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SUMMARY

RAR-related orphan receptor-γ (RORγt) is an essential transcription factor for thymic T 

cell development, secondary lymphoid tissue organogenesis, and peripheral immune cell 

differentiation. Serine 182 phosphorylation is a major post-translational modification (PTM) 

on RORγt. However, the in vivo contribution of this PTM in health and disease settings is 

unclear. We report that this PTM is not involved in thymic T cell development and effector 

T cell differentiation. Instead, it is a critical regulator of inflammation downstream of IL-1β 
signaling and extracellular signal regulated kinases (ERKs) activation. ERKs phosphorylation 

of serine 182 on RORgt serves to simultaneously restrict Th17 hyperactivation and promote 

anti-inflammatory cytokine IL-10 production in RORγt+ Treg cells. Phospho-null RORγtS182A 

knockin mice experience exacerbated inflammation in models of colitis and experimental 

autoimmune encephalomyelitis (EAE). In summary, the IL-1β-ERK-RORγtS182 circuit protects 

against T cell-mediated inflammation and provides potential therapeutic targets to combat 

autoimmune diseases.
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Graphical Abstract

In brief

A balanced mucosal T cell population is essential for tissue homeostasis and wound healing 

post-injury and infection. In this study, Ma et al. report a surprising role for the phosphorylated 

transcription factor RORγt as a cell-intrinsic regulator for maintaining mucosal T cell 

heterogeneity and promoting inflammation resolution.

INTRODUCTION

The evolutionarily conserved RORC locus encodes two isoforms of transcription factor 

called RAR-related orphan receptor-γ (RORγ). The long isoform (RORγ) is broadly 

expressed, but the shorter isoform (RORγt) is found in cells of the immune system (Jetten 

and Joo, 2006). Humans with RORC loss-of-function mutations have impaired antibacterial 

and antifungal immunity (Okada et al., 2015). Genetic deletion and pharmacologic studies 

using mouse models demonstrate the essential roles of RORγt in secondary lymphoid tissue 

(LT) organogenesis (Cherrier et al., 2012) and the differentiation of type 3 innate lymphoid 

cells (ILC3s) and effector T lymphocytes, including T helper 17 (Th17), Th1-Th17, RORγt+ 

Treg (T regulatory) or Tγδ17 cells (Ivanov et al., 2006; Kim et al., 2017; Scoville et al., 

2016). Genetic deletion or pharmacologic inhibition of RORγt protects against autoimmune 

diseases (Ivanov et al., 2006; Kim et al., 2017; Sun et al., 2019; Yang et al., 2015), while 

RORγt overexpressing transgenic mice develop greater susceptibility (Martinez et al., 2014). 
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As many of the RORγt-dependent immune populations are ablated in the RORγt knockout 

mice, the current knowledge of RORγt functions in mature immune cells is based on 

findings from in vitro cell culture studies. Therefore, the exact in vivo functions of RORγt 

and the mechanisms by which it controls cell-type-specific gene programs in the various 

mature effector immune subsets remain to be elucidated.

The RORγt protein consists of a DNA-binding domain (DBD), a hinge region, and a 

ligand-binding domain (LBD). While the importance of DBD and LBD post-translational 

modifications (PTMs) on RORγt expression and function are well appreciated (reviewed 

in Rutz et al., 2016), the contribution of the hinge region and its PTMs remains largely 

unexplored. A recent report suggests that the hinge region of RORγt is involved in the 

organogenesis of Peyer’s patches and Th17 differentiation, but is dispensable for thymic 

T cell development and lymph node biogenesis (He et al., 2017a). Here, we demonstrate 

that the phosphorylation of the evolutionarily conserved serine 182 on the hinge region is 

the most abundant RORγt PTM and is mediated by extracellular signal regulated kinases 

(ERKs) downstream of interleukin-1 β (IL-1β) signaling.

Elevated IL-1β is associated with increased disease severity in patients with inflammatory 

bowel diseases (Coccia et al., 2012; Ligumsky et al., 1990). In dextran sodium sulfate (DSS) 

and infection-induced mouse models of colitis, dysregulated IL-1β, and/or its receptor 

signaling also promote exacerbated tissue inflammation (Maeda et al., 2005; Muller et 

al., 2009; Neudecker et al., 2017; Ng et al., 2010; Saitoh et al., 2008; Seo et al., 2015). 

IL-1β signals via the IL-1R1 and IL-1R3 complexes (referred to as IL-1R) and activate the 

mitogen-activated protein kinase (MAPK) pathway. IL-1β and MAPKs, including ERK, Jun 

N-terminal kinase (JNK), and p38, play important roles in T cell development, activation, 

differentiation, and effector functions (Fischer et al., 2005; Jain et al., 2018; Van Den 

Eeckhout et al., 2020). ERKs negatively regulates Th17 generation and effector function 

in autoimmunity diseases (Cui et al., 2009; Zhang et al., 2015). Pharmacologic inhibition 

of ERK signaling enhances Th17 differentiation (Tan and Lam, 2010; Wu et al., 2021) 

and exacerbates disease in a model of T cell transfer colitis (Tan and Lam, 2010). When 

challenged in the experimental autoimmune encephalomyelitis (EAE) model, mice deficient 

in ERK1 have an earlier disease onset and an increased disease severity (Agrawal et al., 

2006). ERKs have also been reported to regulate IL-10 expression in Treg cells (Liu et 

al., 2013). However, the downstream phosphorylation targets of ERKs in diverse T cell 

populations remain poorly characterized.

Here, we report that IL-1β signaling promotes the ERK phosphorylation of RORγtS182 

to simultaneously restrict pathogenic Th17 effector functions, potentiate RORγt+ Treg 

programs, and resolve tissue inflammation. Genetic and pharmacologic inhibition of the 

IL-1β-ERK-RORγtS182 circuit exacerbates tissue inflammation in the intestine. Single-

cell transcriptomic (scRNA sequencing [RNA-seq]) analyses further reveal RORγtS182-

dependent metabolic and stress response programs and their critical role in maintaining 

intestinal T cell heterogeneity. Importantly, this circuit is dispensable for normal thymic T 

cell development and peripheral effector cell differentiation and provides potential targets 

for ameliorating T cell-mediated autoimmunity.
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RESULTS

RORβtS182 is dispensable for normal thymic T cell development in vivo

The characterization of RORγt PTMs by immunoprecipitation and tandem mass 

spectrometry (MS/MS) revealed phosphorylation at the evolutionarily conserved serine 

182 as the most prominent PTM on RORγt (Figures 1A, 1B, and S1A), which is 

consistent with previous reports (He et al., 2017b; Huttlin et al., 2010). To assess the 

in vivo function of this PTM, we generated a phospho-null knockin C57BL/6 mouse 

line (RORγtS182A) by replacing the serine codon on Rorc with that of alanine using 

CRISPR-Cas9 technology (Figure S1B). Heterozygous crosses yielded control (RORγtWT) 

and homozygous RORγtS182A littermates in a Mendelian ratio with similar growth rates 

under cohoused conditions (Figure 1C). Unlike the RORγt−/− mice that were reported to 

have impaired thymic T cell development due to the reduced expression of an anti-apoptotic 

factor B cell lymphoma-extra large (Bcl-xL) in the CD4+CD8+ (double positive [DP]) cells 

(Guo et al., 2016; Sun et al., 2000), DP thymocytes in the RORγtS182A mice expressed 

normal levels of RORγt and Bcl-xL proteins (Figures S1C–S1E). Mature RORγtS182A 

single-positive CD4+ T helper and CD8+ cytotoxic T cells trafficking to the spleen also 

appeared normal (Figure 1D). These in vivo results suggest that RORγtS182A can replace 

wild-type (WT) RORγt proteins to support normal thymic T cell development under steady 

state.

