification, SVM also enables nonlinear classification using kernel

tricks. However, for large-scale data, the training time is long and it is difficult to understand

the individual effects in the final model. This study used the linearSVC in Scikit-Learn.
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Fig 2. Block diagram of the process of the research analysis.

https://doi.org/10.1371/journal.pone.0255626.g002
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K Nearest Neighbor. KNN is an algorithm that predicts output variables by referring to

the nearest k neighboring points to a particular point. Both classification and regression mod-

els are possible. KNN can easily reflect newly accumulated data because it goes through a rea-

soning process without a learning process. However, the more the data and the larger the

dimension, the more the increase in time and cost increase. In this work, we used the KNeigh-

borsClassifier in Scikit-Learn with five neighbors using Euclidian distances. The Euclidean dis-

tance formula is shown below.

DðX;YÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðxi � yiÞ

2

q

where X ¼ ðx1; x2; � � � ; xnÞ and Y ¼ ðy1; y2; � � � ; ynÞ:

Random forest. Random forest is an ensemble method for learning multiple decision

trees. It uses randomization techniques such as bagging to reduce the variance of performance.

In addition, it solves the problem of overfitting, generating good prediction results. However,

a large number of trees are required for accurate prediction, which can make the algorithm

very slow and inefficient. Also, it is impossible to explain the associations between variables

[40]. For this study, RandomForestClassifier in scikit-learn is used and gini impurity to mea-

sure the quality of a split.

Neural network. Neural networks are methods for predicting the values of target variables

after learning, using numerous interconnected nodes within each layer consisting of input lay-

ers, hidden layers, and output layers. Recently, it has been a popular model in various fields

due to its good predictive performance. Neural networks are prone to problems such as over-

fitting and underfitting due to their limited hidden layers and the complexity of learning. Fur-

thermore, the results derived are difficult to explain.

AdaBoost. This is the first practical boosting algorithm studied by Freund and Schapire

in 1997. This method leads to several weak learners and shows high performance because it

creates a new predictor by relatively increasing the weight of poorly classified training samples

based on errors from previous learners. Furthermore, the method has the advantage of being a

tree-based algorithm, from which we can obtain the importance of variables that affect predic-

tion, making it interpretable. This study used AdaBoostClassifier in scikit-learn.

Results

We divided patients with AUDs as those who dropped out of outpatient treatment after dis-

charge and those who received continuous treatment. A basic statistical analysis was con-

ducted to determine which patient characteristics differed between the groups. Sex, address,

medical department, depressive disorder, outpatient treatment for AUD before hospitaliza-

tion, and prescription of naltrexone showed significant differences between the two groups

(Table 1).

According to the results of the follow-up loss group, 82.7% of men and 74.2% of patients

were found to not have depression. In addition, 87.8% of patients were not prescribed naltrex-

one and 63.3% of them were in the Gyeonggi Province. Lastly, 54.4% of patients opted for out-

patient treatment for alcohol use disorder before hospitalization.

Table 2 shows the performance results of the machine-learning models analyzed using the

11 predictors. To compare the performance of the six models, we obtained the accuracy, speci-

ficity, sensitivity, and AUROC values. In this study, we selected the final model based on the

AUROC value, considering both sensitivity and specificity, owing to the high class imbalance

present in the data. Moreover, a grid search was performed with five-fold cross-validation to

find the optimal hyperparameters of the ML models.
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Fig 3 shows the receiver operating characteristic (ROC) curves for the six models. The

lower area of the curve drawn with each point is the AUROC value. The results show that the

larger the area, greater is the AUROC value, and the higher is the performance. The results of

the ROC curves show that AdaBoost has the highest AUROC of 0.72.

Table 1. Patient characteristics.

