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Current histopathological diagnosis involves human expert interpretation of stained

images for diagnosis. This process is prone to inter-observer variability, often leading

to low concordance rates amongst pathologists across many types of tissues. Further,

since structural features are mostly just defined for epithelial alterations during tumor

progression, the use of associated stromal changes is limited. Here we sought to examine

whether digital analysis of commonly used hematoxylin and eosin-stained images could

provide precise and quantitative metrics of disease from both epithelial and stromal

cells. We developed a convolutional neural network approach to identify epithelial breast

cells from their microenvironment. Second, we analyzed the microenvironment to further

observe different constituent cells using unsupervised clustering. Finally, we categorized

breast cancer by the combined effects of stromal and epithelial inertia. Together, the

work provides insight and evidence of cancer association for interpretable features from

deep learning methods that provide new opportunities for comprehensive analysis of

standard pathology images.
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INTRODUCTION

The current clinical pipeline for cancer diagnosis involves human expert evaluation of large sections
of tissue stained with dyes or a variety of specialized molecular markers (Kiernan, 1999). Increasing
cancer incidence rates put an increased burden on pathologists worldwide (Williams et al., 2017),
as limited resources and limited growth of trained medical personnel (Robboy et al., 2015) are
subjected to greater strains. In addition to the emerging needs for better diagnoses, challenges lie
in accurate diagnoses using current methods as well (Robbins et al., 1995; Bahreini et al., 2015;
Elmore et al., 2015; Stålhammar et al., 2016). Morphometric features form the bases of decisions
today; however, difficulty in recognition of subtle morphologic changes and the process of assigning
a discrete grade to a continuum of disease often makes the diagnosis prone to under or over-
diagnosis. With the advent of whole slide imaging (Pantanowitz et al., 2011; Ghaznavi et al.,
2013), digitized versions of stained slides are available and advanced computational analysis can be
readily applied (Gurcan et al., 2009). Digital screening of images, even for simple classifications like
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“cancer” vs. “no cancer,” can help reduce the pathologist’s
workload (Veta et al., 2014) by triaging and focusing on specific
areas as well as alerting them to borderline cases (Dong et al.,
2014). Deep convolutional neural networks (CNN) are especially
rising in popularity as the method of choice for image processing
in medicine, due to their inherent ability to automatically extract
features, ranging from those very general to those very specific
to the problem under consideration (Ertosun and Rubin, 2015;
Litjens et al., 2016; Bychkov et al., 2018; Coudray et al., 2018).
Histopathology is an area where the CNN architectures can play
an important role due to the intricacy of the decisions and
the abundance of data resulting from routine patient screening,
digital archiving of data and advances in imaging (Litjens
et al., 2016). Depending on the quality of the histopathological
images, a CNN architecture offers great flexibility and enables
a variety of choices. For example, methods have been proposed
to work directly with the available resolution if this is low
(Postavaru et al., 2017) or on patches from high resolution
images with the multiple decisions being further integrated
by different techniques (Komura and Ishikawa, 2018). From
hand-crafted architectures (Mishra et al., 2018) to pre-trained
networks (Araújo et al., 2017) or residual models (Huang and
Chung, 2018), CNNs have gained importance in the last few
years in their use for tissue segmentation. One area of active
application is in diagnosing and understanding breast cancer
(Doyle et al., 2008; Abdel-Zaher and Eldeib, 2016; Ehteshami
Bejnordi et al., 2017, 2018; Guo et al., 2019; Harvey et al., 2019;
Xie et al., 2019). While progress has been made in mimicking
traditional processes involving epithelial transformations (Hu
et al., 2005; Finak et al., 2008; Beck et al., 2011; Conklin and
Keely, 2012; Mao et al., 2013), another avenue to improved
diagnoses is the use of the tumor microenvironment (Finak
et al., 2008; Hanahan and Coussens, 2012; Mao et al., 2013;
Giussani et al., 2018; Jia et al., 2018), both from conventional
microenvironment measures and in using emerging imaging
techniques (Kumar et al., 2013). In this study, we analyzed breast
tissue microarrays (TMA) and surgical specimens to identify
different cell signatures in the tumor and its microenvironment
using both unsupervised and supervised strategies. First, a deep
learning model was built to separate the epithelial, stromal, and
other cellular components of the tissue. This allowed for precise
investigation of different cellular distributions and their features
in each of these components. Next, we evaluated the epithelial
and stromal regions as indicators of cancer. Together, we sought
to determine common features that expand the palette of digital
markers to characterize breast cancer.

