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Children are known to disproportionately bear the health impacts of climate change, particularly children
living in impoverished areas. Owing to their developing physiology and immature metabolism, distinct
exposure behaviors, and reliance on adults for care and protection, children are uniquely susceptible
to the adverse effects of our warming planet. Herein, we summarize the known impacts of climate change

on pediatric skin health, including its effects on atopic dermatitis, vector-borne and other infectious dis-
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Introduction the health impacts of climate change, particularly children living in

Our continually warming planet and corresponding changes in
regional climates have created and will continue to create unique
and worsening health risks to the global community. As summa-
rized by the Lancet countdown on health and climate change, if
the world’s current rate of fossil fuel combustion continues una-
bated, children born today will experience adverse health impacts
secondary to climate change across all ages and stages of life
(Watts et al., 2019). Children are known to disproportionately bear
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impoverished areas (Ahdoot et al., 2015). Owing to their develop-
ing physiology, immature metabolism, and distinct exposure
behaviors, children are uniquely susceptible to adverse environ-
mental changes. For example, children are more susceptible to
heat-related illness secondary to immature thermoregulatory
mechanisms and, in neonates, infants, and toddlers, the inability
to independently replace fluid losses (for a comprehensive review
of heat related illness, see Williams’ “Global warming, heat-related
illnesses and the dermatologist” in this issue).

Such physiologic and behavioral risk factors are also com-
pounded by children’s reliance on adults for care and protection,
limiting their agency in making decisions that may protect their
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Fig. 1. Erythematous, scaly patches present within the popliteal fossae in a young
child with atopic dermatitis.

own health (e.g., evacuating in advance of a hurricane, living in an
area with less ambient pollution). As a result, children are at
greater risk of disease secondary to meteorological events, such
as increased heat exposure and flooding, as well as vector-borne
illnesses and natural disasters (Ahdoot et al., 2015). Herein, we
summarize the known impacts of climate change on pediatric skin
disease.

Atopic dermatitis

Atopic dermatitis (AD) is a chronic, pruritic dermatitis charac-
terized by weeping erythema with associated scale of the cheeks
and extensor extremities in infancy, typically transforming with
age into a chronic, dry, and lichenified dermatitis in a flexural dis-
tribution (Fig. 1). The pathophysiology of AD is determined by a
complex interplay of genetic, immunologic, and environmental
factors. The global burden of AD increased in the 20th century,
affecting approximately 5% to 20% of children worldwide, with
variations in prevalence across countries and regions of the world
(Nguyen et al., 2019; Williams et al., 1999).

This variation has been suggested to be secondary to local envi-
ronmental factors that may impact the burden of atopic disease
(Williams et al., 1999). Many studies have investigated which envi-
ronmental exposures contribute to the development or exacerba-
tion of AD, often providing mixed results. This may be because
AD is best regarded as a heterogeneous disorder with varied
molecular endotypes that may translate into distinct clinical sub-
groups with unique risk factors and prognoses (Czarnowicki
et al., 2019; Paternoster et al., 2018). As such, the effects of envi-
ronmental variables, such as meteorological conditions and air pol-
lution, may affect different subsets of patients with AD in distinct
ways (Ahn, 2014).

Air pollutants are airborne gaseous or particulate substances
that adversely affect human health. They can be generated from
natural phenomena, including wildfires and volcano ash, or from
anthropogenic sources, such as motor vehicles and power plants
(Ahn, 2014). Volatile organic compounds, particulate matter
(PMy) of varying diameters (0.1, 2.5, or 10 um), nitrogen oxide
compounds (NOy), and sulfur oxide compounds (SOyx) represent
major classes of air pollution that may negatively affect those with
AD and other allergic diseases, depending on their concentration
and length of exposure (Ahn, 2014). In particular, PM can be coated
with polycyclic aromatic hydrocarbons (PAHs) that are lipophilic
and readily able to penetrate the skin. These particles may subse-
quently induce oxidative stress and activate pathways relevant to
AD (Araviiskaia et al., 2019; Hidaka et al., 2017; Krutmann et al.,

2014). Ozone and other secondary pollutants that occur as a result
of photochemical reactions involving the aforementioned (pri-
mary) pollutants and sunlight may also be relevant to the develop-
ment of AD (Krutmann et al., 2014).

