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Precision medicine in type 1 diabetes
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Abstract
First envisioned by early diabetes clinicians, a person-centred approach to care was an aspirational goal that aimed to match
insulin therapy to each individual’s unique requirements. In the 100 years since the discovery of insulin, this goal has evolved to
include personalised approaches to type 1 diabetes diagnosis, treatment, prevention and prediction. These advances have been
facilitated by the recognition of type 1 diabetes as an autoimmune disease and by advances in our understanding of diabetes
pathophysiology, genetics and natural history, which have occurred in parallel with advancements in insulin delivery, glucose
monitoring and tools for self-management. In this review, we discuss how these personalised approaches have improved diabetes
care and how improved understanding of pathogenesis and human biology might inform precision medicine in the future.
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Introduction

The year 2022 marks the 100th year since the first patient
received insulin. Frederick Banting, Charles Best and James
Collip’s transformative discovery of insulin in 1921 has given
millions of individuals with type 1 diabetes a second chance at
life. Over the ensuing 100 years, type 1 diabetes has evolved
from a once inevitable death sentence into a manageable,
chronic condition. This evolution has been facilitated by
improvements in insulin formulations and insulin delivery,
advancements in the convenience, frequency and accuracy
of glucose measurement, and the development and application
of tools and guidance for lifestyle and dietary management. In
parallel, knowledge and understanding of type 1 diabetes
pathogenesis have advanced considerably, offering the pros-
pect of therapies that intervene in disease pathogenesis to
prevent, reverse or delay the progression of beta cell loss. In
this review we describe how advancements in our understand-
ing of type 1 diabetes pathophysiology and treatment have
revolutionised clinical care and improved the person-centred
approach envisioned by early diabetes clinicians.

The 1920s marked a new era for people living with type 1
diabetes, with insulin injections effectively preventing death
from severe insulin deficiency. However, with little under-
standing of the pathophysiology of diabetes development
and no differentiation of disease ‘subtypes’, standards of care
remained largely the same for all patients diagnosed with
diabetes. Early into this post-insulin era, it was recognised that
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diabetes is a chronic illness and that treatment would involve
the lifelong combination of insulin regimens with diet, exer-
cise and infection protocols [1]. These medical insights were
disseminated to both patients and clinicians in manuals on
diabetes. One of the first and most detailed manuals to incor-
porate insulin treatment was developed by Elliot Joslin in
1924 [2]. This manual, which encompassed all knowledge
required by those living with diabetes and by their clinicians,
covered urinalysis using Benedict’s test for glucose monitor-
ing, administration of insulin, nutritional statistics for a variety
of foods, and information on how to treat diabetes with insulin
and diet. Joslin was prescient in recognising that treatment
regimens should be adjusted to an individual’s needs, stating
in 1924 that ‘The treatment of a patient with diabetes lasts
through life. Treatment therefore must be adjusted to the
condition of the patient and should be so arranged that it can
be continued for years, not only without harm, but with as
little annoyance and interference with the daily routine as is
possible. Consequently, the patient must be taught the nature
of his disease and how to conquer it’ [1, 2]. Arguably, Joslin
recognised the need for personalised diabetes treatments and
the empowerment of those affected. He realised that patients
must be taught the tools for self-management to both prolong
life and improve the quality of life for those living with diabe-
tes. This idea of a person-centred approach to care expanded
quickly into a variety of treatment regimens.

An in-depth knowledge of type 1 diabetes pathogenesis is
critical to understanding how precision medicine may apply to
type 1 diabetes. In the early 1930s it was noticed that people
with diabetes responded differently to insulin, enabling the
differentiation between insulin-insufficient and insulin-
sensitive subgroups [3, 4]. However, it was not until the
1950s that this observation was confirmed using the first
insulin assays, which enabled quantification of circulating
insulin in humans [5–7]. From this point, different types of
diabetes were considered, but the aetiological basis of the
insulin-deficient disease type was not identified as autoim-
mune in origin until later, with Willy Gepts reporting
evidence of immunological infiltrates in the pancreases of
newly diagnosed children with diabetes in 1965 [8], which
was reinforced by the identification of islet cell autoanti-
bodies by Franco Bottazzo in 1974 [9].

