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ABSTRACT

Transcriptional and post-transcriptional mecha-
nisms diversify the proteome beyond gene num-
ber, while maintaining a sequence relationship be-
tween original and altered proteins. A new mech-
anism breaks this paradigm, generating novel pro-
teins by translating alternative open reading frames
(Alt-ORFs) within canonical host mRNAs. Uniquely,
‘alt-proteins’ lack sequence homology with host
ORF-derived proteins. We show global amino acid
frequencies, and consequent biochemical character-
istics of Alt-ORFs nested within host ORFs (nAlt-
ORFs), are genetically-driven, and predicted by sum-
mation of frequencies of hundreds of encompass-
ing host codon-pairs. Analysis of 101 human nAlt-
ORFs of length ≥150 codons confirms the theoreti-
cal predictions, revealing an extraordinarily high me-
dian isoelectric point (pI) of 11.68, due to anomalous
charged amino acid levels. Also, nAlt-ORF proteins
exhibit a >2-fold preference for reading frame 2 ver-
sus 3, predicted mitochondrial and nuclear localiza-
tion, and elevated codon adaptation index indicative
of natural selection. Our results provide a theoretical
and conceptual framework for exploration of these
largely unannotated, but potentially significant, al-
ternative ORFs and their encoded proteins.

INTRODUCTION

The mechanistic link between genes and
enzymes––the ‘one-gene, one-enzyme’ (or polypep-
tide) hypothesis––proposed by Beadle and Tatum (1) is a
foundational component underlying the central dogma of
molecular biology, and a key concept linking the fields of
genetics and biochemistry. However, subsequent studies
revealed a far more complex relationship between genes

and proteins, namely, many genes generate a plethora
of proteins by diverse physiological mechanisms in three
major categories. In the first, the mRNA is modified at the
transcriptional level by, for example, alternative splicing
(2), mRNA editing (3) and altered polyadenylation (includ-
ing coding region polyadenylation) (4–6). Alternatively,
mRNA translation can expand the proteome by alternative
translation initiation and by stop codon readthrough
(7,8). Finally, diverse post-translational mechanisms are
common, including amino acid modification and prote-
olytic cleavage. Importantly, these mechanistically distinct
processes all share a common characteristic, namely, the
primary sequences of the ‘original’ and modified proteins
are closely related proteoforms. There is recent evidence
and appreciation for a novel mechanism of proteome
expansion, namely, translation of mRNAs in alternative
reading frames (9,10). In this mechanism, an alternate
start codon, out-of-frame with the ‘canonical’ initiation
site of the reference coding sequence (cds), is followed by
a stop codon in-frame with the novel start codon. The
out-of-frame start and stop sites can be contained within
the 5′- or 3′-untranslated region (UTR), overlap the UTR
and reference cds, or be entirely nested within the reference
cds (10). Most importantly, the primary sequences of
proteins encoded by out-of-frame ORFs, or Alt-ORFs,
are completely unrelated to the reference proteins, thus
distinguishing this mechanism from other mechanisms of
proteome expansion.

The extent of proteome expansion by out-of-frame
mRNA translation has been explored, primarily by se-
quence analysis. An exhaustive compendium of potential
Alt-ORFs of length >30 codons in 10 species has been de-
scribed (OpenProt), and a human collection made acces-
sible in a web-based database (HAltORF) (11,12). Analy-
sis of overlapping viral genes and their encoded proteins
revealed that at least two-thirds are expressed by trans-
lational mechanisms (13). The most common mechanism
took advantage of alternative start codons, but riboso-
mal frameshifting and internal ribosome entry sites were
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also utilized. Endogenous expression of several Alt-ORFs
have been experimentally validated by mass spectromet-
ric detection, by specific targeting antibodies, and by ribo-
some profiling (14–16). In some cases, information about
the function of the Alt-ORF-derived proteins has been re-
ported. The presence of functional Alt-ORF-derived pro-
teins can contribute to the otherwise unexplained activity
of single nucleotide polymorphisms that are synonymous in
the host ORF, but non-synonymous in an altered reading
frame (17).

To our knowledge there has not been a theoretical analy-
sis of the ensemble of Alt-ORFs, and in particular, the over-
arching properties of their protein products. Among the cat-
egories of Alt-ORFs, nested Alt-ORFs (nAlt-ORFS) are
unique in that the sequence, unlike Alt-ORFs containing
untranslated regions, consists entirely of authentic codons,
albeit out-of-frame (Figure 1A). Here, we take advantage
of codon-related properties unique to nAlt-ORFs to inter-
rogate specific characteristics of the transcripts and their
polypeptide products, particularly the common features of
the proteins including their physical and structural proper-
ties as well as intracellular localization.

MATERIALS AND METHODS

Code implementation and availability

The application nAltORFs was developed to inves-
tigate alternate protein coding regions (nAlt-ORFs)
nested within annotated host coding sequences. The
‘find nested alt orfs.py’ script identifies nAlt-ORFs based
upon user-provided inputs, including a set of protein-
coding genes (BED12 format), a matching reference
genome (twobit format), a minimum translated peptide
length threshold, an NCBI translation table numerical
identifier, and an additional optional set of protein-coding
genes for exclusion (BED12). The algorithm follows
a stepwise approach, with values provided as used in
this present study: (1) A list of annotated coding genes
comprising about 20 000 unique transcripts, and their
genomic locations, were obtained from the UCSC Table
Browser in Gencode38, along with the associated two
bit-formatted reference genome (2). The second ATG
position in the cds was identified (3). ORFs with second
ATG in frame 1 are excluded (4). Potential ORFs with the
second ATG in frame 2 or frame 3 are selected (5). ORFs
with translated peptide lengths greater than or equal to
150 are included (6). The sub-region is reported, otherwise
the next regions are analyzed from the input BED file (7).
Regions wholly in or spanning untranslated regions are
excluded (8). Output files corresponding to a FASTA file of
the original cds, a FASTA file for the potential nAlt-ORF
in amino acid sequence, and FASTA files for the potential
nAlt-ORFs in nucleotide sequence are generated. The
output was manually curated to remove non-coding RNA,
transcription-readthrough transcripts, duplicates, and
pseudogenes. Using the above-described inclusion criteria,
101 putative human nAlt-ORFs with length ≥150 codons
were ascertained (Supplementary Table S1).