Myriad studies suggest a link between increased air pollution
and increased incidence or severity of AD. A prospective,
population-based study using multivariate survey logistic regres-
sion models found that in the United States, nitrogen dioxide
(NO,), sulfate (SO3), and sulfur dioxide (SO,) were associated with
an increased prevalence of AD, whereas nitrate (NOs), organic car-
bon, and PM, 5 levels were associated with a greater likelihood of
more severe AD (Kathuria and Silverberg, 2016). A retrospective,
time-series study from Shanghai similarly found that SO,, NO,,
and PM; levels positively correlated with outpatient clinic visits
for AD (Li et al., 2016). A retrospective, population-based study in
Minsk, Belarus, also found that higher mean levels of seven out-
door air pollutants, including CO, NO,, formaldehyde, and lead,
were associated with an increased incidence of infantile AD
(Belugina et al., 2018). Additionally, a longitudinal study in Korea
found that elevated levels of volatile organic compounds and
PM;, aggravated symptoms of AD, and NO, exposure was posi-
tively associated with AD in a German study (Kim et al., 2013;
Morgenstern et al., 2008). This latter report also identified an
increased risk of AD in children who lived closer (<50 m) to a main
road, suggesting that traffic-related pollution promotes the devel-
opment of AD (Morgenstern et al., 2008). Intriguingly, individual
studies have also found that prenatal exposure to specific traffic-
related air pollutants may also influence the development of AD
via epigenetic changes or direct effects of maternal exposure on
the neonate’s immune system (Ahn, 2014; Huang et al., 2015; Lu
et al,, 2017). Growing evidence supports the hypothesis that air
pollution adversely influences the incidence and severity of AD;
this is comprehensively reviewed elsewhere (see Roberts’ “Air pol-
lution and skin disorders” in this issue; Ahn, 2014).

Temperature, humidity, ultraviolet exposure, and precipitation
are a subset of meteorological factors that may influence AD. A
prospective, population-based study of the prevalence of AD in
the United States found that lower temperatures, ultraviolet expo-
sure, humidity, increased indoor heating, and increased precipita-
tion were associated with an increased prevalence of AD
(Silverberg et al., 2013). Additionally, in a Korean cohort, daily
increased temperature and relative humidity were found to be
associated with decreased AD symptomatology, whereas increased
rainfall and diurnal temperature range exacerbated symptoms of
AD (Kim et al., 2017). Increased humidity and increased daily tem-
peratures have been found to be protective against exacerbations
of AD in other populations as well, although additional studies
have demonstrated the opposite effect of these on AD prevalence
(Guo et al., 2019; Kathuria and Silverberg, 2016; Li et al., 2016;
Silverberg et al., 2013) Taken together, it appears that climate vari-
ables likely interact with air pollutants to modify AD prevalence or
severity (Belugina et al., 2018; Guo et al., 2019) For instance, AD
prevalence has been shown to be increased in geographic areas
with elevated levels of organic carbon, SO3, SO,, and PM, s in the
meteorological context of greater heat, humidity, and precipitation
(Kathuria and Silverberg, 2016). Similarly, a study from Beijing,
China, showed that increased levels of atmospheric NO,, SO,
PM,s, and PM;, positively correlated with increased outpatient
and emergency department visits for AD; this association was
enhanced at higher temperatures (Guo et al., 2019).

The pathophysiologic mechanism by which air pollution influ-
ences AD is multifactorial and remains incompletely understood.
Compounds such as ozone likely induce skin damage and inflam-
matory dermatoses via oxidative stress and the production of free
radicals on the skin surface (Araviiskaia et al., 2019; Koohgoli et al.,
2017). Two specific molecular signaling pathways have also been



A. Schachtel et al./International Journal of Women’s Dermatology 7 (2021) 85-90 87

proposed as central to the association between airborne pollution
and AD. The pregnane X receptor (PXR) is a transcription factor
that regulates the expression of proteins involved in the detoxifica-
tion and elimination of xenobiotic compounds (foreign chemical
substances—typically manmade—identified in organisms or envi-
ronments where they are not naturally found). PXR is upregulated
in the skin in response to compounds including PAHs; when over-
expressed in mouse models, it induces skin barrier defects (dry,
scaly skin) and increased transepidermal water loss (Elentner
et al.,, 2018). This is due, in part, to skewing of the cutaneous
immune milieu towards a Th2/Th17 phenotype, as well as induc-
tion of the aryl hydrocarbon receptor (Ahr) gene. In support of
the role of PXR signaling in the development of AD in humans,
the transcription of PXR is altered and that of its downstream tar-
gets is increased in lesional skin of patients with AD (Elentner
et al., 2018).