RORγtS182-dependent Th17 and RORγt+ Treg programs in the colon

In the steady-state intestinal lamina propria, RORγt is known to be important for the 

differentiation and functions of multiple immune cell subsets, including Th17, RORγt+ 

Tregs or Tγδ17, and ILC3s. Flow cytometry revealed similar proportions of RORγt-

expressing Th17, RORγt+ Tregs or Tγδ17, and ILC3s in the small intestine and colon 

of steady-state control and RORγtS182A mice (Figures S2A and S2B). In total lamina 

propria cell lysates, we found a similar expression of RORγt-regulated genes encoding 

IL-17A and IL-10 cytokines at the RNA and protein levels (Figures S3A and S3B). Recent 

studies implied that intestinal T cells can be further divided into diverse subsets that cannot 

be illuminated by transcription factor staining alone (Huang et al., 2021; Schnell et al., 

2021). To better assess the contribution of RORγtS182 to the T cell heterogeneity in vivo, 

we performed scRNA-seq analysis on 10,000–13,000 CD4+ T cells from colonic lamina 

propria (cLP) in 2 pairs of RORγt™WT and RORγtS182A cohoused littermates (Figure 

S3C). Uniform manifold approximation and projection (UMAP) of 11,725 cells with Cd4 
> 0.4 and ~1,100 genes per cell revealed 12 cell clusters. In-depth analysis was performed 

on 6 main clusters (consisting of 8,175 cells, 69.7% total) with high co-expression of Cd4 
and Cd3e, including 2 subsets of Th17 (cluster 0 and 3, Il17ahigh), memory T cells (cluster 

1, Cd44high), Treg cells (cluster 2, Foxp3highIl10high), naive T cells (cluster 5, Cd44low), 

and proliferating T cells (cluster 6, Ki67high) (Figures 1E, 1F, and S3D). Of the 2 closely 

related Th17 subsets, cluster 0 cells expressed higher levels of Cxcl1, Ccl8, Cxcl16, and 

Cxcl13, encoding chemotactic factors for neutrophils, monocytes, macrophages, and B cells, 

respectively. In contrast, cluster 3 cells had higher levels of Ccl20, Il23r, and Il22, encoding 

chemotactic factors for lymphocytes, receptors for IL-23A, and regulators of intestinal 

epithelial cell regeneration and maturation, respectively (Figure S3E). In RORγtWT steady-
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state colons, these 2 Th17 subsets were present in a balanced 1:1 ratio (Figure 1G). In the 

RORγtS182A colon, however, this balance was disrupted with the dominance of cluster 3 

Th17 cells.

In addition to the altered Th17 populations, the RORγtS182A steady-state colon also 

harbored fewer Foxp3high regulatory T (Treg) cells (cluster 2), including 2 suppressive 

Tregs (2a and 2e, Gzmbhigh Ccr1high), two LT-like Tregs (2c and 2d, S1pr1high), and a 

non-LT Treg (2b, Gata3high Pdcd1high) population (Figure 1E). Four of five Treg populations 

expressed modest to high levels of Rorc (subsets 2a–2d) likely represent various RORγt+ 

Treg populations (Figure S3F). In the RORγtS182A colon, the proportion of the cluster 2d 

cells (S1pr1highItgalhighTcf7high LT like) was greatly reduced (Figure 1G). No significant 

differences in the proportions of other T cell populations were found. These results suggest 

that RORγtS182 is essential for maintaining proper colonic Th17 and RORγt+ Treg subset 

heterogeneity under steady state.

RORγtS182A mutant mice develop exacerbated colitis when challenged with DSS

Despite the altered steady-state T cell heterogeneity and transcriptomes in the colon, we did 

not observe any changes to the IL-17A+ proportion of total Th17 cells in the steady-state 

colon by flow cytometry (Figures S3A and S3B). RORγtS182A mice displayed growth rates 

similar to those of control littermates and did not develop spontaneous colitis (Figure 1B). 

Nonetheless, we were intrigued about the augmented levels of Il17a and Il1r1 transcripts 

found in cluster 3 RORγtS182A colonic Th17 cells (Figures 1H and 1I), as the elevated 

IL-1β level was associated with increased disease severity in patients with inflammatory 

bowel diseases (Coccia et al., 2012; Ligumsky et al., 1990). In DSS- and infection-induced 

mouse models of colitis, dysregulated IL-1β and/or its receptor signaling also promoted 

exacerbated tissue inflammation (Maeda et al., 2005; Muller et al., 2009; Neudecker et al., 

2017; Ng et al., 2010; Saitoh et al., 2008; Seo et al., 2015). Therefore, we hypothesized that 

elevated Il17a and Il1r1 transcripts in colonic Th17 cells may position RORγtS182A mice 

to develop exacerbated tissue inflammation in response to elevated IL-1β signaling during 

DSS-induced colitis. Indeed, DSS-challenged RORγtS182A mice experienced a significant 

delay in weight recovery as compared to their cohoused RORγtWT littermates (Figure 2A). 

The colons harvested from DSS-challenged RORγtS182A mice were shorter than those from 

their DSS-challenged RORγtWT littermates (Figure 2B). Histology confirmed an increase 

in infiltrated immune cells present in the colons from DSS-challenged RORγtS182A mice 

(Figure 2C). These results suggest that RORγtS182 is implicated in protecting intestine 

mucosa from exacerbated inflammation post-DSS-induced epithelial injury.

Total cLP lysates from DSS-challenged RORγtS182A mice showed similar levels of Il17a 
and a modest reduction in Il10 (Figure S4A). To elucidate RORγtS182-dependent gene 

program-specific T cell subsets in the inflamed tissues, we performed scRNA-seq analysis 

on CD4+ T cells from cLP in 2 pairs of RORγtWT and RORγtS182A cohoused littermates 

10 days post-DSS challenge. Differential gene expression analysis revealed a surprising role 

for RORγtS182 in regulating the colonic Th17 transcriptomes under both steady-state and 

DSS-challenged conditions. Group II genes, including Il17a, were previously reported to be 

downregulated in RORγt−/− cultured Th17 cells (Ciofani et al., 2012) and were found to be 
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upregulated in colonic RORγtS182A Th17 cells from steady-state and DSS-challenged mice 

(Figure S4B). Flow cytometry analysis confirmed that there were a greater proportion and an 

absolute number of IL-17A-producing colonic Th17 cells in DSS-challenged RORγtS182A 

mice (Figures 2D and 2E). The elevated Il17a level was strongly associated with the higher 

expression of Il1r1 transcript (Figure 2F) and cell surface IL-1R (Figures 2G and 2H). 

Importantly, these changes were not due to altered RORγt protein levels in the mutant CD4+ 

T cells (Figures S4C and S4D).

scRNA-seq differential gene expression analysis of all 3 RORγtS182-dependent T cell 

subsets (clusters 0, 3, and 2d, as defined in Figure 1F) further uncovered common 

and subset-specific transcripts regulated by RORγtS182 under steady-state and/or DSS-

challenged conditions. Shared among all 3 subsets were 18 (6.4%) genes upregulated and 

8 (4%) genes downregulated in RORγtS182A cells, many encoding molecules involved in 

stress response (Hspa1a and Hspa1b) and metabolism (Dgat1 and Glud1) (Figures 3A and 

3B). Importantly, many of these in vivo-identified RORγt targets had not been reported in 

prior cell culture-based studies.