MATERIALS AND METHODS

Data Collection
A tissue microarray (TMA) consisting of 100 patient samples,
each 1mm in diameter was obtained from US Biomax Inc.
It spans a wide range of disease state i.e. hyperplasia (20
cases), atypical hyperplasia (20), invasive (20 ductal and 20
lobular) and normal (20). This allows for a generalizable
model development as it encapsulates a broad range of tumor
and cell heterogeneity. These are formalin fixed and paraffin

embedded and 5 microns thick samples that are typically used
in clinics. Multiple consecutive sections of this TMA were used
to stain for different molecular markers. In this study, we have
utilized the Hematoxylin and Eosin (H&E) stained images. To
take into account sample preparation and staining variability,
some tissue sections were also obtained from the breast tissue
registry at Washington School of Medicine at St. Louis. All
the stained slides were scanned using the Hamamatsu whole
slide scanner.

Data Preparation for Building the CNN
Model
Images of whole H&E (hematoxylin and eosin) slides, each
corresponding to a different patient, were acquired. The H&E
stains are used to identify the morphological changes associated
with cancer development and its subsequent progression (Fischer
et al., 2008). The data set that is used for training the CNN
architecture does not depend on slides to be manually annotated
entirely, which would necessitate intensive effort from human
experts. However, a pathologist does annotate some sections
from each image that correspond to one of the following classes:
epithelium (normal, malignant, DCIS), dense stroma, reactive
stroma, and the rest in a class that is further referred as others.
Each contour is chosen to be specific to its class and its size
varies from very small regions having an area of <1mm ×

1mm up to large ones with areas of about 1.5mm × 1.5mm.
There are 222 such contours annotated and each one of them is
used to create image tiles that will further comprise the training,
validation and test sets of the CNN model. Squared tiles varying
in size from 48 × 48 pixels up to 256 × 256 pixels are cropped
from each annotated section. The sizes of the tiles are randomly
generated within the mentioned bounds. Random sizes for the
cropped images are considered with the aim of feeding the CNN
model with sections that contain multiple views of the tissue,
from capturing minor details in the smallest squared image to
having an overview in the largest squared tile case. The positions
of the cropped images are randomly generated such that they
lie entirely inside the contour. All the tiles are resized to the
minimal size of 48 × 48 pixels when they finally enter the CNN
model. Next, a filter is applied to remove tiles with minimal
tissue. If the background comprises more than 30% of the tile
area, it is not passed to the model. The amount of tiles that are
cropped from each annotated contour is proportional to the area
of the annotation: the larger the initial area, the more patches
are selected, but no more than 100 tiles per annotation. The
actual amount of tiles is obtained by dividing the area of the
annotated region to the area of a tile with a side of 152 (mean
between the minimum 48 and the maximum 256); the double of
this division result represents the number of tiles selected for the
annotated area. This ensures that a large part of the contour is
cropped with overlapping tiles. Also, distinct patients are used
for training, validation and test sets for robust classification and
unbiased estimates. There are 6 patients for training and 5 others
for validation, the amount of tiles generated for the training set
is 3914 for the epithelial class, 2578 for stroma and 2122 for
others. For the validation set, 1758 patches for epithelium, 1114
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for stroma and 414 for others are used. The test set is represented
by an independent TMA consisting of 100 patients.

Tissue Segmentation Pipeline
The first step of the process for the H&E slides segmentation is
the separation between components such as epithelium, stroma
and other cellular components. A CNN architecture is employed
to achieve this delineation. Next, unsupervised segmentation is
applied to both the epithelial and stromal compartments for
further investigation in relating to disease. A K-means clustering
operation is applied for the pixel values of each component,
with the aim of distinguishing between regions in the image
that belong to different disease states and the type of cellular
moieties present around them. A broad overview of this pipeline
is illustrated in Figure 1.