A second pathway that links air pollution to AD involves activa-
tion of AhR by these environmental pollutants, most notably PAHs.
Like PXR, AhR is a transcription factor that upregulates expression
of other proteins involved in detoxification and xenobiotic metabo-
lism (Hidaka et al., 2017; Oetjen et al., 2018). In a transgenic mouse
model, AhR also appears to upregulate a subset of proinflammatory
genes that skew immune responses toward a Th2 phenotype and
are relevant to AD, including Tslp and [I33. Furthermore, AhR over-
expression in this murine model upregulated expression of the
Artn gene; its product, artemin, induces epidermal hyperprolifera-
tion and alloknesis. Mice transgenic for AhR exhibited phenotypic
similarities to AD: increased transepidermal water loss, more fre-
quent scratching behavior, and skin that histologically showed an
inflammatory infiltrate with accompanying hyperkeratosis and
acanthosis (Hidaka et al., 2017). In a nontransgenic mouse model,
chronic application of diesel exhaust particles (including PAHs)
similarly induced the expression of AD-related genes in an AhR-
dependent manner (Hidaka et al., 2017). Importantly, this molecu-
lar signaling pathway appears to be retained in humans; both AhR
activation and artemin expression are increased in lesional skin of
AD (Hidaka et al., 2017). Taken together, these findings provide a
plausible mechanism by which exposure to airborne pollution
increases susceptibility to AD.

Aeroallergens such as pollen may also contribute to the burden
of AD. Pollen levels positively correlate with other atopic diseases,
such as asthma exacerbations (Schmier and Ebi, 2009), and early
evidence suggests that pollen may affect AD as well. Specifically,
a German cohort study found that cutaneous exposure to birch pol-
len directly correlated with worsening subjective patient assess-
ment of AD, higher SCORAD scores, and increased pruritus
(Folster-Holst et al., 2015). Given that annual pollen seasons have
been documented to begin earlier worldwide and elevated temper-
ature and CO, levels are thought to increase pollen production
(Sheffield et al., 2011), pollen exposure may become an increas-
ingly important risk factor for AD exacerbations. Taken together,
these findings suggest that, in a rapidly warming world with con-
comitant environmental changes including wildfires that occur
with greater frequency and severity, increased aeroallergen and
pollen burden, and fossil fuel use that continues unabated, the
health care burden of AD is likely to increase (Watts et al., 2019;
Whitman et al., 2019).

Food scarcity and nutritional deficiencies

Climate change will have dramatic impacts on established agri-
cultural practices and the cultures of many regions of the world.
Although specific effects are impossible to predict, multiple work-
groups have noted that land and water resources are currently
being utilized at unprecedented and unsustainable rates, regard-

less of the looming threat of climate change. A report from the Uni-
ted Nations Intergovernmental Panel on Climate Change (Shukla
et al., 2019) noted that >500 million people live in areas undergo-
ing desertification. Many regions are losing arable soil at rates 10
to 100 times faster than soil is forming. Climate change will add
to this dire situation with unpredictable weather, including storms,
floods, drought, and extremes in temperature, which would dra-
matically affect local agrarian practices and the ability to success-
fully grow food.

Moreover, evidence suggests that higher atmospheric levels of
carbon dioxide reduce the content of protein, minerals (e.g., iron
and zinc), and vitamins (e.g., riboflavin and thiamine) in food crops
grown under these conditions (Smith and Myers, 2018, 2019).
Therefore, the pace of global environmental changes may be faster
than the ability of agricultural systems to adapt, leading to food
shortages and less nourishing food (Dhankher and Foyer, 2018;
Zhang et al., 2018). This disproportionately affect children, who
rely on macro- and micronutrients for proper growth and develop-
ment. In areas struck by food shortages, migration will also
increase, with health impacts as described later. Desperation-
induced migration has already occurred as a result of climate
change: droughts in El Salvador, Guatemala, and Honduras
between 2010 and 2015 were responsible for a five-fold increase
in migrants at the Southern U.S. border during that time
(Flavelle, 2019).