In RORγt+ Tregs (subset 2d) from the DSS-challenged colon, Il10 transcripts and protein 

abundance were downregulated in cells expressing RORγtS182A (Figures 3C–3F). In 

contrast, no change in IL-10 production potential was observed in conventional Tregs. 

The reduction in Il10 transcript abundance in mutant RORγt+ Tregs was accompanied 

by the loss of Maf, Cd44, and Id2 transcripts (Figure 3B) encoding molecules previously 

implicated in Treg activation and IL-10 production (Bollyky et al., 2009; Hwang et al., 2018; 

Wheaton et al., 2017), as well as an increased expression of S1pr4, which is involved in cell 

migration (Olesch et al., 2017). Collectively, these results suggest that serine 182 on RORγt 

regulates common and distinct gene programs in colonic Th17 and RORγt+ Treg subsets.

T cell-intrinsic role of RORγtS182 in a model of transfer colitis

To test whether the protective role of RORγtS182 during inflammatory challenge is due 

to its expression in CD4+ T cells, RORγtWT or RORγtS182A CD4+-naive T cells were 

introduced into recombination activating gene (RAG)1−/− recipients in a model of T cell-

mediated colitis. For the first 2 weeks post-transfer, recipients of RORγtWT or RORγtS182A 

cells experienced similar levels of weight loss. By day 19, conditions in the recipients 

of RORγtWT cells were stabilized, but recipients of RORγtS182A cells continued to lose 

weight (Figure 4A). Total cLP lysates from RORγtS182A T cell recipients showed reduced 

expression of Il17a, but similar levels of Il10 (Figure 4B). cLP and spleens in the recipients 

of RORγtS182A T cells harbored a greater number of IL-17A-producing Th17 cells (Figures 

S5A and S5B). Thus, RORγtS182 protects against CD4+ T cell mediated colitis .

To assess whether RORγtS182 regulation of T cell cytokine production is cell intrinsic, 

we co-transferred RORγtWT and RORγtS182A CD4+ T cells marked by GFP and Thy1.1, 

respectively, into Rag1−/− recipients. One month post-transfer, colonic RORγtS182AT cells 

had higher IL-17Aand lower IL-10 production potentials compared to RORγtWT cells in 

the same tissue (Figures 4C and 4D). Taken together, these in vivo results demonstrate a T 

cell-intrinsic role of S182 on RORγt in protecting against inflammatory conditions in the 

colonic mucosa.
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Exacerbated central nervous system (CNS) inflammation in RORγtS182A mice challenged 
in the EAE model

In addition to the pathogenic role during intestine inflammation, Th17 cells are one 

of the major contributors to CNS inflammation (Cua et al., 2003; Ivanov et al., 2006; 

Solt et al., 2011; Xiao et al., 2014). Therefore, we next asked whether RORγtS182 

and its phosphorylation were also involved in EAE pathogenesis. Myelin/oligodendrocyte 

glycoprotein (MOG)-immunized RORγtS182A mice experienced more weight loss and 

developed more mobility issues than MOG-immunized control littermates (Figures 5A and 

5B). At the cellular level, however, we observed a more consistent response to MOG 

immunization. In both the spleens and spinal cords of RORγtWT and RORγtS182A mice, 

MOG immunization resulted in increased Th17, RORγt+ Treg, and conventional Treg 

proportions (Figure 5C). MOG-challenged RORγtS182A mice also harbored higher number 

of IL-17A-producing Th17 cells in the spleens and spinal cords (Figures 5D and 5E), as 

well as an increase in total CD4+ T cells and CD11c+ dendritic cells in the spinal cords 

(Figures 5E and 5F). These differences in the spinal cords were also observed at the RNA 

level (Figure 5G). Results from these EAE experiments suggest that the protective role of 

RORγtS182 can be extended to T cell-mediated inflammation in the CNS.

RORγtS182 modulates IL-1β-dependent cytokine productions in cultured Th17 cells

To dissect the molecular mechanism(s) underlying RORγtS182 regulation of Th17 cell 

functions, we used a culture system in which naive RORγtWT and RORγtS182A CD4+ T 

cells marked by nerve growth factor receptor (NGFR) and/or Thy1.1 were cocultured and 

polarized in the presence of cytokines found in inflamed tissues, including IL-6, IL-1 β, 

IL-23, and transforming growth factor-β (TGF-β). Consistent with in vivo observations, 

cultured cells with distinct genotypes continued to maintain differential IL-17A expression 

(Figure 6A), suggesting that serine 182 on RORγt is a cell-intrinsic regulator of Th17 

cytokine production.

To delineate which stimuli was upstream of the RORγtS182-dependent pathway, we tested 

different combination of the polarizing condition and found that IL-6 in combination with 

IL-1β, in the presence or absence of IL-23, was necessary for engaging the RORγtS182 

axis in fine-tuning IL-17A production in cultured Th17 cells (Figures 6B and 6C). IL-6 

in combination with IL-23 or TGF-β did not trigger similar responses. Whole-cell lysates 

(WCLs) also confirmed that S182 on RORγt was phosphorylated in these cultured T cells 

and that the overall RORγt protein abundance in control and mutant cells was comparable 

(Figures 6D and 6E). As expected, expression of the phosphomimic mutant (RORγtS182D), 

but not WT or phospho-null proteins, restricted IL-17A production capacity in cultured 

RORγtS182A Th17 cells (Figure 6F).

Furthermore, biochemical assays using human HEK293 cells transiently transfected with 

FLAG-tagged RORγt expression construct confirmed that IL-1β, but not IL-23, stimulation 

alone was sufficient to promote S182 phosphorylation on RORγt (Figure 6G). These 

results suggest that IL-1β-driven S182 phosphorylation on RORγt is likely evolutionarily 

conserved.
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ERK2 phosphorylation of RORγt protects against exacerbated DSS-induced colitis

S182 on RORγt is predicted to be a target site for MAPKs (Blom et al., 2004). scRNA-

seq results showed that transcripts encoding ERK2 as the most abundantly expressed 

MAPK across all colonic T cell subsets (Figure S6A). In human HEK293 cells transiently 

transfected with the FLAG-tagged RORγt expression construct, ERK inhibitor (PD0325901) 

treatment was sufficient to block IL-1β-mediated S182 phosphorylation on RORγt(Figure 

7A). An in vitro assay further confirmed that recombinant ERK2 alone was sufficient to 

phosphorylate S182 on RORγt (Figure 7B). In cultured Th17 cells, proximity ligation assays 

confirmed that RORγt and ERK1/2 formed a close interaction, but their interaction was not 

regulated by IL-1β (Figures 7C and S6B). The inhibition of ERK (PD0325901) modestly 

reduced S182 phosphorylation by 15%–20% (Figure S6C), suggesting that ERKs and 

possibly other kinases remaining to be identified contribute to RORγtS182 phosphorylation 

in T cells.

We speculated that if specific MAPKs were involved in the phosphorylation of serine 182 in 

T cells, the inhibition of their kinase activities in WT cells would result in elevated IL-1R 

expression and cytokine productions similar to the phenotypes observed in RORγtS182A 

cells. Consistent with this possibility, cultured WT Th17 cells treated with ERK inhibitor 

(PD0325901) displayed elevated cell surface IL-1R and greater IL-17A production capacity 

(Figures 7D and S6D). ERK inhibitor (PD0325901) treatment on RORγtS182A cells, 

however, did not further potentiate IL-17A production, suggesting that ERK and RORγtS182 

act on the same axis in controlling Th17 cytokine expression. We also identified that 

the other two ERK inhibitors (PD98059 and U0126), but not JNK (SP600125) or p38 

(SB203580) inhibitors, can augment IL-17A expression (Figure S6E). Similarly, IL-10 

production in cultured WT RORγt+ Treg-like cells generated in the presence of IL-6, IL-1β, 

and TGF-β (Figures S7A and S7B) were dependent on ERK and RORγtS182 (Figures 7E 

and S7C).