Two additional Python scripts were created as part
of nAltORFs for investigating codon and codon-
pair usage. The script ‘codon freq from bicodons.py’

takes the raw codon-pair table from CoCoPUTs (e.g.
https://dnahive.fda.gov/dna.cgi?cmd=objFile&ids=
537&filename=Refseq Bicod.tsv&raw=1), along with
the taxonomy ID and genome of interest, and calculates
the frequency of codons in reading frames 2 and 3, based
upon the entry for each codon-pair. Counts and frequencies
are reported in two different tabular files, one by codon and
a second by translated amino acid. The translation table
as reported by CoCoPUTs formatted raw data is used,
with the exception of a reported translation table identifier
of ‘0’ being dynamically mapped to CoCoPUTs Table 1
Standard, SGC0, as reported for Homo sapiens genomic
dataset. The final script, ‘bicodon counts from fasta.py’,
separately reports codon and codon-pair count information
based upon a user-provided FASTA file. This script also
takes as input taxonomy ID, organelle, division, assembly,
species, and translation table, with the output formats
mimicking that of the CoCoPUTs raw files. This allows
simplified reuse of the previous script and comparison to
the values provided by CoCoPUTs.

For control ORFs, a list of 101 ENSEMBL tran-
script IDs was generated with Regulatory Sequence Anal-
ysis Tools (RSAT) suite using the random gene selection
form (RSAT: http://rsat.sb-roscoff.fr/random-genes form.
cgi) with the server command:

$RSAT/perl-scripts/random-genes -n 101 -g 1 -org
Homo sapiens GRCh38 -feattype mRNA. Nucleotide se-
quences were manually curated and filtered to remove one
transcript that was a host mRNA of a nAlt-ORF, to yield a
final list of 100 control ORFs (Supplementary Table S2).

Bioinformatic analysis

Individual transcripts and their genetic location were col-
lected from Ensembl genome GRCh38.p13 (https://www.
ensembl.org) and ORFs detected using SMS2 (https://
www.bioinformatics.org/sms2/orf find.html). Amino acid
sequences of the ORFs were determined and used for iso-
electric point analysis using DTASelect algorithm in SMS2.
Protein Pi distribution was analyzed using GraphPad Prism
software. Codon-pairs that encode AUG were extracted in
reading frames 2 and 3 from niche region of the 101 host-
ORFs. Codon-pairs that encode the upstream start site after
the authentic initiation site were aligned using using WebL-
ogo 2.8.2 (https://weblogo.berkeley.edu/logo.cgi).

Codon adaptation index (CAI), a measure of synony-
mous codon usage relative to an efficiently translated refer-
ence set were determined for host, nAlt-ORF, and random
gene set. For generating random out-of-frame ORFs, stop
codons were removed in all the three reading frames. CAI
values were calculated using codon usage of 93 487 CDSs
from the human transcriptome using CAIcal web server
(http://genomes.urv.es/CAIcal/).

Analysis of protein localization and function

Gene ontology analysis was done using PANTHER pro-
tein class and Reactome pathway annotation datasets (18).
Briefly, host genes harboring nAlt-ORFs were mapped us-
ing UniProt ID Mapping to IDs in the PANTHER an-
notation data set (https://www.pantherdb.org/). Gene IDs
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Figure 1. Asymmetric reading frame preference of nAlt-ORFs. (A) Schematic of nAlt-ORFs. Translation-initiation at the canonical start codon (AUG)
generates the parental host ORF. Translation-initiation of an nAlt-ORF begins at a downstream start codon (AUG’) within the host ORF, in an altered
reading frame (RF) and ending at a stop codon (stop’) in-frame with AUG’ and within the host ORF. (B) Distribution of human nAlt-ORFs in reading
frames 2 and 3 (left). Out-of-frame AUGs calculated from CoCoPUTs human codon-pair database (center). AUG-containing codon-pair frequency in
alternate reading frames in global group of human CDSs (from CoCoPUTs), host niche sequences corresponding to nAlt-ORF regions, and start sites
in nAlt-ORFs normalized to reading frame 1 (right). (C) Sequence alignment of codon-pairs surrounding the start sites in RF2 (left), RF3 (center) and
internal AUG codons of nAlt-ORFs, visualized as sequence logos.

not mapped to PANTHER sequence IDs were manually
corrected using Ensembl Biomart conversion tool (https:
//www.ensembl.org/biomart/martview/). Mapped IDs were
subjected to statistical over-representation test using all hu-
man genes as a reference list and default settings. P-values
were further corrected using Benjamini and Hochberg false-
discovery rate correction. Data was considered significant
at P < 0.05. GOSlim categories under umbrella GO cat-
egories, i.e. ‘protein class’ and ‘reactome pathway’, were
tested.

The input protein sequences were converted into FASTA
format using BioWord. Intracellular localization of nAlt-
ORFs was predicted using YLoc web server with default pa-

rameters. YLoc uses Bayesian analysis with entropy-based
discretization to generate predicted location, probability,
and confidence scores. Locations with high confidence score
were tabulated and Pearson correlation coefficients deter-
mined by GraphPad Prism software.

Modeling and visualization

Protein structure prediction was done using Al-
phaFold v2.1.0 with a Jupyter Notebook. Briefly,
py3dmol, OpenMM and pdbfixer and AlphaFold
(https://github.com/deepmind/alphafold) were installed.
Monomers were modeled using a single ORF input
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sequence. For each protein, the number of sequences used
for multiple sequence alignment and the average predicted
local distance difference test (pLDDT) score, respectively,
are shown. Predicted structures were energy minimized and
visualized using Pymol or Chimera.