A variety of skin disorders are associated with malnutrition and
food shortages. The two classical syndromes of severe acute mal-
nutrition are marasmus and kwashiorkor; these both have charac-
teristic clinical and dermatologic features (Bhutta et al., 2017).
Presently, they account for at least 10% of all deaths in children
age <5 years worldwide. Marasmus (wasting syndrome) results
from total caloric insufficiency and is typically seen in young chil-
dren and babies who exhibit low weight for height and a reduced
mid-upper arm circumference. These children appear emaciated
and weak with shrunken extremities and buttocks. Redundant skin
folds develop due to the loss of subcutaneous fat, and their heads
often appear large relative to their very thin bodies. In addition
to displaying irritability, marasmatic children are often brady-
cardic, with hypothermia and hypotension. The skin of children
with marasmus is typically thin and dry, and their hair is sparse,
brittle, and easily extracted.

In contrast, kwashiorkor (edematous malnutrition, secondary to
relative protein deficiency in relation to calorie intake) classically
exhibits symmetric peripheral pitting edema that begins in the
most dependent areas and gradually progresses as malnutrition
persists. This edema can be so severe so as to obscure correspond-
ing growth failure (Liu et al., 2001). The abdomen is often protu-
berant due to hepatomegaly from fatty infiltration of the liver
and dilated intestinal loops. The cutaneous changes of kwashiorkor
are characteristic and striking, often evocatively described as “flak-
ing paint” or “crazy pavement” (Tierney et al., 2010). The skin is
thin, dry, and peeling, with areas of hyperkeratosis and hyperpig-
mentation. Individual lesions may weep, and a secondary infection
or yeast overgrowth is also common. Children with kwashiorkor
also have hair that is dry, dull, lighter in color, and easily extracta-
ble (Liu et al., 2001; Tierney et al., 2010). In some patients, periodic
restoration of diet induces a return of hair color, which can lead to
the development of alternating bands of color, termed the “flag
sign,” in the hair. A full discussion of the evaluation and treatment
of severe acute malnutrition is beyond the scope of this article, but
the World Health Organization has published standards for the
assessment and management of acute malnutrition (Ashworth,
2003; United Nations Children’s Fund, 2007).

Alterations in food supply or limitation in the variety of foods
available can lead to deficiencies in individual vitamins or other
nutrients, with specific nutritional deficiencies expected to become
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Table 1

Dermatologic and other clinical findings associated with select nutrient deficiencies.
Vitamin Mucocutaneous signs of deficiency Other clinical signs Comments/references
Zinc Eczematous or psoriasiform patches and plaques in  Secondary infection; yeast overgrowth; (Golden, 1991)

a periorificial, acral, and anogenital distribution, +
bullae; glossitis

Thiamine (B1) Glossitis

Beriberi (wet or dry); neurologic changes;

alopecia; diarrhea

(Lonsdale, 2018)

cardiovascular dysfunction; edema

Riboflavin (B2)  Glossitis; cheilitis; stomatitis; seborrheic
dermatitis-like rash
Photosensitive pigmented dermatitis; “Casal’s

necklace”

Niacin (B3)

Pyridoxine (B6)  Stomatitis; glossitis; cheilosis; seborrheic
dermatitis-like rash
Iron Atrophic glossitis; pruritus; hair loss; koilonychia;

xerosis; pallor

Normochromic normocytic anemia

Diarrhea; dementia; glossitis; neurologic
symptoms

Neurologic symptoms; neuropathy; seizures;
microcytic anemia

Microcytic hypochromic anemia; tachycardia;
fatigue; exercise intolerance; restless leg

(Saedisomeolia and Ashoori, 2018)

Nixtamalization (alkaline treatment) of
corn/sorghum enhances niacin availability
(Kirkland and Meyer-Ficca, 2018)

(DiBaise and Tarleton, 2019)

(Lopez et al., 2016)

syndrome; beeturia

Folate (B9) Pallor; jaundice; oral ulcers

Megaloblastic anemia; fatigue; irritability;
neurocognitive changes

Can develop rapidly (Green and
Datta Mitra, 2017)

more prevalent as a result of climate change (Smith and Myers,
2019).