In vivo, DSS-challenged RORγtWT mice treated with ERK inhibitor (PD0325901) also 

showed a modest increase in weight loss compared to vehicle-treated controls as expected 

(Figure 7F). Similar treatment on DSS-challenged RORγtS182A mice, however, did not 

result in a more severe wasting phenotype, confirming that ERK and RORγtS182 in fact 

act on the same pathway in protecting against colonic inflammation. Together, these results 

demonstrate that the ERKs-RORγtS182 axis as a critical regulator of Th17 and RORγt+ Treg 

cell functions to protect against IL-1β-mediated inflammation.

DISCUSSION

Recent studies reveal the importance of PTMs in modulating RORγt functions in the 

immune system (reviewed in Rutz et al., 2016). For example, lysine acetylations of the DBD 

modulate RORγt binding to chromatin DNA (Lim et al., 2015) and lysine ubiquitinations 

of the DBD regulate RORγt protein turnover (Kathania et al., 2016; Rutz et al., 2015). 

Serine phosphorylation of the LBD fine-tunes RORγt-binding partners and its transcription 

activities in culture Th17 cells (Chuang et al., 2018; He et al., 2017b). In this study, we 

report that serine 182 on the hinge region of RORγt is phosphorylated by ERKs downstream 
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of IL-1β stimulation to maintain the proper balance and functions of Th17 and RORγt+ Treg 

cells under homeostatic and inflamed contexts.

In Th17 cells, the ERK-RORγtS182 pathway restricts IL-1R expression to prevent IL-17A 

overproduction in response to IL-1β stimulation. Other inflammatory cytokines, such as 

IL-6, TGF-β, and/or IL-23, do not crosstalk with the ERK-RORγtS182 regulatory node 

in Th17 cells. These results are consistent with previous reports demonstrating that ERK 

activation downstream of IL-1β signaling (Zhu et al., 2012) can negatively regulate Th17 

effector functions (Lu et al., 2010; Tan and Lam, 2010; Zhang et al., 2015). Our findings 

now connect the known ERK regulatory hub to the RORγtS182-IL-1R axis as a key negative 

feedback circuit for preventing IL-1βinduced Th17 hyperactivation. In addition to Th17 

cells, the IL-1β-ERK-RORγtS182 axis is required for maintaining a subset of the RORγt+ 

Treg populations in the steady-state colon, as well as regulating their anti-inflammatory 

cytokine IL-10 production capacity during colitis.

We speculate that immune subset-specific roles of RORγtS182 may be due to subset-specific 

corepressor and/or coactivator complexes interacting with the hinge region of RORγt in 

a cell-type and/or phosphorylation-dependent manner and should be the subject of future 

investigations. Additional studies will be needed to dissect whether RORγtS182-dependent 

RORγt+ Treg and Th17 subsets exert paracrine effects on neighboring immune cells to 

promote inflammation resolution during DSS and EAE. Furthermore, we suspect that the 

relatively modest in vivo effects of the ERK inhibitors administered intraperitoneally is 

likely due to limited bioavailability and/or rapid clearance of the drug. Future experiments 

using the ERK and RORγt double mutant mice will likely provide more definitive insights.

In contrast to our in vivo findings demonstrating that the S182 residue is dispensable for 

the role of RORγt in thymic T cell development and peripheral T cell differentiation, 

previous cell culture studies using RORγt−/− T cells retrovirally transduced with WT or 

mutant RORγt expression constructs reported that S182A mutant proteins interfere with 

thymic DP maturation and Th17 cell differentiation (He et al., 2017a, 2017b). It is important 

to note that T cell development is severely affected in RORγt−/− mice, resulting in a 

drastic reduction in mature T cells in circulation (Kurebayashi et al., 2000). We speculate 

that RORγt−/− T cells used in previous reports developed in the absence of RORγt are 

likely transcriptionally and functionally distinct from T cells developed via the canonical 

RORγt-dependent mechanism. In addition, these previous reports used IL-6 and TGF-β 
to polarize virally transduced RORγt−/− T cells toward the Th17 lineage in vitro. Based 

on results from our in vitro and in vivo experiments, IL-1β, but not IL-6 and TGF-β, 

is necessary for engaging the ERK-RORγtS182 circuit. Therefore, the RORγtS182A mouse 

model reported here provides an excellent opportunity for uncoupling the developmental 

and differentiation roles of RORγt from its immune effector roles in mature T cells, 

advancing efforts to understand the extent to which RORγt contributes to tissue homeostasis 

in vivo. Given the important roles of Th17 and RORγt+ Treg cells in settings of numerous 

autoimmune diseases (Guo, 2016; Martinez et al., 2014; Xu et al., 2018), we speculate that 

the development of pharmacological strategies that can activate the IL-1β-ERK-RORγtS182 

negative feedback circuit and restore Th17-RORγt+ Treg balance will provide a potential 

opportunity for combating T cell-mediated inflammatory diseases.
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Limitations of the study

We have not excluded the possible contribution(s) of additional RORγt-expressing cells, 

including Tγδ17, ILC3, and neutrophils, to the DSS and EAE phenotypes observed in 

the RORγtS182A total knockin mice. We have not assessed the relative and/or temporal 

contributions of RORγtS182A Th17 hyperactivation and reduced the suppressive functions 

of RORγtS182A RORγt+ Treg to elucidate whether one or both alterations underlie the 

exacerbated inflammatory phenotypes observed. The in vitro T cell polarization conditions 

described in this study generated a mix culture of 20%–30% RORγt+ Treg-like cells and 

70%–80% Th17. Although this ratio reflected those found in the intestine in vivo, further 

culture condition optimization will be needed to yield homogeneous RORγt+ Treg-like cells 

for biochemical studies to better address whether phosphorylated RORγt regulates its targets 

directly or indirectly. We have not performed extensive protein-level validation to confirm 

results from our scRNA-seq analysis. If cluster specific gene expression differences can be 

confirmed at the protein level, then we speculate that cluster-specific cell-surface molecules 

can be helpful markers for identifying and capturing specific in vivo T cell subsets for future 

mechanistic studies.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Wendy Jia Men Huang 

(wendyjmhuang@ucsd.edu).

Materials availability—Plasmids and primer sequences in this study will be available 

upon request. Mouse line RORγtS182A on C57BL/6 background generated in this study will 

be available upon request and with approval of institutional Material Transfer Agreements 

(MTA).

Data and code availability

• Single-cell RNA-seq data have been deposited at GEO and are publicly available 

as of the date of publication. Accession numbers are listed in the key resources 

table. Original western blot images and microscopy data will be shared by 

the lead contact upon request. This paper also analyzes an existing, publicly 

available data. Accession number for this dataset is listed in the key resources 

table.

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

• The accession numbers for the scRNA-seq data reported in this paper are 

available on GEO: GSE173887.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

For in vivo animal studies, adult RORγtWT and homogenous knock-in (RORγtS182A) 

cohoused littermates (both male and female in equal proportion) on C57BL/6J background 

between eight to twelve weeks old were used. Littermates of the same sex were randomly 

assigned to experimental groups. Our vivarium at UCSan Diego is kept under specific 

pathogen free (SPF) conditions. Regular serology and PCR tests ensure the absence of 

Epizootic diarrhea of infant mice (rotavirus, EDIM), Mouse hepatitis virus (MHV), Mouse 

parvovirus (MPV), Minute virus of mice (MVM), Theiler’s murine encephalomyelitis virus 

(TMEV), fur mites and pinworms. All animal studies were approved and followed the 

Institutional Animal Care and Use Guidelines of the University of California San Diego.