These discoveries formed the foundation of our contempo-
rary understanding of the pathophysiology of type 1 diabetes.
The scientific community was quick to accept this paradigm
shift, which led to huge advancements in our understanding of
the underlying aetiology of type 1 diabetes within the space of
a few years. Coincident with these discoveries, clinical obser-
vations of familial inheritance of diabetes led to the proposal
in the 1950s of a partial genetic basis of diabetes development
[10]. Twin studies in children and young adults in the late
1960s and early 1970s reported around 50% concordance of
diabetes in monozygotic pairs (presumed to be type 1

diabetes) compared with >90% concordance of diabetes in
those diagnosed at older ages (presumed to be type 2
diabetes) [11–13]. In addition to these findings, descrip-
tions of the critical role of HLA antigen-presentation
genes in the transplant setting led to the association of
these genes with autoimmune diseases [13, 14].
Identification of HLA associations, combined with the
discovery of islet cell autoantibodies, established that
these genes transmitted the tendency to develop type 1
diabetes, but not the disease itself [14]. These findings
were summarised by George Eisenbarth in 1986 in the
widely adopted Eisenbarth model, which outlined that
genetically predisposed individuals encounter a hypothet-
ical triggering event that begins a process of autoimmune-
mediated progressive beta cell destruction leading to insu-
lin deficiency [15].

The Eisenbarth model continues to inform strategies for
disease prevention and, more recently, precision medicine
approaches. The model was updated by Insel and colleagues
in 2015 [16] based on a landmark meta-analysis of several
birth cohorts which showed that >80% of children who devel-
op two or more islet-specific autoantibodies progress to type 1
diabetes by the age of 20 [17]. It is now recognised that there
are three distinct stages of type 1 diabetes that precede clinical
diagnosis: stage 1, when islet autoimmunity is measurable by
the presence of multiple autoantibodies; stage 2, when there is
measurable dysglycaemia; and stage 3, when glucose abnor-
malities fulfil criteria for clinical diagnosis of diabetes.
Summarised in Fig. 1, these three stages have each seen an
expansion of increasingly precise approaches encompassing
the prediction, prevention, diagnosis and treatment of type 1
diabetes. Individualised prediction is enabling the early diag-
nosis and prevention of stage 2 diabetes progression, and for
those with established stage 3 diabetes there are a multitude of
approaches that can be tailored in order to optimise care for the
individual, with many more precise approaches, methods and
treatments on the horizon.

There is momentum in the field of diabetes to take advan-
tage of ‘recent, rapid scientific advances in our ability to
measure and characterise human variation through (1) assess-
ment of the genetic and metabolic state, (2) leveraging data to
inform disease categories, and (3) science-guided preventive
and treatment decisions tailored to specific pathological
conditions’ [18]. The ADA and EASD have partnered to
assess the current state of precision medicine in diabetes
through a series of systematic reviews across diabetes types,
with the aim of understanding the role of precision medicine
in diagnosis, subcategorisation, prevention and therapy. The
bedrock of good clinical care relies on the human- and person-
centred approach advocated by Joslin [2]; however, there are
opportunities to take advantage of the increasing understand-
ing of type 1 diabetes pathogenesis to better intervene.
Throughout this review we discuss the current diagnostic,
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treatment and management strategies for people with type 1
diabetes and, with forethought, discuss how the concept of
precision medicine can be applied to type 1 diabetes.

Prediction

Identification of longitudinal biomarkers in the form of islet-
specific autoantibodies in large studies of at-risk individuals
(either from genetically high-risk infants from birth or first-
degree relatives of people with type 1 diabetes [19]) has
increased our understanding of the progression to type 1
diabetes and improved the prediction of future type 1 diabetes
development. Historically, the at-risk population was identi-
fied using HLA typing of type 1 diabetes risk-associated HLA
alleles (HLA-DR3-DQ2 and/or HLA-DR4-DQ8, with avoid-
ance of strong protective alleles such as HLA-DR15-DQ6) or
by identifying infants or adults at risk because of an affected
family member [20]. Recent advances in genome-wide asso-
ciation studies and the identification of numerous common
variants associated with type 1 diabetes have facilitated the

combination of HLA and non-HLA genetic risk into polygen-
ic or genetic risk scores that can be used to aid prediction and/
or classification of disease. These technological advances
allow for the possibility of performing cheap and efficient
genetic screening at birth to identify individuals at risk for
developing type 1 diabetes [21, 22]. The increasing integra-
tion of genomics into healthcaremeans it is realistic that, in the
future, type 1 diabetes genetic risk may be measurable from
birth.