The cutaneous manifestations of key nutrient deficiencies are
summarized in Table 1 (DiBaise and Tarleton, 2019; Golden,
1991; Green and Datta Mitra, 2017; Kirkland and Meyer-Ficca,
2018; Lonsdale, 2018; Lopez et al., 2016; Saedisomeolia and
Ashoori, 2018).

Climate refugees, infections, and infestations

Climate change has increased the frequency of extreme weather
events, such as droughts, floods, and heat waves. These events con-
tribute to overcrowding in refugee camps and limit access to safe
water, food, and routine medical care. Such unsanitary conditions
have a disproportionate impact on children due to their immature
physiology, different behaviors, and dependence on caregivers,
promoting a variety of skin diseases including infections and infes-
tations (Sheffield and Landrigan, 2011). Those of particular impor-
tance to pediatric health are reviewed herein (see Kwak et al.’s
“Mass migration and climate change” in this issue).

Scabies is an intensely pruritic skin condition characterized by
papules, burrows, and crusted nodules typically present in the
interdigital spaces, waist, wrists, and axillae. Scabies is caused by
the mite Sarcoptes scabiei var. hominis. It is spread by direct
person-to person contact and as such is more prevalent among
children and in resource-poor settings, such as refugee camps after
climate disasters. Scabies was a leading cause of morbidity after
the 2010 floods in Baluchistan, Pakistan, accounting for 19% of
patient visits after the disaster (World Health Organization,
2010). In 2015, the greatest disease burden from scabies world-
wide was seen in East Asia, Southeast Asia, Oceania, and tropical
Latin America, regions of the world among the most at risk for
climate-related disasters (Karimkhani et al., 2017). Although not
a life-threatening condition, complications of untreated or severe
scabies infection include postscabetic itching, impetigo, and sepsis
(Thomas et al., 2020). In resource-poor settings, the complications
of secondarily infected scabies also include acute poststreptococcal
glomerulonephritis and chronic kidney disease (Karimkhani et al.,
2017; Whitehall et al., 2013). Similarly, pediculosis capitis (head
lice infestation) is common after climate-related disasters. Severe
flooding in Paraguay in 2014 displaced approximately 240,000
people into improvised, overcrowded shelters with poor sanita-
tion. Head lice was the most common skin condition diagnosed
by dermatologists after this event, affecting 36% of pediatric
patients (Moreno et al., 2016).

Wet environments after floods and hurricanes have also been
linked to superficial dermatophyte infections. Tinea corporis was
the most common skin infection in patients seen by dermatologists
in Indonesia after the 2004 tsunami, likely due to submersion in
water, hot and humid weather, and a lack of sanitary conditions
(Lee et al., 2006). Mobile medical workers also reported frequent
outbreaks of tinea corporis and capitis in pediatric patients in
Louisiana after Hurricane Katrina in 2005, which has been attribu-
ted in part to overcrowding and limited access to hot water
(Madrid et al., 2008). Skin infections with methicillin-resistant Sta-
phylococcus aureus were also seen after Hurricane Katrina, with
reported cases in 30 pediatric and adult refugees in an evacuee
facility in Dallas, Texas (Centers for Disease Control and
Prevention, 2005).

Climate-related disasters may also cause outbreaks of disease in
children via direct contact with environmental pathogens. Lep-
tospirosis is a zoonotic infection caused by spirochetes of the genus
Leptospira; it is transmitted via contact with soil or water contam-
inated by urine or other bodily fluids from infected mammals (Zaki
and Shanbag, 2010). The eruption of leptospirosis is characterized
by erythematous macules, papules, urticaria, and petechiae, often
accompanied by extracutaneous symptoms that may include
fevers, chills, myalgias, meningitis, uveitis, and multiorgan system
dysfunction (Bandino et al., 2015). In 2005, the northern suburbs of
Mumbai, India, experienced its heaviest rainfall event in 90 years,
which led to severe flooding and a leptospirosis outbreak affecting
27 children admitted to a local hospital (Zaki and Shanbag, 2010).
Risk exposures for these children included playing in flood water,
wading through flood water to go to school, or flood water entering
their homes.