Primary T cell cultures were obtained from adult RORγtWT and homogenous knock-

in (RORγtS182A) cohoused littermates (both male and female in equal proportion) on 

C57BL/6J background between eight to twelve weeks old. Mouse naive T cells were 

purified from spleens and lymph nodes using the Naive CD4+ T Cell Isolation Kit 

according to the manufacturer’s instructions (Miltenyi Biotec). Cells were cultured in 

Iscove’s Modified Dulbecco’s Medium (IMDM, Sigma Aldrich) supplemented with 10% 

heat-inactivated FBS (Peak Serum), 50U/50 ug penicillin-streptomycin (Life Technologies), 

2 mM glutamine (Life Technologies), and 50 μM β-mercaptoethanol (Sigma Aldrich). For 

Th17 cell polarization, naive cells were seeded in 24-well or 96-well plates, pre-coated 

with rabbit anti-hamster IgG, and cultured in the presence of 0.25μg/mL anti-CD3ε 
(eBioscience), 1μg/mL anti-CD28 (eBioscience), 20ng/mL IL-6 (R&D Systems) with the 

addition of 0.3ng/mL TGFβ (R&D Systems), and/or 20ng/mL IL-1b (R&D Systems), and/or 

25ng/mL IL-23 (R&D Systems) for 72 hours. For generating RORγt+ Treg-like cells in 

culture, naive cells were cultured in the presence of 0.25μg/mL anti-CD3ε (eBioscience), 

1μg/mL anti-CD28 (eBioscience), 20ng/mL IL-6 (R&D Systems), 5ng/mL TGFβ (R&D 

Systems), and 20ng/mL IL-1 β (R&D Systems) for 72 hours. Inhibitors of JNK (SP600125, 

10μM), p38 (SB203580, 10μM), or ERK inhibitors (PD98059, 10μM; PD0325901, 5μM 

and U0126, 5μM) were obtained from MedChemExpress. Cultured cells were treated at 

48 hours after polarization. For co-culture experiments, naïve CD4+ cells were activated 

with 0.25μg/mL anti-CD3ε (eBioscience), 1μg/mL anti-CD28 (eBioscience) overnight, and 

then transduced with either NGFR or Thy1.1 expressing constructs, mixed in 1:1 ratio and 

cocultured as described above.

METHOD DETAILS

DSS induced colitis—Dextran Sulfate Sodium Salt (DSS) Colitis Grade 

36,000-59,000MW (MP Biomedicals) was added to the drinking water at a final 

concentration of 2% (wt/vol) and administered for 7 days. Mice were weighed every other 

day. On day 10, colons were collected for histology staining and lamina propria cells were 

isolation as described (Lefrancois and Lycke, 2001). Cells were kept for RNA isolation or 

flow cytometry. The colonic sections from mice were scored in a double-blind fashion as 

described previously (Abbasi et al., 2020; Koelink et al., 2018).

T cell transfer colitis—For T cell transfer model of colitis, 0.5 million naive CD4+ 

T cells were isolated from mouse splenocytes using the Naive CD4+ T Cell Isolation 
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Kit (Miltenyi), and administered to Rag1−/− recipients intraperitoneally. For co-transfer 

experiments, CD4+ T cells from RORγtWT and RORγtS182A mice were transduced with 

GFP expressing construct (pMIG) or Thy1.1 expressing construct (MSCV), mixed in a 1:1 

ratio, and i.p. into RAG1−/− mice. Weights were monitored twice a week for a total of 33 

days.

EAE model—EAE was induced in 8-week-old mice by subcutaneous immunization with 

100 μg myelin oligodendrocyte glycoprotein (MOG35–55) peptide (GenScript Biotech) 

emulsified in complete Freund’s adjuvant (CFA, Sigma-Aldrich), followed by administration 

of 400 ng pertussis toxin (PTX, Sigma-Aldrich) on days 0 and 2 as described (Bittner et 

al., 2014). Clinical signs of EAE were assessed as follows: 0, no clinical signs; 1, partially 

limp tail; 2, paralyzed tail; 3, hind limb paresis; 4, one hind limb paralyzed; 5, both hind 

limbs paralyzed; 6, hind limbs paralyzed, weakness in forelimbs; 7, hind limbs paralyzed, 

one forelimb paralyzed; 8, hind limb paralyzed, both forelimbs paralyzed; 9, moribund; 10, 

death.

Flow cytometry—Colonic lamina propria cells were digested with Dispase (Worthington), 

Dnase I (Millipore Sigma) and Collagenase D (Roche), and isolated with Percoll (GE 

healthcare). Spinal cords were dissected and digested with Collagenase D; immune 

cells were isolated with 38% Percoll. Cells were stimulated with 5 ng/mL Phorbol 12-

myristate 13-acetate (PMA, Millipore Sigma) and 500ng/mL ionomycin (Millipore Sigma) 

in the presence of GoligiStop (BD Bioscience) for 5 hours at 37°C, followed by cell 

surface marker staining. Fixation/Permeabilization buffers (eBioscience) were used per 

manufacturer instructions to assess intracellular transcription factor and cytokine expression. 

Antibodies are listed in key resources table.

scRNA-seq and analysis—Colonic lamina propria cells from control or DSS treated 

mice were collected and enriched for CD4+ T cells using the mouse CD4+ T cell Isolation 

Kit (Miltenyi). Enriched CD4+ cells (~10,000 per mouse) were prepared for single cell 

libraries using the Chromium Single Cell 3’ Reagent Kit (10xGenomics). The pooled 

libraries of each sample (20,000 reads/cell) were sequenced on Nova-Seq S4 following the 

manufacturer’s recommendations. Cellranger v3.1.0 was used to filter, align, and count reads 

mapped to the mouse reference genome (mm10-3.0.0). The Unique Molecular Identifiers 

(UMI) count matrix obtained was used for downstream analysis using Seurat (v4.0.1) (Hao 

et al., 2021). The cells with mitochondrial counts >5%, as well as outlier cells in the top 

and bottom 0.2% of the total gene number detected index were excluded. After filtering, 

randomly selected 10,000 cells per sample were chosen for downstream analysis. Cells with 

Cd4 expression lower than 0.4 were removed, resulting in 27,420 total cells from eight 

samples. These cells were scaled and normalized using log-transformation, and the top 3,000 

genes were selected for principal component analysis. The dimensions determined from 

PCA were used for clustering and non-linear dimensional reduction visualizations (UMAP). 