Quantification and statistical analysis

For statistical analysis of non-sequencing data, GraphPad
Prism software processed and presented the data as indi-
cated in the figure legends. Statistical significance was cal-
culated by unpaired two-tailed parametric t test for the col-
umn graphs. P values <0.05 are considered significant (NS,
not significant). For divergence in sub-cellular localization
and codon-pair analysis and Pearson or Spearman correla-
tion coefficients were determined by GraphPad Prism soft-
ware. For GO analysis, P-values were further corrected us-
ing Benjamini and Hochberg false-discovery rate correction
provided by the PANTHER database. Transformation of
the codon usage in various datasets by z score was used for
clustering analysis.

RESULTS

Asymmetric reading frame selection in nAlt-ORFs

To improve the likelihood of selection of nAlt-ORF gener-
ating non-random polypeptides, a minimum length of 150
codons was selected for inclusion. The probability of a ≥150
codon stretch without a stop codon is low; assuming equal
codon utilization, the probability is less than (61/64)150 or
<7.5 × 10−4. Although small peptides certainly can exhibit
activity, we assumed large proteins are more likely to be
non-random and functional. To further constrain the col-
lection, only nAlt-ORFs that utilized the first out-of-frame
AUG following the canonical start codon were selected.
This initiation site would be the first encountered by a leaky
scanning ribosome that bypasses the canonical codon, and
thus has higher likelihood of expression. An analysis of
overlapping proteins in viral genomes supports this mech-
anism as more than two-thirds are generated by alternative
start codon utilization (13). Query of 20 000 unique tran-
scripts in the UCSC Table Browser, in both alternative read-
ing frames, followed by manual curation to remove non-
coding RNA, transcription-readthrough transcripts, dupli-
cates, and pseudogenes, yielded a collection of 101 putative
human nAlt-ORFs with length ≥150 codons (Supplemen-
tary Table S1). The longest nAlt-ORFs encoded proteins of
lengths 529, 396 and 323 amino acids. Endogenous expres-
sion of two predicted nAlt-ORFs derived from FUS and
ATXN1 genes has been validated experimentally, and their
protein products characterized (14,15).

An imbalance in the number of nAlt-ORFs in each read-
ing frame was observed, with more than twice as many
in reading frame 2 compared to frame 3 (Figure 1B, left).
The ratio was particularly surprising given that ‘slippery’
sequences that drive programmed ribosomal frameshifting
favor –1 nt shifts to generate reading frame 3 (19). We rec-
ognized that sequential codon-pairs that encode AUG in
alternate reading frames can provide information to per-
mit global estimation of relative frequency of alternative

reading frames. According to this analysis, AUG in alter-
nate reading frames can be specified in two (and only two)
ways: by the codon-pair N1AU-GN2N3 in reading frame 2
in the host mRNA, or by the codon-pair N1N2A-UGN3
in reading frame 3, where N1, N2 and N3 can be any nu-
cleotide. The frequency of sequential codon pairs is neither
random nor an exact function of the constituent codons
(20). Importantly, we took advantage of the tabulated fre-
quency of occurrence of all 3712 codon-pairs (642 minus 64
× 3 stop codons for each codon-pair position) in the human
genome in the CoCoPUTs database (20). Based on the as-
sumption that codon-pair frequency in nAlt-ORFs is con-
sistent with the frequency in the human genome, the pre-
dicted frequency of AUG in reading frame 2 equals the sum
of the frequencies of all 64 (= 43) N1AU-GN2N3 codon-
pairs:

Frequency of codon AUG in reading frame 2 =
� Codon-pair frequencies N1AU-GN2N3

∀N1,N2,N3= U, C, A, G (1)

Similarly, the frequency of AUG in reading frame 3
equals the sum of the frequencies of the codon-pairs
N1N2A-UGN3 for all 64 combinations:

Frequency of codon AUG in reading frame 3 =
� Codon-pair frequencies N1N2A-UGN3

∀N1,N2,N3= U, C, A, G (2)

The predicted start codon frequency was calculated using
a Python script in which frequencies from the CoCoPUTS
human codon-pair database were summed. The predicted
ratio of AUG in reading frame 2 compared to frame 3 was
7.5:1, considerably higher than the ∼2.3:1 ratio observed
in the nAlt-ORF group (Figure 1B, center). The finding of
substantially lower ratio observed in the collection of nAlt-
ORFs could result from ribosome -1 slippage thereby par-
tially offsetting the genetic ‘force’ driving the shift toward
reading frame 2. Alternatively, the lower-than-predicted ra-
tio can be due to discrepant codon-pair usage in nAlt-ORFs
compared to the human genome. We investigated whether
the frequency of AUG-containing codon-pairs in reading
frame 2 of the nAlt-ORF group is unusually low, or alter-
natively, frequency in reading frame 3 is unexpectedly high.
AUG-containing codon-pair frequency in three groups was
evaluated in both reading frames and normalized to reading
frame 1, namely, (i) the ‘global’ collection of codon-pairs in
human CDSs derived from CoCoPUTs, (ii) a ‘host niche’
consisting of the sequences in the 101 host mRNAs cor-
responding to the nAlt-ORFs, and (iii) the start codon in
nAlt-ORFs. In all three groups, AUGs in reading frame 2
were 70–74% relative to reading frame 1 (Figure 1B, right).
In contrast, normalized to reading frame 1, reading frame
3 showed a divergence in AUG frequency: 9–13% in the
host niche and global codon-pairs, but 30% in nAlt-ORF
start codons. Thus, the abundance of start codons in read-
ing frame 3 codon-pairs is the principal contributor to the
observed anomalously high number of start codons in read-
ing frame 3 of nAlt-ORFs.
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The specific AUG-containing codon-pairs were investi-
gated for a clue to the prominent selection in reading frame
3. A sequence logo plot of the codon-pairs revealed a dom-
inant CCAUGG in frame 3 not present in frame 2, nor in
the AUGs in codon-pairs in the -1 frame of the host niche
interior (Figure 1C). Remarkably, CCAUGG was the most
abundant codon-pair, present in 5/31 codon-pairs in read-
ing frame 3 of the nAlt-ORFs. This sequence is similar to
the Kozak consensus initiation sequence A/GCCAUGG
where the A/G in the -3 position and G in the +4 position
are most critical (21). However, only about 5% of eukaryotic
mRNAs exhibit perfect consensus sequences; in the absence
of a -3–position purine, the +4–G is essential and can drive
initiation with an efficiency of about 60–90% of the exact
sequence. Interestingly, 14/31 of the codon-pairs in read-
ing frame 3 contain G in the +4 position. Possibly, nAlt-
ORFS bearing the near-consensus Kozak sequence exhibit
relatively high expression. Moreover, the analysis suggests
a rationale for preferential selection of frame 3. With only a
single nt upstream of the AUG in frame 2, inclusion of CC
upstream of the AUG would require a third codon. Also,
the +4 ‘G’ in frame 3 is in the wobble-base position of the
host ORF, but not in frame 2, thus providing more flexibil-
ity in its utilization.