Buruli ulcer is an infection cause by Mycobacterium ulcerans,
transmitted from an unclear aquatic environmental source. Its ear-
liest manifestation is an insect bite-like papule or nodule, which
progresses into a plaque with eventual necrosis and ulceration of
the dermis and subcutaneous adipose tissue. Complications can
include severe scarring and limb contractures. Notably, there is a
close relationship between rainfall patterns and Buruli ulcer, with
increased diagnoses after periods of heavy rainfall (Combe et al.,
2017). Children age 5 to 15 years are most affected in both inci-
dence and severity in endemic countries of West Africa (Yotsu
et al., 2015; see Bandino’s “An expanding abscess after a flooding
disaster” in this issue).

Increasing temperatures have also been associated with an
expanded geographic range of arboviral diseases, including dengue
fever, Chikungunya, and Zika virus (Stanberry et al., 2018). Zika
virus emerged in Latin America and the Caribbean between 2014
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and 2016 during a period of severe drought and unusually high
temperatures (Mufioz et al., 2016). The virus most commonly man-
ifests in the skin as a nonspecific morbilliform eruption. Impor-
tantly, congenital Zika virus infection has been associated with
microcephaly and other birth defects, with significant long-term
developmental impacts on afflicted children (Anderko et al.,
2020; see Coates and Norton’s “The effects of climate change on
infectious diseases with cutaneous manifestations” in this issue).

Natural disasters, children’s health, and psychodermatology

Of those at risk of disaster-related psychologic harm, children
are among the most vulnerable. This stems in part from their
immature and developing physiology, reliance on adult caregivers
for security and protection, and prolonged disruptions to their
community after weather-related catastrophes (Ahdoot et al,
2015). Importantly, the consequences of natural disasters or subse-
quent displacement may expose children to posttraumatic stress
disorder and toxic stress, described as a “strong, frequent, or pro-
longed activation of the body’s stress response systems” without
the protection of stable and supportive relationships (Ahdoot
et al, 2015; Murray, 2018; Scheeringa and Zeanah, 2008;
Shonkoff et al., 2012). Although a complete discussion of childhood
toxic stress and its effects on measures of pediatric and subsequent
adult health is beyond the scope of this paper, a few pertinent
insights about this phenomenon are worth noting. Adverse child-
hood events trigger endocrinologic stress responses that, if pro-
longed, can result in permanent changes in neurologic
development and function. This in turn may promote subsequent
unhealthy behaviors that negatively affect the skin (i.e., tobacco
use, drug abuse, obesity) and directly increase the risk of disease
in childhood and adulthood, even in the absence of these maladap-
tive behaviors (Felitti et al., 1998; Oh et al., 2018; Shonkoff et al.,
2012). Importantly, those exposed to toxic stress also manifest
immunologic alterations and elevated inflammatory markers that
may predispose to a variety of inflammatory and autoimmune dis-
eases, with implications for cutaneous and overall health
(Barnthouse and Jones, 2019; Felitti et al., 1998; Oh et al., 2018;
Shonkoff et al., 2012).

Although a direct link between toxic stress and dermatologic
disease has not been explored, to the authors’ knowledge, accom-
panying psychologic distress is known to adversely affect the skin.
Specifically, psychosocial stress has been associated with the onset
and severity of a variety of dermatologic conditions in children and
adults, including AD, acne, psoriasis, vitiligo, and chronic urticaria
(Gupta and Gupta, 1996, 2003; Manolache et al., 2009). The psy-
chological stress associated with natural disasters, such as tsuna-
mis and earthquakes, has been documented to cause flares of AD,
psoriasis, and urticaria; this effect appears compounded by subse-
quent unhygienic living conditions, lack of access to health care,
and physical loss of medications in the disaster’s aftermath
(Bandino et al., 2015; Kodama et al., 1999; Lee et al., 2006;
Stewart and Goodman, 1989). As exposure to floods, heatwaves,
wildfires, drought, and storm-related disasters has increased in
specific regions of the world in the context of climate change—a
trend that is predicted to continue with time (Watts et al,,
2019)—it is probable that the burden of cutaneous disease influ-
enced by psychological stress will also escalate.

Conclusion

Children are uniquely susceptible to the adverse effects of our
warming planet, with important implications for the cutaneous
health of this population. Identifying conditions that are more fre-
quently or severely affected by climate change allows dermatolo-

gists to anticipate corresponding impacts on their practices and
most effectively care for these patients. Moreover, the visible
impact of climate change on childhood skin conditions serves as
an important reminder that now is the time to advocate for societal
changes to mitigate the impacts of global warming, protecting the
health of children now and in the future.
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