Differentially expressed genes identified by FindMarkers were used to characterize each cell 

cluster. Other visualization methods from Seurat such as VlnPlot, FeaturePlot, and DimPlot 

were also used. The accession numbers for the scRNA-seq data reported in this paper are 

available on GEO: GSE173887.
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FLAG tag pulldown and in vitro phosphorylation assay—HEK (293) cells were 

seeded in 10 cm tissue culture plates at a density of 4 million cells per plate in 8mL 

of DMEM containing 10% FBS, and then incubated overnight at 37° C. 2mg of plasmid 

DNA (pcDNA or pcDNA-2xFLAG-RORγt) was transfected into cells using 6mL of X-

tremeGENE™ HP DNA Transfection Reagent (Roche) at 37°C for 16hrs in 8mL of 

DMEM containing 1% FBS for serum starvation, followed by stimulation with 10ng/mL 

hIL-1β (R&D) and/or hIL-23 (R&D). The treatment of 5 mM PD0325901 was performed 

at the same time as the serum starvation. Whole cell lysates (WLC) were prepared 

as previously described (Abe et al., 2018) with modifications as follows. HEK (293) 

cells were sonicated in cell lysis buffer (50mM HEPES-KOH (pH 7.9), 150mM NaCl, 

1.5mM MgCl2, 1% NP-40, 1mM Na3VO4, 1mM PMSF (Sigma-Aldrich), 1X protease 

inhibitor cocktail (Sigma-Aldrich)) by ultrasound homogenizer (Bioruptor, Diagenode) 

for 10min at 4°C. For immunoblotting of input samples, aliquots of WCL were boiled 

at 95°C for 5min in NuPAGETM LDS Sample Buffer (Thermo Fisher Scientific) with 

NuPAGE™ Sample Reducing Agent (Thermo Fisher Scientific), subjected to SDS-PAGE, 

and transferred to immobilon-P transfer membranes (Merck Millipore). Immunodetection 

was carried out with the indicated antibodies (Table S1) and bound antibodies were 

visualized with peroxidase-conjugated affinity-purified donkey anti-mouse or anti-rabbit 

IgG (Dako) using LuminateTM Forte Western HRP Substrate (Merck Millipore), and 

luminescence images were analyzed by ChemiDoc XRS+ System (Bio-Rad Laboratories). 

For FLAG tag pulldown, WCL were immunoprecipitated in cell lysis buffer by wheel 

rotating for 4hrs at 4°C in the presence of anti-FLAG M2 affinity gel (Sigma-Aldrich). 

For in vitro phosphorylation assay, the immunoprecipitated affinity gel was washed three 

times with cell lysis buffer and three times with PBS, and then incubated with 0.5mg 

of recombinant ERK2 (EMD Millipore, 14-173) in 60mL of reaction buffer (50mM Tris-

HCl (pH 7.5), 0.1mM EGTA, 0.1mM EGTA, 0.1mM Na3VO4, 0.1% 2-Mercaptoethanol, 

1mg/mL BSA, 0.1mM ATP, 15mM MgCl2) for 1hr at 30°C. After washed three times with 

PBS, the affinity gel was incubated with 150ng/mL 3X FLAG peptide (Sigma-Aldrich) for 

30 min at 4°C. The elution was subjected to immunoblotting as described above.

Proximity ligation assay—Proximity ligation assays on cultured Th17 cells were 

performed in accordance with the Duolink® PLA Fluorescence Protocol (Sigma-Aldrich). 

Briefly, cells were fixed with 3.7% formaldehyde on coverslips and permeabilized with 

0.1% Triton X-100, followed by blocking, hybridization with primary antibodies, incubation 

with PLA probes, and lastly the ligation-amplification steps. Coverslips mounted in DAPI-

containing medium and imaged on the Leica SP8 confocal microscope (63x Oil objective, 

DAPI and Alex 594 channels, room temperature) at the UCSD School of Medicine 

Microscopy Core. Automated fluorescent particle analysis was performed by ImageJ/Fiji 

software where the threshold was set to remove background fluorescent and segment 

individual particles as described (Debaize et al., 2017).

cDNA synthesis, qRT-PCR, and RT-PCR—Total RNA was extracted with the RNeasy 

kit (QIAGEN) and reverse transcribed using iScript™ Select cDNA Synthesis Kit (Bio-Rad 

Laboratories). Real time RT-PCR was performed using iTaq™ Universal SYBR® Green 

Supermix (Bio-Rad Laboratories). Expression data was normalized to Gapdh mRNA levels.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details of each experiment can be found in the figure legends, including the 

statistical tests used, exact number of animals (n) used, and the number of times each 

assay was performed. All values are presented as means ± standard deviation. Significant 

differences were evaluated using GraphPad Prism 8. The student’s t-test, paired t-test, or 

multiple t-tests were used to determine significant differences. A two-tailed p-value of <0.05 

was considered statistically significant in all experiments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The master T cell transcription factor, RORγt, is phosphorylated on S182 by 

ERK2

• IL-1β activates the ERK-RORγt axis to modulate Th17 and RORγt+ Treg 

functions

• Phospho-null mice experience exacerbated tissue inflammation in disease 

models

• The ERK2-RORγt axis is dispensable for normal thymic T cell development
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Figure 1. Normal T cell development and differentiation in RORγtS182A mice
(A) Proportion of modified and unmodified peptides identified by tandem mass spectrometry 

(MS/MS) mapping to murine RORγt from whole-cell lysates (WCL) of HEK293 cells 

transfected with a 2xFLAG-mRORγt expression construct for 48 h. Phosphorylation (p), 

methylation (m), and ubiquitination (u).

(B) Model diagram of RORγt protein domains. Black vertical line indicates the position 

of the evolutionarily conserved serine 182. AF-1, activation function domain 1; DBD, 

DNA-binding domain; LBD, ligand-binding domain.
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(C) Weights of 2- to 4-month-old wild-type (RORγtWT, n = 49) and RORγtS182A (n = 57) 

adult mice obtained from heterozygous crosses. Each dot represents the result from 1 mouse.

(D) Representative flow cytometry analysis of cell surface CD4 and CD8α on splenocytes 

from RORγtWT and RORγtS182A cohoused littermates. This experiment was repeated 3 

times on independent biological samples with similar results.

(E) UMAP plots depicting the transcriptomes of immune cell clusters (top) and cluster 2 

subsets (bottom) obtained from colonic lamina propria (cLP) CD4+ T cells (10X Genomics 

droplet-based 3′ scRNA-seq).

(F) Violin plots of selected gene expressions in cells from the indicated clusters.

(G) Proportions of colonic Cd4+Cd3e+ (left) and Cd4+Cd3e+Foxp3+ (right, cluster 2) T cells 

in each cluster from 2 pairs of RORγtWT and RORγtS182A littermates. Each bar represents 

the sample mean. * p < 0.05 (ratio paired t test).

(H) Heatmap of mean scaled average expression of selected genes from the indicated 

clusters.

(I) Violin plots (left) and UMAP (right) showing expression of Il17a and Il1r1 in colonic 

Th17 cell subsets (clusters 0 and 3) in steady-state RORγtWT and RORγtS182A mice.
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Figure 2. RORγtS182A mice have exacerbated diseases in DSS-induced colitis
(A) Weight changes of RORγtWT and RORγtS182A cohoused littermates challenged with 

2% DSS in drinking water for 7 days and monitored for another 3 days. Each bar represents 

the sample mean. Each dot represents the result from 1 mouse. * p < 0.05 (multiple t test).

(B) Left: Representative bright-field images of colons from (A). Right: Summarized colonic 

lengths of DSS-treated RORγtWT (n = 5) and RORγtS182A (n = 6) mice harvested on day 

10. * p < 0.05 (t test).
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(C) Left: Representative colonic sections from (B). Right: Summarized score of colonic 

inflammatory infiltrates in DSS-treated RORγtWT (n = 4) and RORγtS182A (n = 5) mice. 

Each bar represents the sample mean. * p < 0.05 (t test).

(D) Proportion and absolute number of IL-17A+ producing Th17 (T cell receptor 

[TCR]β+RORγt+Foxp3−), RORγt+ Treg (TCRβ+RORγt+Foxp3+), and conventional Tregs 

(TCRβ+RORγt−Foxp3+) in colons from DSS-challenged RORγtWT and RORγtS182A mice. 

Each dot represents the result from 1 mouse. Each bar represents the sample mean. *p < 

0.05; n.s., not significant (paired t test).