Selective intracellular localization and elevated isoelectric
point of nAlt-ORF-derived proteins

There was not an apparent concentration of nAlt-ORFs on
any individual chromosome (Figure 2A), consistent with
random distribution. nAlt-ORFs were not detected in chro-
mosome Y (and 4), but the relatively small sample size pre-
cludes speculation on the relevance to sex-linkage. Protein
class and pathway analyses of the 101 nAlt-ORF protein
products was determined by gene ontology (GO) enrich-
ment analysis using protein analysis through evolutionary
relationships (PANTHER) classification system (22). As
a protein class, the DNA-binding, helix-turn-helix tran-
scription factor family was significantly enriched (Fig-
ure 2B). Likewise, three pathways were enriched, namely,
metabolism, metabolism of lipids, and developmental bi-
ology. Intracellular localization of the nAlt-ORF proteins
was determined by the YLoc Bayesian algorithm which
considers potential sorting signals, sequence motifs, as well
as amino acid physical properties including hydrophobic-
ity, charge, and volume (23). Two notable features were ob-
served, namely, a ∼3-fold higher fraction of nAlt-ORF pro-
teins in mitochondria compared to the host ORF proteins,
a ∼20% increase in nuclear proteins, and a ∼10-fold lower
level of cytoplasmic proteins (Figure 2C). There is little or
no relationship between the predicted localization of the
nAlt-ORF and host proteins (Figure 2D). A potential clue
to the atypical localization of nAlt-ORF proteins was pro-
vided by a previous investigation of intracellular localiza-
tion as a function of protein pI (24). Proteins with a pI of
∼12 were preferentially localized in the nucleus and mito-
chondria, and at extremely low levels in the cytoplasm (Fig-
ure 2E, left). The intracellular distribution of nAlt-ORF
proteins closely matched that of the global proteins exhibit-
ing a pI of 12 (Figure 2E, right). Indeed, the vast majority of
nAlt-ORF proteins exhibited calculated pIs >10, with a me-

dian pI of 11.68 (mean = 11.25), consistent with their atyp-
ical intracellular distribution (Figure 3A). There was not
a significant difference in mean Pi between nAlt-ORFs in
frames 2 and 3 (Supplementary Figure S1). These pIs were
very distinct from the host proteins which were primarily
distributed between 4 and 10 (Figure 3B), similar to the pI
range of proteins from a group of randomly selected mR-
NAs (Figure 3C, Supplementary Table S2).

Anomalous charged amino acid composition of nAlt-ORF-
derived proteins

The underlying basis of the extraordinarily high pI in nAlt-
ORF-derived proteins was explored in detail. The frequen-
cies of the four charged amino acids that are primary con-
tributors to pI were determined. Two characteristics con-
tributed importantly to the elevated pI of nAlt-ORF pro-
teins: (1) the overall frequencies of Asp and Glu are about
one-third of the global mean frequency, and (2) the over-
all frequency of Arg was more than double the global mean
frequency (Figure 4A, B). The overall positive-to-negative
amino acid ratio, i.e. (Lys + Arg)/(Asp + Glu), in the nAlt-
ORF protein group is 4.09, whereas the ratio in global hu-
man proteins is 0.98, thereby accounting for the extremely
high mean pI in the nAlt-ORFs and the near-neutral pI
globally. The positive-to-negative charge ratio in the host
ORF proteins is 1.03, similar to the global ratio (Figure 4C),
indicating the frequency and ratio of charged amino acids
in nAlt-ORF-derived proteins is host-independent.

We investigated the genetic origin of the anomalous fre-
quencies of charged amino acids translated from nAlt-
ORFs, analogous to the anomalous initiation codon read-
ing frame ratio. The expected frequency of any amino acid
equals the sum of the expected frequencies of each of the
1–6 codons that specify the amino acid. Using the Co-
CoPUTs database, the expected global mean frequencies
of amino acids in each alternate reading frame were cal-
culated by summing all amino acid-specifying codon-pairs:
Two codon-pairs for Asp, Glu, and Lys and six for Arg,
were calculated separately and frequencies in each reading
frame summed after weighting by their predicted ratio, i.e.
7.5:1 for reading frame 2 to reading frame 3, to account for
discrepant utilization. Thus, the expected global mean fre-
quency of each amino acid in an alternate reading frames
is determined as the sum of the frequencies of all codons
X1X2X3 that specify the amino acid, as determined by nts
N1, N2, and N3 in the surrounding codon-pairs. The total
global frequency for an amino acid is given by the sum in
each reading frame, corrected by the calculated 7.5:1 ratio:

Frequency of codon X1X2X3 in reading frame 2 =
[� ∀ codons X1X2X3, (� codon-pair frequencies N1X1X2-X3N2N3)] ∗ (7.5/8.5)

∀N1,N2,N3= U, C, A, G (3)

+ Frequency of codon X1,X2,X3in reading frame 3 =
[� ∀ codons X1X2X3, (�codon-pair frequencies N1N2X1-X2X3N3)] ∗ (1.0/8.5)

∀N1,N2,N3= U, C, A, G (4)

The calculated global mean frequencies of the charged
amino acids in alternate reading frames are similar, but not
identical, to the actual frequencies in the nAlt-ORF pro-
teins, with low Asp and Glu content, and high Arg content,
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Figure 2. nAlt-ORFs exhibit preferential mitochondrial and nuclear localization. (A) Chromosomal distribution of nAlt-ORFs. (B) Gene ontology analysis
of host proteins using PANTHER protein class and Reactome pathway annotation data sets. (C) Relative distribution of subcellular localization in nAlt-
ORF (top) and host ORF proteins (bottom), as determined by the YLoc Bayesian algorithm. (D) Weak association of nAlt-ORF localization with parental
host ORFs quantitated by Pearson correlation coefficients, r. (E) Proteome-wide compartment localization of human proteins as a function of mean pI
(left, adapted from (24)), and relative localization nAlt-ORFs (right).

similar to the observed frequencies (compare Figure 4D to
A), with a positive-to-negative charge ratio of 3.27. An anal-
ysis limited to the ensemble of 101 nAlt-ORFs very nearly
matched the actual frequencies determined in these pro-
teins (Figure 4E), with a positive-to-negative charge ratio of
3.71 indicating global codon-pair frequencies are not iden-
tical to the frequencies in the nAlt-ORFs considered here.
The substantial difference in charged amino acid content
between the actual nAlt-ORF ensemble (Figure 4A) and
the global group, calculated from CoCoPUTs data (Fig-

ure 4D) might reflect a difference in codon-pair usage. A
Spearman r of 0.21 confirms the unique codon-pair usage
in nAlt-ORFs compared to global frequency (Figure 4F).
Likewise, codon-pairs in the nAlt-ORF were poorly cor-
related with the host-ORF (Spearman r = 0.42). Finally,
host-ORF codon pairs correlated more closely to the global
pairs (Spearman r = 0.71), than did the host sequence in
reading frame 1 (host-niche, Spearman r = 0.51); removal
of the niche from the host-ORF (host- �niche) improved
the correlation slightly (Spearman r = 0.75). The differen-
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tial utilization of codon-pairs between the host-niche and
its sequence complement, the host-�niche, (Spearman r =
0.75), despite both occupying reading frame 1, suggests the
niche is subject to evolutionary adaptation.

Genetic mechanisms underlying anomalous usage of charged
amino acids

The differential utilization of charged amino acids in alter-
nate reading frames is illuminated by examining the rela-
tionship between mean amino acid utilization and the num-

ber of codons encoding each amino acid, i.e. 2 for Asp,
Glu, and Lys and 6 for Arg. A graphical analysis of global
amino acid utilization in reading frame 1 as a function
of codon number shows a near-linear relationship between
codon number and frequency (Figure 5A), as observed by
others (25,26). Importantly, among the more prominent ex-
ceptions to this relationship, Asp and Glu are substantially
higher than predicted by codon number, and Arg substan-
tially lower. To calculate the global amino acid utilization in
both alternate reading frames, we again took advantage of
the CoCoPUTS database. In each reading frame, for each
codon, 64 (43) codon-pairs are summed. Thus, for amino
acids encoded by two codons, 128 codon-pairs are summed
for each of two reading frames, or 256 in total. For Arg,
which is encoded by 6 codons, 384 codon-pairs are summed
for each reading frame or, remarkably, a total of 768 codon-
pairs. The codon-pairs are generally weakly related to the
original codon, i.e. the original codon is not encoded by ei-
ther codon of the codon-pair. Thus, the large number of
codon-pairs involved tends to lessen the anomalous rela-
tionship between amino acid utilization and codon num-
ber. This moderation is clearly seen in the calculations for
Arg, Asp, and Glu in reading frames 2 and 3, as well as af-
ter the calculation considering both reading frames (Figure
5A–D). In short, utilization of Asp, Glu, and Arg is closer
to the expected linear relationship than is observed in the
actual proteins in reading frame 1, consistent with the dif-
ferential amino acid utilization observed.

The calculation based on global codon-pair usage in-
deed shows markedly elevated Arg and reduced Asp and
Glu content in out-of-frame proteins (Figure 5D) com-
pared to actual global usage (Figure 5A), i.e. 8.62% versus
5.67%. However, the calculated mean Arg content is sub-
stantially lower than the actual content in the nAlt-ORF
group (12.69%, Figure 4A). We considered the possibil-
ity that this anomaly is due to differential codon usage,
and investigated usage of the six individual codons encod-
ing for Arg. Codon frequency in reading frames 2 and 3
were determined separately using Equations (3) and (4), re-
spectively, and weighted by their calculated ratio of occur-
rence. The major increase in calculated usage in frames 2
and 3 (CoCoPuts) compared to actual global codon usage
was seen for codons AGA and AGG - usage was 2.7- and
2.3-fold higher, respectively (Figure 5E). Two Arg codons,
CGC and CGG, are markedly enriched in nAlt-ORFs com-
pared to the global out-of-frame ORFs calculated by Co-
CoPUTs. Examination of the most highly used codon-pairs
containing these codons are notably G- and C-rich (Figure
5F). Intriguingly, the CG-dinucleotide, present in the four
least abundant Arg codons, occurs with a frequency about
2.6-fold higher in nAlt-ORFs compared to global CDS
usage.