While genetics can identify at-risk individuals, the majority
of those classified as ‘high risk’ will probably not develop
type 1 diabetes because of the relatively low background prev-
alence of this disease [23]. Islet-specific autoantibodies are a
more specific measure of the development of autoimmunity,
and the presence of islet autoantibodies forms the basis of the
recently revised type 1 diabetes staging paradigm [16].
Combined analysis of large screening studies may allow for
the targeted measurement of islet-specific autoantibodies at
key time points during childhood to provide maximum sensi-
tivity and specificity for identifying future type 1 diabetes
cases, possibly by integrating screening with other early life
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Fig. 1 The Eisenbarth model continues to inform strategies for disease
prevention and, more recently, precision medicine approaches. Using its
most up-to-date form, which describes the stages of type 1 diabetes
proposed by Insel and colleagues [16], this figure addresses precision
medicine approaches that are, or could be, used at each stage of themodel.
Beginning in the predisposition phase, we see a future of precision predic-
tion in the form of genetic screening programmes. In stage 1 disease,
where autoimmunity begins, and entering into stage 2, current precision
prevention options are limited. Screening for autoantibodies in those at
high risk is a current helpful option for identifying early disease, with

ongoing and future efforts focusing on better identification of these stages
and early intervention therapeutics. Around diagnosis, current methods
for the precise classification of type 1 diabetes, such as C-peptide
measurements and classification models that use a combination of
biomarkers, can enable the correct application of precision treatment in
type 1 diabetes. In stage 3 overt diabetes, a number of therapies, including
advanced technology and education programmes, are already employed
in clinical care, with immune and stem cell replacement therapies on the
horizon. This figure is available as part of a downloadable slideset
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healthcare visits [24, 25]. The major biomarkers currently
used in predicting future type 1 diabetes development include
genetics, age, number, types and titres of autoantibodies and
age at which these appear, dysglycaemia and C-peptide levels.
These markers can be used individually but provide more
predictive power when used in combination [26]. In the future,
the increasing availability of genetic information, combined
with the proven ability of autoantibody screening to identify
early-stage type 1 diabetes, may lead to an era of precision
prediction in which we are able to predict type 1 diabetes and
intercept before and prevent or delay disease onset.

Many groups are working to improve the precision predic-
tion of type 1 diabetes using novel biomarker and ‘omics’
approaches [27], including advanced omic, single cell and
advanced imaging analysis of pancreatic tissue from organ
donors with autoantibody positivity and established type 1
diabetes [28–31]. We are now able to study the complex envi-
ronmental, metabolomic, virome, molecular and microbiome
associations in type 1 diabetes progression. A large number of
association studies have highlighted the complex interplay
between immune abnormalities, genetics and the environment
[32–34]. We now have more markers of beta cell stress and
dysfunction and increasing evidence of the complex interplay
between the environment, beta cells and the immune
system. It is possible that these detailed molecular approaches
and the application of novel computational approaches that
are better able to integrate multiple features may aid with
prediction over and beyond current strategies. It is equally
important and likely that further mechanistic insights from
these approaches may help identify targets for intervention.

Prevention

Recognition of type 1 diabetes as an autoimmune disease led
to attempts at treating the underlying pathogenesis with immu-
notherapy. Clinical trials that aimed to prevent the progression
of early diabetes initially used steroids, such as prednisone
[35], in combination with azathioprine [36], anti-thymocyte
globulin [37] and ciclosporin [38]. Recently, clinical trials
have focused on more selective immune agents, such as the
anti-CD3 antibody teplizumab [39] and agents thought to act
directly on beta cells (e.g. verapamil) [40, 41]. There have
been some recent notable successes of agents, including ritux-
imab [42], teplizumab [43, 44], golimumab [45] and anti-
thymocyte globulin [46], tested closer to the onset of stage 3
diabetes. However, none of these agents has led to durable
disease remission, and these successes have been against the
backdrop of several unsuccessful trials [47, 48]. The findings
suggest that there may be irremediable loss of beta cell mass
and function after the onset of stage 3 diabetes. To address
whether earlier intervention may be more efficacious,
teplizumab was tested as a single 14-day course in individuals