(E) Representative flow cytometry analysis of colonic CD4+ T subsets and IL-17A and 

IL-10 production capacities in Th17 cells from DSS-treated mice.

(F) Linear regression analysis of Il17a and Il1r1 average expressions in colonic Th17 subsets 

from the indicated conditions as determined by scRNA-seq.

(G) IL-1Rhigh proportion and IL-1R geometric mean fluorescence (gMFI) in colonic 

RORγtWT and RORγtS182A Th17 cells from DSS-challenged mice. Each dot represents 

the result from 1 mouse. Each bar represents the sample mean. * p < 0.05 (paired t test).

(H) Representative flow cytometry analysis of IL-1R in colonic Th17 cells from DSS-

challenged mice harvested on day 10. Forward scatter (FSC).
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Figure 3. Common and distinct RORγtS182-dependent gene programs in colonic Th17 and 
RORγt+ Treg cells
(A) Number of RORγtS182-dependent genes (DEG, p < 0.05) in colonic Th17 (cluster 0 and 

3) and RORγt+ Treg cells (cluster 2d) from steady-state or DSS-challenged mice.

(B) Venn diagram showing overlap and subset-specific RORγtS182-regulated genes in Th17 

and RORγt+ Treg cells from (A).

(C) Percentage of cells expressing RORγtS182-dependent genes (gray dots, p < 0.05) in 

colonic RORγt+ Treg cells (subset 2d) from DSS-challenged RORγtWT and RORγtS182A 

mice. Select genes were labeled and highlighted in blue.
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(D) Violin plot of Il10 expression in RORγt+ Treg cells (subset 2d) from control or DSS-

challenged RORγtWT and RORγtS182A mice.

(E) Proportion and cell number of IL-10-producing colonic Th17, RORγt+ Treg, and 

conventional Treg cells from DSS-challenged RORγtWT and RORγtS182A mice. Each dot 

represents the result from 1 mouse. Each bar represents the sample mean. *p < 0.05; ***p < 

0.001; n.s., not significant (paired multiple t test).

(F) Representative flow cytometry analysis of IL-17A and IL-10 in colonic RORγt+ Treg 

and conventional Treg cells from DSS-challenged mice harvested on day 10.
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Figure 4. Transfer of RORγtS182A CD4+ T cells promote exacerbated wasting in Rag1−/− mice
(A) Weight changes of Rag1−/− mice receiving RORγtWT (n = 6) or RORγtS182A (n = 6) 

naive CD4+ T cells. Each dot represents the result from 1 mouse. Each bar represents the 

sample mean. **p < 0.01 and ***p < 0.001 (multiple t test).

(B) RNA expression level of Il17a and Il10 in total cLP cell lysate from Rag1−/− mice in 

(A). Each dot represents the result from 1 mouse. Each bar represents the sample mean. *p < 

0.05; n.s., not significant (t test).
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(C) Right: Activated RORγtWT (transduced with GFP expressing pMIG construct) or 

RORγtS182A (transduced with Thy1.1 expressing MSCV construct) CD4+ T cells were 

mixed in a 1:1 ratio and injected into Rag1−/− mice. Left: Summarized proportion of 

IL-17A+ and IL-10+ colonic Th17 and RORγt+ Treg cells from Rag−/− recipients 33 days 

post-transfer (n = 5). Each line represents results from same Rag1−/− recipient. Each bar 

represents the mean from 5 Rag1−/− recipients. *p < 0.05; n.s., not significant (multiple t 

test).

(D) Representative flow cytometry analysis of IL-17A and IL-10 in colonic Th17 and 

RORγt+ Treg cells from (C).
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Figure 5. RORγtS182A mice challenged in the EAE model experienced more severe disease
(A) Weight change of MOG-immunized RORγtWT (n = 14) and RORγtS182A (n = 23) mice. 

Each dot represents the result from 1 mouse. Each bar represents the sample mean. * p < 

0.05; n.s., not significant (multiple t test).

(B) Disease score of mice from (A). Each dot represents the result from 1 mouse. Each bar 

represents the sample mean. *p < 0.05; n.s., not significant (multiple t test).
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(C) Proportion of Th17, RORγt+ Treg, and conventional Treg cells in healthy spleens as 

well as spleens and spinal cords from MOG-immunized RORγtWT and RORγtS182A mice. 

Each dot represents the result from 1 mouse. Each bar represents the sample mean.

(D) Cell numbers of CD4+ and IL-17A+ Th17 cells, and gMFI of RORγt in the spleens 

of MOG-immunized mice from (A) harvested at the peak of disease (day 19). Each dot 

represents the result from 1 mouse. Each bar represents the sample mean. *p < 0.05; n.s., not 

significant (t test).

(E) Cell numbers of CD4+ and IL-17A+Th17 cells and gMFI of RORγt in the spinal 

cord MOG-immunized mice from (A) harvested at the peak of disease (day 19). Each dot 

represents the result from 1 mouse. Each bar represents the sample mean. *p < 0.05; n.s., not 

significant (t test).

(F) Cell numbers of macrophages (MØ, CD11b+F4/80+) and dendritic cells (DC, 

CD3ε−CD11c+) in the spinal cord of MOG-immunized mice harvested at the peak of disease 

(day 19). Each dot represents the result from 1 mouse. Each bar represents the sample mean. 

*p < 0.05; n.s., not significant (t test).

(G) Normalized mRNA expression of select genes in the immune infiltrates of the spinal 

cords at the peak of EAE disease from MOG-immunized RORγtWT and RORγtS182A mice 

as detected by qRT-PCR. Each dot represents the result from 1 mouse. Each bar represents 

the sample mean. *p < 0.05, **p < 0.01 (paired multiple t test).
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Figure 6. Cultured RORγtS182A Th17 cells harbor augmented cytokine production potential in 
response to IL-1β signaling
(A) Left: Workflow of the co-culture experiment using the indicated transduced vectors and 

marked RORγtWT and RORγtS182A CD4+ T cells polarized in the presence of IL-6 (20 

ng/mL), IL-1β (20 ng/mL), IL-23 (25 ng/mL), and TGF-β (0.3 ng/mL). Right: Summarized 

proportion of IL-17A+ in cultured cells 3 days postpolarization. Each line represents results 

from 1 experimental well. ****p < 0.0001 (paired t test).
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(B) Summarized proportion of IL-17A+ in Th17 cells cultured in the indicated conditions. 

Each dot represents the result from 1 mouse. Each bar represents the sample mean. *p < 

0.05, **p < 0.01; n.s., not significant (paired multiple t test).

(C) Representative flow cytometry analysis of IL-17A and IL-17F expression in cultured 

Th17 cells from (B).

(D) RORγt gMFI in cultured Th17 cells from (B). Each dot represents the result from an 

independent experiment. Each bar represents the sample mean. n.s., not significant.

(E) Immunoblot (IB) analysis of total RORγt or RORγt phosphorylated at S182 (pS182) in 

cultured Th17 WCL from 2 pairs of RORγtWT and RORγtS182A littermates.

(F) Proportion of IL-17A+ among cultured RORγtS182A Th17 cells transduced with 

retroviruses carrying RORγtWT (circle) (Huh et al., 2011), RORγtS182A (triangle), or 

RORγtS182D (square) expression constructs. Each dot represents the result from an 

independent experiment. Each bar represents the sample mean. *p < 0.05 (t test).