Follow-up Follow-up loss (n = 713) P-value

(n = 126)

Length of hospitalization 0.406

Under 28d 437 (61.3%) 77 (61.1%)

29-56d 136 (19.1%) 25 (19.8%)

57-70d 110 (15.4%) 15 (11.9%)

Over 70d 30 (4.2%) 9 (7.1%)

Sex 0.008�

Male 91 (72.2%) 590 (82.7%)

Female 35 (27.8%) 123 (17.3%)

Age 0.058

Under 29 9 (7.1%) 22 (3.1%)

30–39 22 (17.5%) 96 (13.5%)

40–49 29 (23.0%) 201 (28.2%)

50–59 30 (23.8%) 216 (30.3%)

60+ 36 (28.6%) 178 (25.0%)

Address 0.04�

Seoul 37 (29.4%) 144 (20.2%)

Gyeonggi 75 (59.5%) 451 (63.3%)

Other 14 (11.1%) 118 (16.5%)

Medical department 0.01�

Psychiatry 111 (88.1%) 546 (76.6%)

Gastroenterology 9 (7.1%) 104 (14.6%)

Other 6 (4.8%) 63 (8.8%)

Outpatient treatment for alcohol use disorder before hospitalization 0.000�

No 35 (27.8%) 325 (45.6%)

Yes 91 (72.2%) 388 (54.4%)

Diabetes 0.087

No 109 (86.5%) 654 (91.7%)

Yes 17 (13.5%) 59 (8.3%)

Liver disease 0.224

No 107 (84.9%) 569 (79.8%)

Yes 19 (15.1%) 144 (20.2%)

Depressive disorder 0.006�

No 78 (61.9%) 529 (74.2%)

Yes 48 (38.1%) 184 (25.8%)

Anxiety disorder 0.053

No 104 (82.5%) 635 (89.1%)

Yes 22 (17.5%) 78 (10.9%)

Naltrexone 0.000�

No 93 (73.8%) 626 (87.8%)

Yes 33 (26.2%) 87 (12.2%)

� p<0.05

https://doi.org/10.1371/journal.pone.0255626.t001
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Table 3 shows the comparison of sampling methods to address data imbalance. First, we

compared oversampling and undersampling. Upon comparing AdaBoost performance with

random oversampling and random undersampling, the accuracy with of oversampling was

higher by 0.065. Therefore, oversampling was considered as the preferred method. However,

there is a possibility of overfitting because random oversampling is a method of randomly rep-

licating data from the minority class. Next, we performed a comparison with other oversam-

pling methods. The Synthetic Minority Oversampling Technique (SMOTE) method does not

simply replicates minority data but uses the KNN algorithm to generate synthetic data. How-

ever, SMOTE does not take into consideration neighboring examples can be from other clas-

ses. This can increase the overlapping of classes and can introduce additional noise. After

application of the SMOTE, performance was low. In other words, random oversampling

showed the best results for our data.

Fig 4 shows the feature importance results obtained using the Gini index [41] in the Ada-

Boost decision tree. The top four variables that affect patients with AUDs dropping out of

treatment are: length of hospitalization, age, region and diabetes.

Table 2. The performance of machine learning algorithms.

Model AUROC Accuracy Sensitivity Specificity

Logistic Regression 0.6914 0.6130 0.7058 0.6026

SVM 0.6797 0.7023 0.6470 0.7086

KNN 0.6166 0.6726 0.5294 0.6887

Random Forest 0.6365 0.7380 0.4705 0.7682

Neural Network 0.6891 0.7440 0.5294 0.7682

AdaBoost 0.7241 0.6428 0.7647 0.6291

https://doi.org/10.1371/journal.pone.0255626.t002

Fig 3. ROC curves of six different machine learning models.

https://doi.org/10.1371/journal.pone.0255626.g003
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According to Fig 5, 61% of all patients were hospitalized within a month. In particular, the

proportion of patients who stopped outpatient treatment early was relatively higher than those

who did not when the length of hospitalization was 14–25 days.

Discussion

We developed an algorithm to predict the patients who dropped out of outpatient treatment

after discharge from AUD in Korea. This study is relevant as it is the first to use ML. Among

the six models, the AdaBoost decision tree had the highest AUROC.

The following are the top four variables affecting discontinuation of outpatient treatment,

derived from AdaBoost.