with two or more autoantibodies and dysglycaemia. In this
context, teplizumab delayed the onset of stage 3 disease by a
median of 32.5 months [39]. Teplizumab is currently under
consideration by the US Food and Drug Administration as the
first potential disease-modifying therapy in diabetes, follow-
ing nearly three decades of preclinical and clinical studies.

While the teplizumab trial in stage 2 disease showed that
earlier intervention is a promising approach and that it is possi-
ble to delay the onset of clinical disease in some high-risk
individuals, there was still considerable heterogeneity in
response noted among trial participants. These findings raise
the possibility that there may be subgroups of individuals who
require different treatment approaches and that heterogeneity
in disease progression may be driven by underlying differ-
ences in pathophysiology or endotypes. A disease endotype
is broadly defined as a subtype of disease originating from a
distinct functional or pathobiological mechanism that can be
addressed therapeutically [49]. This concept was pioneered in
the field of asthma, where distinct endotypes have been
defined and targeted therapeutically [50]. However, it is
currently not clear whether individuals with type 1 diabetes
are ‘more similar than they are different’ and require similar
disease-modifying treatments or whether factors such as islet
autoimmunity, age at diagnosis and immune phenotype will
lead to distinct interventions. Tailored treatments would great-
ly benefit patients; however, further subdivisions of type 1
diabetes would risk reducing the market for pharmaceutical
companies, which already struggle to see a large enough
market to invest significantly in type 1 diabetes research.

Notwithstanding this controversy, several recent observa-
tions hold promise in identifying type 1 diabetes endotypes. It
is well accepted that children and adults exhibit differences in
disease progression [51–53], with children having a higher
risk of developing diabetes and a more accelerated rate of
progression from seroconversion to stage 3 diabetes [17].
Along these lines, there are important differences in islet
immune cell infiltrates and proinsulin processing, which are
correlative with age at diagnosis [54, 55]. In addition,
evidence from multiple birth cohort studies suggest that
progression from first autoantibody development may
differ by age of onset. Antibody specificity and background
genetics have yet to be directly connected to post-diagnosis
progression [56]. Furthermore, a very recent analysis by
Achenbach and colleagues identified multiple variables
that classified young type 1 diabetes patients into seven
islet autoantibody-positive and three islet autoantibody-
negative subgroups. These subgroups demonstrated
substantial differences in pathogenic and prognostic
outcomes, which could have therapeutic relevance [57].
Machine learning approaches have also been helpful in
identifying autoantibody and disease trajectories [58]. An
important future aspiration will be to design experiments
that further investigate the mechanisms of possible age-

Diabetologia (2022) 65:1854–1866 1857



influenced variation in progression to diabetes, pathogene-
sis at a tissue level, immune phenotype and progression of
beta cell loss post diagnosis.

Diagnosis

The correct classification of diabetes subtype is crucial for the
correct application of precision treatment in type 1 diabetes
and for the investigation of diabetes pathogenesis. There is
considerable evidence of misclassification of type 1 diabetes
as type 2 diabetes, and misclassification of monogenic diabe-
tes and type 2 diabetes as type 1 diabetes [59, 60]. A correct
diagnosis is important to determine the appropriate treatment,
with type 1 diabetes requiring physiological doses of insulin
replacement to avoid acute life-threatening complications
such as diabetic ketoacidosis. Up to one in three adults with
type 1 diabetes are initially diagnosed as having type 2 diabe-
tes [60]. Thus, it is apparent that historical approaches to clas-
sification have been unable to provide simple criteria to aid in
diagnosis and there is room to use more precise methods of
classification. Clinical features are predominately used for
classification of diabetes type, with age at diagnosis and
BMI having evidence of clinical utility at onset [61].
However, features frequently overlap in adults diagnosed with
diabetes, and the high prevalence of type 2 diabetes adds to the
difficulty of confirming a diagnosis of type 1 diabetes in
adults. Islet autoantibodies can assist in classification, and
recent guidance from the ADA and EASD recommend islet
autoantibody testing at diagnosis in all adults with clinically
suspected type 1 diabetes [62]. More recently, type 1 diabetes
genetic risk scores have also been shown to assist in discrim-
inating between type 1, type 2 and other forms of diabetes in
research settings [63, 64]. Recent work has shown that these
clinical features and biomarkers are most discriminative of
diabetes type when combined and modelled as continuous
variables in diagnostic models [61, 63, 65].