CNN Model
The goal of the CNN model is to classify large tissue slides into
three classes (epithelium, stroma, and others). Thus, each tile
will be associated to one of the learned classes and a global
matrix of classes is obtained for the entire slide, where each
position in the matrix corresponds to a tile from the image.
To achieve this, we are faced with the following competing
constraints: while the size of the tile should be large enough
to contain meaningful information it should also be as small
as possible to make the overall tissue image mask look less
rasterized and able to delineate borders between classes. To
balance these constraints, we resized the tiles to 48 × 48, a size
that is considered the minimum acceptable threshold in Keras
applications (Chollet, 2017), which are pre-defined deep learning
models with pre-trained weights that are known to be useful for
prediction as well as feature extraction. Three CNN models, i.e.,
ResNet50 (He et al., 2015), VGG19 (Simonyan and Zisserman,
2014) and InceptionResNetV2, were implemented to classify the

data using transfer learning and default parameters. The results
of the three were competitive with image tiles of 197 × 197
pixels as input, with ResNet50 reaching a classification accuracy
of 98.74%, VGG19 97.18% and InceptionResNetV2 94.93%.
However, VGG19 was kept for further parameter tuning since it
conveniently allowed tiles as low as 48 × 48 pixels as input, with
the classification accuracy decreasing to 96.14%. Nevertheless, it
was considered as a good tradeoff (∼1%), since smaller tiles lead
to a more refined classification in the larger images.

The general architecture of the model used is illustrated in
Figure 2. VGG19 has a sequence of several layers that perform
convolution (with the given kernel size and number of filters)
and max-pooling for down sampling (with the specified filter size
and stride). They are followed by a layer that flattens its output
volume into a vector to be used as input for the subsequent
fully connected layers. A dense layer with a Rectified Linear
Unit (ReLU) activation function with 1,024 units continues the
suite, followed by a dropout layer with the aim to improve
the generalization ability, and consequently decrease overfitting.
Finally, a dense layer with a softmax activation function gives
the n-dimensional output of the network, given in the form of
probabilities of belonging to each class, where n is the number of
classes (three in our case). A batch size of 32 images is considered.

The weights of the initial layers are preserved (frozen) from a
pre-trained network as they refer to general feature information
obtained from learning over a large database. We searched for a
number of trainable end layers that is appropriate for learning
H&E images and the optimal number was found to be 12. The
optimizer to be used for weight adjustment, whenminimizing the
difference between the predicted output and the ground truth,
was another parameter for which we searched for an appropriate
solution. The methods of stochastic gradient descent, RMSprop
and Adam with various learning rates and decays were explored.
The best solutions were found for Adam with a learning rate of

FIGURE 1 | Overview of the proposed deep learning and clustering framework.
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FIGURE 2 | Architecture of the employed CNN model. VGG19 is used for transfer learning. Parameter values are given in parenthesis.

1e-07 andwithout a decay. The dropout rate, giving the percent of
units that are blocked, was also tuned and a value of 0.2 was finally
used. The decisions took into account the F1 score (reaching
in the best configuration 94.42%) on the validation set and also
targeted to minimize overfitting.

Based on the information about general tissue architecture,
there are rare cases when scarce tiles belonging to one class
will have a neighborhood of other classes. For instance, it is
uncommon that a few isolated pixels of epithelium will be
surrounded by stroma as epithelial cells are present in ducts
or lobules. Therefore, a substantial number of pixels from one
class would be present next to an appreciable number of pixels
from another, especially in the case of epithelium and stroma.
So, we apply a majority filter to our classified images to remove
classification noise.

Clustering
As suggested previously (Beck et al., 2011), it is important to
first precisely separate the tissue into the epithelial and stromal
compartments for detailed analysis of each of these components
for diagnostic or prognostic information. Therefore, we utilize
epithelial and stromal regions identified by the deep learning
model discussed above. In order to increase the sensitivity of
the model, a K-means approach with two clusters is applied
to the result obtained to further filter out small regions that
were misclassified by the CNN model to only analyze patterns
within one cell type at a time. Each detected component is
subsequently subject to another K-means clustering algorithm
using various number of clusters ranging between 2 and 5. We
were interested to measure if there are significant differences
between various cluster distributions of each class and how that
correlates to distinct disease stages over multiple patients. To
achieve this, inertia of both the epithelial and stromal clusters
is used. It measures the dispersion of points within a cluster
by computing the sum of squared distances for each point
to its assigned cluster centroid. A detailed description and
code for the CNN model and clustering can be found in the
Supplementary Information.