First, the length of hospitalization for AUDs can have an impact on predicting whether out-

patient treatment is discontinued. Therefore, special care is needed that patients receive con-

tinuous treatment in consideration of the their length of hospitalization. According to the

analysis, most of the patients who stopped treatment were hospitalized within 25 days. Based

on this information, special care is needed to patients within 25 days of hospitalization. Sec-

ond, the age at the time of hospitalization for AUD was related to whether treatment was dis-

continued after discharge. This result was consistent with existing studies that showed

increased motivation for continuous treatment with age [42]. Management measures will be

needed to increase the willingness of patients in their 40-50s to continue treatment.

Third, the residential area acted as a variable affecting the discontinuation of outpatient

treatment. Prior studies also indicate that the higher the accessibility to residential areas and

hospitals, the higher the possibility of continuous treatment [43]. As residents outside Seoul

Table 3. Comparison of imbalanced data set sampling methods.

Method AUROC Accuracy Sensitivity Specificity

Random Undersampling 0.6505 0.5773 0.7058 0.5629

Random Oversampling 0.7241 0.6428 0.7647 0.6291

SMOTE 0.6427 0.5952 0.5294 0.6026

https://doi.org/10.1371/journal.pone.0255626.t003

Fig 4. Feature importance of AdaBoost decision tree.

https://doi.org/10.1371/journal.pone.0255626.g004

PLOS ONE Machine learning prediction of dropping out of outpatients with alcohol use disorders

PLOS ONE | https://doi.org/10.1371/journal.pone.0255626 August 2, 2021 9 / 13

https://doi.org/10.1371/journal.pone.0255626.t003
https://doi.org/10.1371/journal.pone.0255626.g004
https://doi.org/10.1371/journal.pone.0255626


and Gyeonggi Province have limited access to hospitals, a system to monitor them in connec-

tion with primary institutions will be needed.

Fourth, the presence of diabetes affects the compliance of outpatient treatment. According

to the data, the proportion of patients with diabetes in the follow-up group was higher than

that in the follow-up loss group. Excessive alcohol consumption by diabetic patients can

worsen blood sugar control, which can be fatal to diabetes treatment and, if severe, can lead to

death [44]. Diabetes is a chronic disease; therefore, continuous management is needed. How-

ever, drinking and diabetes self-management performance are negatively correlated [45].

Patients with diabetes feel the need for alcohol treatment in terms of diabetes management.

Moreover, it is estimated that they are more willing and demanding of outpatient treatment.

Therefore, continuous care should be maintained in patients without diabetes than in patients

with diabetes.

This study however has several limitations. First, there is a problem with inaccuracy regard-

ing the information on patients’ comorbidities. Due to the nature of the retrospective study,

the patient’s disease can be identified by the diagnostic code patients received at the hospital

where they received treatment. Therefore, it may be challenging to identify all undiagnosed

comorbidities in hospitals. However, this study addressed the limitations by using medical rec-

ords in the hospital from one year before hospitalization.

Second, the data for the study did not include socioeconomic factors and variables related

to addiction treatment. Socioeconomic factors such as the patient’s religion, marital status,

and occupation, as well as the degree of alcoholism and treatment process, are known to

affect the continuous outpatient treatment of patients with AUD [46–48]. However, the CDW

that collected the data was then not collecting this information or was under construction.

Future studies on predictive models that consider various factors will further reflect clinical

reality.

Fig 5. Density plot of length of hospitalization.

https://doi.org/10.1371/journal.pone.0255626.g005
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This is the first study in Korea to develop an algorithm that predicts whether patients with

AUD will drop out of treatment using ML methods. The final selected AdaBoost algorithm

showed higher accuracy than that of traditional models, such as regression analysis. The algo-

rithm could identify key variables affecting treatment discontinuation. This model can be used

to develop a clinical decision support system. In other words, this study allows clinicians to

assist patients with AUDs in receiving continuous treatment. Moreover, this ML model pre-

dicts discontinuation of outpatient treatment in patients with AUD and identifies its factors,

but also has the potential to be applicable to other substances.

Finally, our data for analysis included only structured data, and did not include unstruc-

tured data elements such as clinical notes. In future studies, including both unstructured and

structured data may further improve prediction accuracy.
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