Rapid progression to insulin deficiency, a major feature of
type 1 diabetes, determines treatment and can be used to aid in
classification. A marker of endogenous insulin secretion is the
level of serum or urine C-peptide, which is co-secreted in
equimolar amounts with insulin and has little assay cross-
reactivity with exogenous insulin or proinsulin [66, 67].
Severe insulin deficiency not only is a biomarker of type 1
diabetes but also, by definition, indicates a need for insulin
replacement, thereby linking treatment to pathogenesis [68].
C-peptide testing in those with clinically diagnosed type 1
diabetes can lead to reclassification and insulin withdrawal
[59]. In addition, C-peptide measured within the first few
years of diagnosis may be useful in confirming type 1 diabetes
if results indicate severe insulin deficiency (e.g. fasting level
<80 pmol/l or post-meal level <200 pmol/l [68]), as those with
either type 2 diabetes or monogenic diabetes almost always

have C-peptide levels above these cut-offs. However, C-
peptide levels at diagnosis of type 1 diabetes can overlap with
those observed in other diabetes types. Instead, the progres-
sive trajectory of C-peptide loss over the immediate years post
diagnosis most clearly separates type 1 diabetes from type 2
diabetes, and the utility of C-peptide levels in discriminating
type 1 diabetes is greatest 3–5 years post diagnosis [68].
Recent progress in the ability to measure C-peptide in clinical
and remote settings [69–72] has facilitated the integration of
C-peptide measurement into national and international diabe-
tes guidelines [62].

Treatment

Gradual improvements in the formula and delivery of insulin
have allowed for significant steps forward in the ability to
personalise insulin therapy. Although lifesaving, the insulin
preparations of the 1920s were basic and the glucose-lowering
effects lasted for only 6 h, thus requiring multiple injections
throughout the day. Longer-acting insulins were developed in
1936 through combination of insulin with protamine and then
zinc [73, 74]. The discovery of the sequence and structure of
insulin, the synthesis of the first synthetic human insulin and
the emergence of recombinant DNA technology led to the
manufacture of insulins with modifiable properties. These
advances eventually gave rise to analogue insulins, which
dominate the market today and allow for optimisation of
absorption rate, time to peak and duration of action depending
on their design. The landmark DCCT was published in 1993
and demonstrated the benefit of intensive insulin therapy and
tight glycaemic control for the prevention of microvascular
complications [75, 76]. Thus, newer insulin formulations with
optimised pharmacokinetics were a welcome addition, as
‘tight glucose control’ became the goal for all individuals in
the post-DCCT era. In current practice, clinicians and patients
can choose from a range of insulins that can be employed in
various regimens to suit an individual’s needs and lifestyle.

The pace of development of additional tools to aid in diabe-
tes management has been rapid since the end of the DCCT.
Flash glucose monitoring and continuous glucose monitoring
(CGM) involve sensors that measure glucose levels in inter-
stitial fluid every 5–15 min, providing more detailed, daily
insights into glucose control beyond that of the 3- to 4-
month estimate HbA1c provides. Traditional CGM displays
trends and data automatically to the user, while flash CGM
requires the user to swipe a sensor with a reader to display
blood glucose data. Both methods provide several quantitative
measures such as glycaemic variability and time spent above
(hyperglycaemia), below (hypoglycaemia) and within clini-
cally defined glucose ranges. Unlike HbA1c measurements
and self-monitoring of blood glucose, flash and CGM tech-
nologies enable the communication of real-time glucose
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values, trends and glycaemic variability. These individualised
evaluations have been shown to improve HbA1c levels,
decrease the time spent in hyperglycaemia and hypoglycaemia
and reduce the risk of severe hypoglycaemia [77–80], while
also improving quality of life [81]. Adoption of these technol-
ogies as standard of care for all patients with type 1 diabetes,
as proposed in the recent updates to the UK’s National
Institute for Health and Care Excellence (NICE) guidelines
[82, 83], represents a much-needed shift toward viewing tech-
nology as an integral part of diabetes management. Although
HbA1c measurement remains the most robust and validated
measurement associated with chronic diabetes complications,
insights from studies using CGM suggest that HbA1c is
unsuitable for determining short-term glycaemic changes
accurately [84–86]. Recent efforts to examine the relationship
between CGM-derived time within target glucose range and
long-term complications are providing a basis for glycaemic
targets for newer glucose monitoring technologies [62, 87].