RESULTS

Figure 3 illustrates the performance of the developed deep
learning strategy for identifying epithelial, stromal and other
cellular components (typically consisting of necrosis, red blood

cells, secretions and mucin). VGG19 was the method of choice
because it allowed tiles of the smaller considered size, while
preserving a high classification accuracy. Panel A shows the
classification performance on cropped regions from large surgical
samples. Surgical resections represent a challenge in terms
of size of the sample and data handling, but do provide
unambiguous ground truth for disease that may not be present
in limited sections from needle biopsies. High accuracy of tissue
segmentation is evident by comparison with ground truth H&E
stained images (panel C). We also tested our methods on TMAs,
which provide the opportunity for a large number of highly
diverse samples but recognize that the potential to examine many
components of the tumor and microenvironment in each sample
may be limited. Figures 3B,D illustrate the model performance
on three samples from an independent TMA consisting of 100
patients belonging to different disease states. This array was
obtained from a different source to check for model robustness
for samples processed and prepared in different institutions or
settings. The model performs with similar accuracies on this
external validation set. Each sample shown in Panel B (classified
images) and Panel D (H&E stained images) belongs to a different
patient. The results indicate a good agreement of the histologic
units detected by the algorithm (top row) with the ground truth
(bottom row). In each case, the prediction was generally good
but there were also some small discrepancies as can be seen from
the terminal ductal unit in the TMA sample on the left in 3(B)
and (D).

Next, K-means images for the components identified by the
CNN model were examined. The clustering algorithm is run
for 300 iterations, 10 times with random seeds each time and
the best solution is kept. It is applied to the RGB values of
the masked images based on the CNN results. The clustered
images with 5 clusters were overlaid with grayscale H&E
stained images to illustrate the class distributions along with
a reference to the tissue architecture. Different colors in the
overlaid images represent different clusters that are indicative
of either different cellular types or subtypes within a cell type.
It is evident from zoomed views in Figure 4 (i), (ii), and (iii)
that different signatures within the epithelial (top) and stromal
(middle) regions are identified. It can also be noted [Figure 4
(ii), middle section] that cellular structures like lymphocytes,
fibroblasts and plasma cells that are typically present in the
stroma get highlighted in the stromal clustering as a different
class i.e., a different color. This is important, as sometimes these
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FIGURE 3 | VGG classification on both surgical (training and validation) and tissue microarray (test) samples shows good correspondence with H&E images.

(A) Classified images of cropped images from two different surgical samples. (B) Classified images from three different patients with distinct disease states from the

TMA. (C) H&E stained images from corresponding surgical samples. (D) H&E stained images from the TMA for ground truth comparisons.

FIGURE 4 | K-means clustering results overlaid on H&E stained images (gray scale) for test samples using 5 clusters. (A) Benign case with epithelial clustering (top),

stromal clustering (middle) and H&E stained image (bottom). (i) Corresponding zoomed in views from images in (A). (B) Ductal carcinoma case with epithelial and

stromal clustering along with the stained image. (ii). Zoomed in views from images in (B). (C) Lobular carcinoma case with clustering and ground truth comparison. (iii).

Zoomed regions from images in (C).

components can be confused with epithelial cells and these cells
constitute an important part of the tumor microenvironment.
Our method eliminates the confusion between epithelial and

stromal cells by this two-tiered approach and provides a
means to discover less abundant cells in the microenvironment.
The challenge remains to harness these signatures of different
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components obtained by unsupervised discovery for diagnosis.
While this work focuses on providing a viable digital pathway,
careful curation and labeling of microenvironment components
in many surgical samples will be needed to further refine
this approach.

The unsupervised clusters are indicative of potential changes
in the microenvironment. Here, we sought to explore whether
the clusters have any bearing on diagnoses of disease. Figure 5
illustrates the spread of clusters (inertia) in the epithelial and
stromal compartments for different disease states. Inertia is
the within cluster sum of squares indicative of intra cluster
coherence. For the epithelial distribution in Figure 5A, the
average inertia for the malignant class is the highest and the
normal class is the lowest. It is interesting that the intraductal
proliferations (Ellis, 2010) (hyperplasia and dysplasia) also follow

the same trend with the high risk group (dysplasia) having a
higher mean inertia and the low risk group (hyperplasia) having
a lower inertia. This can help in increasing confidence of the
diagnostic decision especially since the histology criteria can be
subjective and in some cases not clearly defined. Our hypothesis
is that disruption of normal physiologic structure of the tissue
results in a difference in inertia, either by decreased order in
consistent structures (e.g., changes in epithelial morphology)
or imposition of homogeneity on well-differentiated functional
units of tissue (e.g., tissue transitioning from clear functional
units in a well-defined differentiated pattern to becoming poorly
differentiated in space). This hypothesis can be used as a basis
for designing digital features that indicate disease. Though
a single feature is not unambiguous for any given sample,
the trends are useful in adding value to automated methods,