(G) HEK293 cells transfected with empty or 2xFLAG-RORγt expression constructs for 16 h 

were stimulated with the indicated cytokines. RORγt was captured by anti-FLAG beads and 

pS182 status was detected by immunoblot.
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Figure 7. ERK2 phosphorylation of RORγt protects against exacerbated DSS-induced colitis
(A) HEK293 cells transfected with empty or 2xFLAG-RORγt expression constructs for 16 

h were treated with dimethylsulfoxide (DMSO, Veh) or ERK inhibitor (PD0325901, 5μM) 

and stimulated with the indicated cytokines. RORγt was captured by anti-FLAG beads and 

pS182 status was detected by immunoblot.

(B) HEK293 cells transfected with empty or 2xFLAG-RORγt expression constructs for 16 

h. RORγt was captured by anti-FLAG beads and incubated with recombinant ERK2 in vitro. 
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Phospho-S182 status was detected by immunoblot. This experiment was repeated twice with 

similar results.

(C) Representative images from proximity ligation assay (PLA) indicating interactions 

between RORγt and ERK1/2 in wild-type cultured Th17 cells.

(D) Representative flow cytometry analysis of IL-17A expression in wild-type Th17 cells 

polarized under IL-6 (20 ng/mL), IL-1β (20 ng/mL), and IL-23 (25 ng/mL) in the presence 

or absence of ERK inhibitor (PD0325901, 5μM) at 48 h. Cells were harvested and analyzed 

at 72 h.

(E) Representative flow cytometry analysis of IL-10 expression in wild-type RORγt+ Treg 

cells polarized under IL-6 (20 ng/mL), IL-1β (20 ng/mL), and TGF-β (5 ng/mL) in the 

presence or absence of ERK inhibitor (PD0325901, 5μM) at 48 h. Cells were harvested and 

analyzed at 72 h.

(F) Weight changes in RORγtWT (left) and RORγtS182A (right) cohoused littermates 

challenged with 2% DSS in drinking water for 7 days, followed by regular water for 3 

days. DMSO (Veh) or PD0325901 containing saline was administered intraperitoneally (i.p.) 

at 0.5 mg/kg on days 4 and 6. The results displayed were the average and standard deviation 

of 3 independent experiments combined with a total of 5 mice in each condition. *p < 0.05 

(paired multiple t test).

Ma et al. Page 33

Cell Rep. Author manuscript; available in PMC 2022 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ma et al. Page 34

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

RORg pS203 / RORgt pS182 Rockland-Inc Cat# 600-401-GR8

Bcl-xL (54H6), Alexa Fluor™ 488 conjugated Cell Signaling Cat# 2767S; RRID: AB_2274763

RORgt (B2D), PE-eFluor 610 conjugated Thermo Fisher Scientific Cat# 61-6981-82; RRID: AB_2574650

IL-10 (JES5-16E3), PE conjugated Thermo Fisher Scientific Cat# 12-7101-41; RRID: AB_466174

FOXP3 (FJK-16s), PE-Cyanine5.5 conjugated Thermo Fisher Scientific Cat# 35-5773-82; RRID: AB_11218094

CD3e (eBio500A2), APC-eFluor 780 conjugated Thermo Fisher Scientific Cat# 47-0033-82; RRID: AB_2637316

CD11c (N418), PE-Cyanine5.5 conjugated Thermo Fisher Scientific Cat# 35-0114-82; RRID: AB_469709

IL-17A (TC11-18H10.1), APC/Cyanine7 
conjugated

BioLegend Cat# 506939; RRID: AB_2565780

IL-17F (9D3.1C8), Alexa Fluor™ 488 conjugated BioLegend Cat# 517006; RRID: AB_10661903

CD4 (GK1.5), PE/Cyanine5 conjugated BioLegend Cat# 100410; RRID: AB_312695

CD8a (53-6.7), Alexa Fluor™ 488 conjugated BioLegend Cat# 100723; RRID: AB_389304

TCR gamma/delta (UC7-13D5), FITC conjugated BioLegend Cat# 107503; RRID: AB_313312

CD121a, IL-1 R, Type I/p80 (JAMA-147),
PE conjugated BioLegend Cat# 113505; RRID: AB_2125036

F4/80 (BM8), PE conjugated BioLegend Cat# 123109; RRID: AB_893498

CD11b (M1/70), APC/Cyanine7 conjugated BioLegend Cat# 101226; RRID: AB_830642

CD3e (145-2C11), Functional Grade Thermo Fisher Scientific Cat# 16-0031-86, RRID: AB_468849

CD28 (37.51), Functional Grade Thermo Fisher Scientific Cat# 16-0281-86, RRID: AB_468923

p44/42 MAP Kinase Cell Signaling Cat# 4696, RRID: AB_390780

ANTI-FLAG® M2 Affinity Gel Sigma-Aldrich Cat# A2220, RRID: AB_10063035

Chemicals, peptides, and recombinant proteins

SP600125 MedChemExpress Cat# HY-12041

SB203580 MedChemExpress Cat# HY-10256

PD98059 MedChemExpress Cat# HY-12028

PD0325901 APExBIO Cat# A3013

U0126 MedChemExpress Cat# HY-12031

Recombinant Human TGF-beta 1 Protein R&D Cat# 240-B

Recombinant Mouse IL-6 Protein R&D Cat# 406-ML

Recombinant Mouse IL-1 β Protein R&D Cat# 401-ML

Recombinant Mouse IL-23 Protein R&D Cat# 1887-ML

MAP Kinase 2/Erk2 Protein, active, mouse Millipore Sigma Cat# 14-173

Recombinant Human IL-23 Protein R&D Cat# 1290-IL

Recombinant Human IL-1 β Protein R&D Cat# 201-LB

Critical commercial assays

Chromium Single Cell 3’ Reagent Kit 10xGenomics PN-1000121

Naive CD4+T Cell Isolation Kit, mouse Miltenyi Biotec Cat# 130-104-453
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REAGENT or RESOURCE SOURCE IDENTIFIER

Duolink® PLA Starter Kits Millipore Sigma DUO92101

Deposited data

Single cell RNA-seq This paper GEO: GSE173887

Experimental models: Cell lines

Human: Platinum-E (Plat-E) Retroviral Packaging
Cell Line

Cell Biolabs, Inc. Cat# RV-101

Human: HEK293 ATCC CRL-1573

Experimental models: Organisms/strains

Mouse: RORγtS182A, C57BL/6 This paper N/A

Mouse: B6.129S7-Rag1tm1Mom/J The Jackson Laboratory Strain #002216

Oligonucleotides

Primers for qPCR, see Table S2 This paper N/A

Recombinant DNA

MSCV-IRES-GFP (pMIG) Addgene RRID: Addgene_9044

MSCV-IRES-NGFR Addgene RRID: Addgene_27489

MSCV-IRES-Thy1.1 Addgene RRID: Addgene_17442

MSCV-mRorgt(wt)-IRES-Thy1.1 (Huh et al., 2011) N/A

MSCV-mRorgt(S182A)-IRES-Thy1.1 This paper N/A

MSCV-mRorgt(S182D)-IRES-Thy1.1 This paper N/A

pcDNA3.1 Invitrogen Cat# V79020

pcDNA3.1-mRorgt(wt)-Cterm2xFLAG This paper N/A

Software and algorithms

ImageJ National Institutes of Health, 
Bethesda, MD, USA https://imagej.nih.gov/ij/

Cellranger v3.1.0 10xGenomics https://support.10xgenomics.com/single-cell-gene-
expression/software/pipelines/latest/installation

Seurat (v4.0.1) (Hao et al., 2021) https://satijalab.org/seurat/

Prism 8 GraphPad https://www.graphpad.com/scientific-software/
prism/

Other

Sequence data, analyses, and resources related to 
RORγt−/− cultured Th17 cells

(Ciofani et al., 2012) GEO: GSE40918
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