In addition to improvements in glucose monitoring, the last
decade has seen rapid improvements in insulin delivery
systems. Continuous subcutaneous insulin infusion systems
have demonstrated a small but significant benefit for
glycaemic control over that of the traditional multiple daily
injection method [88]. However, despite these advances in
insulin analogues and delivery systems and glucose sensors,
many people with type 1 diabetes still do not achieve
glycaemic targets. More recent advances in insulin delivery
systems and their integration with CGM technology has
enabled automated ongoing adjustment of insulin delivery to
optimise glycaemic control throughout the day and night.
These ‘closed-loop’ and artificial pancreas systems have been
evaluated in children and adolescents and demonstrate
improved glucose control and reduced risk of hypoglycaemic
events [89–96], even compared with sensor-augmented insu-
lin pumps [97].

Although insulin replacement is essential, it is important to
recognise the role that education strategies have in enabling
precision treatment in type 1 diabetes. The first of these
individualised treatments was the diet regimen developed by
Robert Lawrence in 1925 [98]. Lawrence’s ‘line ration
scheme’ was designed to be flexible for patients and manage-
able for clinicians and remained engrained in care as late as the
1950s [99]. Today, this education scheme has evolved into the
well-established Dose Adjustment for Normal Eating
(DAFNE) programme, which was developed originally in
the 1990s in Germany [100] and which was endorsed by the
UK NHS [101]. For adults, this programme is an educational
tool to enable individuals to understand the carbohydrate
content of foods and the correct insulin dosing and apply this
to their lifestyle. In addition, the programme covers insulin
management during exercise, illness and social activities. It
is recognised that patients and clinicians need more in-depth
educational strategies that cover the management of

behavioural aspects associated with type 1 diabetes, most
notably exercise. People with type 1 diabetes face several
barriers to exercise; however, ‘lack of knowledge’ is one of
the most expressed concerns [102]. Employing educational
strategies is crucial in enabling the personalised treatment of
type 1 diabetes by allowing patients to drive the management
of their disease.

Even with the availability of optimised insulins, new tech-
nologies for insulin delivery and glucose monitoring and
improved tools for self-management, it is acknowledged that
care may differ across a person’s lifespan. This is reflected in
recent statements surrounding the individualisation of
glycaemic targets. It has been rightfully proposed that the
glycaemic target ‘should be individualised considering factors
that include duration of diabetes, age and life expectancy,
comorbid conditions, known cardiovascular disease or
advanced microvascular complications, impaired awareness
of hypoglycaemia (IAH) and other individual considerations,
and it may change over time’, emphasising that this goal
should be achieved in conjunction with an understanding of
a person’s psychosocial needs and a reduction in diabetes
distress [62]. In addition, specific glycaemic targets are
recommended at certain life stages. In particular, women with
type 1 diabetes are supported to achieve blood glucose ranges
close to those seen in pregnant women without diabetes
(HbA1c ≤48 mmol/mol [≤6.5%]) in addition to focused pre-
and postprandial glucose targets, in order to reduce the risk of
serious adverse pregnancy outcomes [62, 103, 104]. In older
adults, safety of insulin use takes precedence, because of their
increased vulnerability to hypoglycaemia, with targets based
on functional status and life expectancy and adjusted to mini-
mise the occurrence of hypoglycaemic events [62].