We considered the possibility that codon-pair usage in
nAlt-ORFs drives differential usage of codons in general,
i.e. not just Arg codons. Codon usage in global, nAlt, and
host ORFs were compared by hierarchical clustering in a
heatmap (Figure 6A). A near-complementarity of usage of
nAlt-ORF compared to global ORFs is apparent; a Pear-
son r score of 0.26 confirmed the extreme difference between
the groups (Figure 6B). Even more striking is the clear di-
chotomy in codon clustering in nAlt-ORFs; there is a pre-
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ponderance of G/C in the second position in high-usage
codons, i.e. Z-score >0, and A/U in the second position
in low-usage codons, i.e. Z-score ≤0 (Figure 6A). Overall,
second position G/C utilization in nAlt-ORFs is more than
twice that of A/U (Figure 6C). In contrast, about equal base
utilization in the second position is observed in host ORFs,
and a minor reversal of utilization is seen globally. The cen-
tral role of the second position is highlighted by a recon-
sideration of the genetic code ‘wheel’ in which the second
position replaces the first as the dominant, organizing cir-
cle (Figure 6D) (26). Briefly, a second position ‘A’ specifies
primarily hydrophilic amino acids, excepting Arg specified
by a second position ‘G’. Thus, the low level of second po-
sition ‘A’ accounts for the low frequency of Lys, Asp, Glu
and other hydrophilic amino acids in the nAlt-ORF pro-
teins, and the high level of second position ‘G’ specifies the
high frequency of Arg and other semi-polar amino acids.

To assess the ‘quality’ of nAlt-ORF codon usage, the
codon adaptation index (CAI) was calculated using CAIcal
which quantitates the relative use of optimal synonymous
codons by comparison to a set of highly expressed genes,
and can be used to predict the translation rate and level of
expression of a gene (28,29). The CAI is scaled from 0 to
1, with an index of 1.0 indicating a very efficiently trans-

lated mRNA. The host ORFs exhibited a compact range
of CAI scores with a mean of 0.81, consistent with effi-
cient translatability (Figure 6E). The nAlt-ORFs exhibited
a broader range of CAI scores with a mean of 0.74, some-
what lower than the parental ORFs, but still indicative of ef-
ficient translatability. As a control, alternate reading frames
in the random group of 100 ORFs was examined (follow-
ing manual removal of internal stop codons). The CAI was
0.70, significantly lower than the nAlt-ORF group. Based
on yeast expression data, that shows a logarithmic relation-
ship between protein abundance and CAI (30), the CAI dif-
ferential corresponds to an ∼24% increase in translatability
of the nAlt-ORFs. More importantly, the difference sug-
gests codon usage in genes containing nAlt-ORFs is subject
to non-neutral natural selection during evolution.

Computed structures of nAlt-ORF-derived proteins

Experimental evidence is required to validate the physiolog-
ical significance of any individual nAlt-ORF. In some cases,
evidence has been provided by mass spectrometric detec-
tion of peptide constituents, or by specific antibody recog-
nition (Supplementary Table S1). Although essential, the
approach is hindered by selection of appropriate cells or tis-
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sues, appropriate conditions (potentially including patho-
logical condition), and detection limits. A less constrained
approach, albeit also less rigorous, takes advantage of re-
cent computational advances in molecular modeling. The
sequences for several nAlt-ORF proteins were submitted to
the AlphaFold server for structural analysis (31). The nAlt-
ORF derived from Fus (Alt-Fus) was experimentally val-
idated as a mitochondria-localized protein (14). The pre-
dicted structure is highly compact, consisting primarily of
six �-helices of moderate length, i.e. 3–6 turns, and a clus-

ter of basic residues (Figure 7A). Alt-KCNQ1, a predicted
nuclear protein, likewise exhibits a highly compact globular
form, consisting primarily of 5 short �-helices and 2 short
�-sheets forming a ring of basic residues (Figure 7B). Alt-
CHD1, predicted to be a secreted protein, is highly elon-
gated with a remarkable predicted structure consisting al-
most entirely of �-helices, including a helix-turn-helix struc-
ture of 9 and 15 turns (Figure 7C). Although Alt-NOL3
is predicted to contain four �-helices, it is primarily non-
structured (Figure 7D) and similar in conformation to the
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structure of a randomly generated sequence that contained
4 short �-helices, but is largely non-compact (Figure 7E).

DISCUSSION

A remarkable and unanticipated observation is the extraor-
dinarily high pI of proteins encoded by the 101 nAlt-ORFs
considered here. In addition to the markedly higher median
pI in nAlt-ORFs, the range is also highly compacted, i.e.
the vast majority of nAlt-ORF proteins exhibit pI’s between
10 and 13, with a median of 11.68, whereas the host-ORFs
and randomly selected groups exhibit pI’s spread uniformly
between 4 and 10. Focusing on the extremes 89/101 nAlt-
ORF proteins have pI’s >10, whereas only 6/101 host ORFs
and 0/100 random proteins exhibit pI’s >10. Quantitation
of the amino acid content in the nAlt proteins revealed that

the high median pI can be accounted for by the extremely
high Arg content, 12.7% compared to 5.7% globally, and
low Asp and Glu content, 1.4% and 2.1%, respectively, ver-
sus global content of 4.7% and 6.9%, respectively. The con-
tent of charged amino acids in the host ORFs was similar
to the global content, indicating the anomalous content in
the nAlt-ORFs is independent of the host ORFs. Although
some differences were reported, a similar alteration in the
content of charged amino acids was shown in a collection of
dual-coding alternate reading frames generated by alternate
splicing (27). Together, these findings raise the question of
the mechanism underlying the major difference in charged
amino acid content in nAlt-ORF proteins.