FIGURE 5 | Box plots for the calculated inertia (dispersion of points within a cluster) over all TMA images and for inertia divided by the image area (normalized), both

for epithelium in (A) and stroma in (B). This illustrates the extent of differentiation in the epithelium and stromal compartments for different levels of disease states.

FIGURE 6 | Cancer detection using both the epithelial and stromal spatial distributions. (A) Scatter plot separating patients from different disease states based on

normalized inertia. (B) Receiver Operating Characteristic (ROC) curve of using inertia as a cancer detection tool. The decision boundary shown in the figure is an

illustration of one of the points on the ROC curve. All patients belonging to the fourth quadrant are labeled as normal.
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provide a comforting validation of designing digital markers
using hypotheses of organization and provide potential for
further refinement.

Finally, we sought to use both the epithelial and stromal
inertia together to examine whether they provided diagnostic
value. From the total of 100 cases in our test case, 8 patient
cases either had insufficient epithelial or stromal yield. These
were discarded as the epithelium and stromal inertia couldn’t
be compared. Therefore, we confirmed our hypothesis using an
independent set of 92 patient cases belonging to different disease
states. We compared the normalized inertia of the epithelial
and stromal compartments. By considering a cut-off line for
each of the epithelial and stromal figures of merit, we obtain
two intersecting lines that divide the entire distribution of
inertia into four quadrants. It is evident from Figure 6A that
the normal and hyperplasia cases are mostly in quadrant IV
and malignant cases are distributed in all the other quadrants
with a majority lying in the first quadrant. The dotted lines
can also be used as a threshold to separate cancer from the
normal cases. A variety of 2D thresholds can be used and the
receiver operating characteristic curve in Figure 6B shows the
sensitivity and specificity profile of using inertia as a measure
of detecting malignancy. For estimating the ROC curve, the
malignant cases are labeled as the cancer class and all other
categories i.e., hyperplasia, dysplasia, and normal are combined
together into the non-cancer class. The area under the curve
is a measure of the model performance and the closer it is to
1, the better the model. The high AUC values suggest that a
combinatory epithelial and stromal approach to extract spatial
features (inertia in this case) is a good indicator of disease and
its progression. Though, again, not a perfect discriminator, the
result provides a useful means to utilize the microenvironment
and ensure that the results are consistent with underlying
diagnoses. Most importantly, the work paves the way for further
assessment of complex cellular features in both epithelial cells
as well as different stromal cells. Distribution of these cells
and other spatial measures of the tumor can provide a further
boost in accuracy to the method developed here. An advantage
of the proposed method is that it is simple to understand
and easy to interpret. Unlike a typical deep learning approach
in which images are the input and a decision is the output,
this tiered approach provides an insight to understand and
interpret some of the vast information encoded in tissue on
disease states.

CONCLUSIONS

This paper presents a deep learning scheme for digital tissue
segmentation using stained images which can further be used
to extract sophisticated spatial features for cancer diagnosis
in an automated, fast and accurate manner. Our approach
relied on a tiered understanding of tissue structure as deep
learning methods were applied. First, we segmented tissue into
epithelial and stromal compartments. Second, we examined the

heterogeneity in the stroma using clustering, which resulted in
separation of tissue microenvironment components like immune
cells and cancer associated fibroblasts. Finally, we sought to
use a simple and interpretable characterization of the tissue
in terms of inertia to recognize disease. The work establishes
the concept of multidimensional inertia to be used as an
indicator of disease and its outcome, without needing any
additional resources or disruption to the current workflow.
The analytics tool can be integrated with whole slide scanners
for interactive and real time sample analysis to aid human
experts. This study focused on understanding the power of
simultaneously using the epithelial and stromal signatures to
separate different diseased states. This needs to be further
tested in supervised classification schemes along with other
tissue predictors. With further refinement of this approach,
more spatial signatures and detailed understanding of the tumor
and the microenvironment can lead to increased insight into
digital characterization of breast cancer using conventionally
stained images.
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