Two unrelated mechanisms contribute to anomalous
Asp, Glu, and Arg content in nAlt-ORF-derived proteins:
(i) codon usage in reading frame 1 is modulated when
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shifted into reading frames 2 and 3, and (ii) anomalous
dinucleotide usage in Alt-OFs drives anomalous codon
frequency. The first mechanism moderates the anomalous
global codon usage of the three charged amino acids: Asp
and Glu codons––2.18% and 2.51% for Asp, and 2.90%
and 3.96% for Glu––all higher than the mean codon us-
age of 1.64% (1/61). Likewise, global codon usage of the
six Arg codons––0.45%, 1.04%, 0.22%, 1.14%, 1.22% and
1.20%––are lower than mean codon usage. When these
codons, with adjacent nucleotides, are shifted into reading
frames 2 and 3, the anomalous usage is moderated, account-
ing for the diminished levels of Asp and Glu in nAlt-ORFS,
but only partially accounting for the exceptionally high Arg
content (5.67% globally, 8.62% calculated in frames 2 and
3, and 12.69% in nAlt-ORF proteins). The first mecha-
nism applied to Arg is clearly visualized as the calculated
increases in AGA and AGG codon utilization in reading
frames 2, 3 (Figure 5E). The second mechanism accounts
for the remaining increase in Arg content in nAlt-ORF
proteins. Specifically, usage of the four CG-containing Arg
codons are expressed at 2- to 4-fold higher levels in nAlt-
ORF proteins compared to the calculated amount based on
global codon-pair usage (Figure 5E). High CGn codon us-
age in nAlt-ORF proteins was unexpected given that CG
is the least frequent dinucleotide in coding sequences of
the human genome (Supplementary Figure S2A). Thus, the
∼2.6-fold higher CG dinucleotide frequency in nAlt-ORFs
is the second major contributor to Arg codon utilization in
these proteins. The reason for low CG dinucleotide level
in human coding sequences is not known. One possibil-
ity is that mutation to CpG doublets occurs at a normal
rate, but despite being synonymous with other codons are
eliminated by natural selection due to a disadvantageous
property (25). The high mutation rate of CpG by deami-
nation of 5-methylcytosine to thymidine is potentially one
such property. Possibly, the advantage of high Arg content
in Alt-ORF proteins essentially neutralizes any disadvan-
tage presented by CG-containing codons. Alternatively, the
Alt-ORFs have appeared rather recently during evolution,
and have not had the opportunity to back-mutate into less
injurious codons. This possibility is supported by the pro-
posed comparatively rapid rate of evolution of Alt-ORF se-
quences compared to CDSs (32).

To our knowledge, ours is the first analysis of nAlt-
ORF proteins to recognize the significance of codon-pair
frequencies as critical determinants of amino acid utiliza-
tion of nAlt-ORFs, and takes advantage of the CoCoPUTs
codon-pair usage table. Importantly, every codon in reading
frames 2 and 3 in a nested ORF spans a codon-pair (Equa-
tions 3 and 4). Thus, every codon in each altered reading
frame is specified by combinations of 3 surrounding nu-
cleotides, i.e. 64 (43) combinations in each of the two al-
ternative reading frames, equivalent to summation of 256
and 768 codon-pair frequencies for amino acids encoded by
2 and 6 codons, respectively. The recognition that codon-
pair frequencies are at a variance from expectation based
on codon usage bias has led to multiple applications (20).
Codon-pair optimization has been used to improve trans-
lation rate and gene expression of recombinant proteins.
For example, production of interferon-gamma was nearly

twice as efficient following optimization of codon-pair us-
age compared to optimization by simple codon bias (33).
In contrast, codon-pair deoptimization has been used for
generation of attenuated vaccines (34). Lastly, codon-pair
is under consideration as a mechanism underlying diseases
caused by synonymous mutations (20,35). From this view-
point, one can consider codon-pairs as a secondary 6-letter
genetic code overlying the primary 3-letter code, specifying
amino acid utilization in nAlt-ORFs.

Codon-pair analysis explains specific characteristics of
Alt-ORF protein, and predicts new properties. For exam-
ple, codon-pair analysis of AUG initiation codons predicts
a marked bias towards reading frame 2, estimating ∼88% of
nAlt-ORFs encoded in that frame. Importantly, in a previ-
ous compilation of 17 096 predicted human Alt-ORF pro-
teins of length ≥24 amino acids, 83% were found in read-
ing frame 2, confirming the predictive power of our ana-
lytic approach (12). Interestingly, a theoretical analysis of
CUG codons based on codon-pair frequency predicts a +1
to –1 ratio of ∼2:1, substantially lower than the ∼7.5:1 ra-
tio for AUG start codons in reading frame 2 compared to
frame 3 (Supplementary Figure S3). As described above,
the codon-pair-based analysis predicts an elevated pI, or
equivalently, high ratio of basic-to-acidic amino acids. This
prediction is supported by experimentally validated nAlt-
ORFs, namely, Alt-FUS, Alt-ataxin-1, and Alt-PrP, that
exhibit pIs of 11.53, 11.54 and 9.24, respectively (14–16).
The extraordinarily high pI of the nAlt-ORFs has impli-
cations regarding cellular localization. Due to respiratory
chain-driven outward transport of protons, the mitochon-
dria inner membrane and matrix are highly electronega-
tive, and mitochondrially-targeted proteins generally have
a high pI (36,37). Moreover, the canonical mitochondrial
targeting signal is a short peptide primarily dominated by
basic residues with few acidic residues (37). Thus, the data
suggest a predilection for nAlt-ORFS to localize at the mi-
tochondrial inner membrane or matrix. Expression of few
nAlt-ORFs have been experimentally validated. Among the
best characterized is Alt-FUS, a 170-amino acid protein ex-
pressed in an alternative reading frame of FUS cds which
encodes a nuclear RNA-binding protein (14). In contrast,
Alt-FUS is expressed primarily in mitochondrial puncta
following a cristae-like formation, suggesting binding to the
inner membrane. A second Alt-ORF, Alt-PrP, is encoded
out-of-frame by the PRNP gene that encodes the prion pro-
tein PrP (16). Alt-PrP did not appear in our search as it
is only 64 amino acids long. Nonetheless, it likewise is ob-
served primarily in mitochondria, but unlike Alt-FUS, Alt-
PrP is localized in the outer mitochondrial membrane. A
nAlt-ORF is expressed by ATXN1, the ataxin-1 gene associ-
ated with spinocerebellar ataxia type 1 (15). Alt-ATXN1 is a
186-amino acid protein that localizes in the nucleus bound
to polyadenylated mRNA, which carries a dense negative
charge. Thus, in these examples of endogenously expressed,
well-characterized Alt-ORFs, their highly basic nature is
a strong determinant of their localization, and potentially
their function.

Experimental evidence is the gold-standard for endoge-
nous expression of a given nAlt-ORF; however, the ap-
proaches described here can provide insights into the likeli-
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hood of expression and relative expression level. Certainly,
a relationship to the Kozak sequence is informative, and
our analysis suggests that nAlt-ORFs in reading frame 3,
although in the minority, are likely to undergo translation-
initiation more efficiently. A high CAI predicts a relatively
fast rate of elongation––the three nAlt-ORFs in our collec-
tion with the highest CAIs are KRTAP9-1 (keratin associ-
ated protein 9–1), GRINA (glutamate ionotropic receptor
NMDA type subunit associated protein 1), and SLC4A2
(solute carrier family 4 member 2), with CAI’s of 0.92,
0.87 and 0.85, respectively. The group of nAlt-ORFs de-
lineated here have a surprisingly high 8-to-1 overall ratio
of Arg-to-Lys residues. The low Lys level reduces the likeli-
hood of ubiquitination-mediated proteasomal degradation.
Consistent with this observation, the Lys residue number
in Alt-Atxn, Alt-PrP and Alt-FUS is 0, 0, and 3, respec-
tively. A recently reported nAlt-ORF, Alt-B2R, encoded
by the human bradykinin B2 receptor gene, also has no
Lys residues; Alt-B2R is not included in our list because
it is not translated from the first AUG after the canonical
initiation site. Lastly, the folding structures determined by
AlphaFold are likely to be informative as compact, struc-
tured proteins are likely to be less susceptible to prote-
olysis and thus more stable than extended, unstructured
proteins.

Limitations of the approach and conclusions described
here should be considered. Nested Alt-ORFs with length
≥150 codons, and initiating after the first AUG following
the canonical ORF start codon were selected for inclusion
in our study. The selection was based on likely preferential
generation by leaky scanning of ribosomes––the predom-
inant mode of translation of the mRNA from the 5′ ter-
minus. The application of codon-pairs in our analysis pre-
cludes the inclusion of 5′ and 3′ untranslated regions. These
criteria were applied to maximize the likelihood that the
Alt-ORFs selected are likely to be expressed and functional.
However, there is the possibility of a bias in which character-
istics of smaller ORFs, ORFs within (or spanning) UTRs,
or ORFs generated from downstream start codons might
not be the same. Pseudogenes were also excluded from anal-
ysis since these genes are generally subjected to function-
independent evolutionary selection pressures and might not
exhibit Alt-ORF properties consistent with those generated
by authentic, ‘expressed’ genes. Finally, any functional clas-
sification of Alt-ORFs assumes that the function is related
to the parental ORF, a possibility consistent with several
previous studies (14,15,32)

The approaches and results described here can be ap-
plied to other data sets. For example, the codon-pair cal-
culations described here are independent of mRNA length,
as supported by the relatively high pI of Alt-PrP despite
its 64-amino acid length (16). The codon-pair calculations
can also be used in evaluation of amino acid frequencies in
other species as CoCoPUTs tables are available for al fully-
sequenced species (20). As a caveat, the approach is unlikely
to be predictive of Alt-ORFs that include substantial se-
quences within UTRs since these regions do not contain
defined codons or codon-pairs. Nonetheless, these results
provide a theoretical foundation that will facilitate design
and analysis of experiments to extend our understanding of
this novel class of proteins.

DATA AVAILABILITY

All data reported in this paper will be shared by the
lead contact upon request. Any additional information
required to reanalyze the data reported here is avail-
able upon request from the senior author. nAltORFs is
implemented in Python and is compatible with Python
v3.8 and higher. The development version of nAltORFs
can be obtained from the GitHub repository (https:
//github.com/BlankenbergLab/nAltORFs). Released ver-
sions of nAltORFS are available from the Python Pack-
age Index (PyPI) as the nAlt-ORFs package, and is ac-
cessible at https://pypi.org/project/nAltORFs/). The cur-
rent, stable version of nAltORFs (0.1.2) can be installed
via PyPI using the following command: pip install nAl-
tORFs. A conda distribution package has been added
to bioconda: https://anaconda.org/bioconda/naltorfs. Ana-
conda users can install nAltORFs from the bioconda
channel: conda install -c bioconda nAltORFs. Further-
more, Galaxy tools (38) have been created for each of the
three nAltORFs commands, enabling web-based graphi-
cal user interface (GUI) usage and workflow access. These
Galaxy tools (https://github.com/galaxyproject/tools-iuc/
tree/master/tools/naltorfs) have been reviewed by the In-
tergalactic Utilities Commission (https://galaxyproject.org/
iuc/) and are installable from the ToolShed (39). The Galaxy
tools generated to identify nAlt-ORFs through the leaky
scanning mechanism are freely accessible to researchers to
analyze the mouse transcriptome in addition to the human
transcriptome. Using these tools and others already avail-
able within Galaxy, researchers can explore nAlt-ORFs of
their organisms of interest without having to install any
software.
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