Risk of hypoglycaemia is perhaps the largest barrier to
intensive diabetes control and is often reported as having a
profound impact on quality of life and diabetes self-care
behaviours [105, 106]. Additionally, it is possible that fear
of hypoglycaemia is a driver of glycaemic variability and
suboptimal glucose control. Although there is evidence that
closed-loop insulin therapy is beneficial for glycaemic control,
with growing evidence that these benefits extend psychoso-
cially [107, 108], some challenges remain. Exercise presents a
particular challenge in closed-loop therapy because of the
complex glucose physiology that occurs during exercise, with
increased glucose turnover and distinct hormonal and meta-
bolic responses to different forms of exercise [109, 110].
Compounded by the lag time of current glucose sensing
[111, 112], closed-loop systems that manage exercise without
the risk of hypoglycaemia [109, 113, 114] have not yet been
achieved.

It is possible that C-peptide measurement may have a role
beyond disease classification in precision clinical care, espe-
cially in identifying those most likely to achieve restrictive
glycaemic targets. Much as behavioural factors influence
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glucose levels, the biological factor of preserved endogenous
insulin also plays a crucial role in glucose control; however, it
is not always considered in clinical care. Numerous studies of
endogenous insulin production in people with type 1 diabetes
highlight the variation in absolute levels of C-peptide both at
diagnosis and in long-duration type 1 diabetes [51–53,
115–118]. Additionally, there is heterogeneity of normal
development and endowment of beta cells, in the rate of auto-
immune destruction of beta cells and in whether autoimmune
destruction progresses to complete loss of insulin-producing
beta cells [51–55, 115–122]. There is longstanding and
emerging evidence that the amount of persistent endogenous
insulin a person with type 1 diabetes maintains influences
their glycaemic control, risk of hypoglycaemia and risk of
long-term complications across the duration of disease [75,
76, 123–130]. Although the key and initial analysis of the
DCCT demonstrated the benefit of intensive insulin therapy
and tight glycaemic control for the prevention of long-term
diabetes complications [75, 76], it came at the cost of higher
risk of severe hypoglycaemia (self-reported) in those who
received intensive insulin therapy, a barrier to intensive insu-
lin therapy that remains today despite improvements in insulin
formulations. However, those who retained the ability to
secrete higher levels of C-peptide in response to a stimulus
demonstrated a significant reduction in the risk of severe
hypoglycaemia in addition to decreased retinopathy and
nephropathy progression [75, 76, 123]. Increasing numbers
of observational studies support these findings [125–130],
with the evidence for persistent endogenous insulin reducing
hypoglycaemic risk being most apparent in the setting of islet
transplantation, where those at high hypoglycaemia risk
commonly have a dramatic reduction of this risk with even
modest levels of graft function post transplant. Additionally,
the increased use and availability of flash glucose monitoring
and CGM has highlighted that there are similar benefits for
glycaemic variability and control of persistent C-peptide
levels over all durations of diabetes [126, 127, 131]. Routine
measurement of C-peptide could aid in understanding the
differences in glucose patterns between individuals, regardless
of diabetes management behaviours. Incorporation of C-
peptide measurements into the standard of care could be an
effective approach to supporting newly diagnosed patients by
enabling the personalisation of care from the point of diagno-
sis, which could be expanded across the duration of diabetes.
The importance of maintaining C-peptide levels also underlies
clinical trial efforts focused on the preservation of beta cell
function in those with and at risk of diabetes.

Finally, it is important to recognise that type 1 diabetes
is not just a disease of beta cells, as beta cell destruction
impacts paracrine interactions within the islet, leading to
impairments in the normal secretory patterns of other islet
hormones that are critical for glucose homeostasis. In the
future, it is possible that the increasing ease with which C-

peptide and other islet-associated and glucose-regulating
hormones can be measured may allow a more accurate
description of an individual’s ability to buffer changes in
blood glucose. Moreover, it is possible that the integration
of other hormones, such as glucagon, into dual-hormone
systems will allow for better management of activities
such as exercise that have a high risk for hypoglycaemia
[132]. These insights, combined with precision glucose
measurements from CGM, will contribute to disease
management in terms of lifestyle changes, additional
non-insulin medications, and choice of monitoring and
insulin administration.

Contemporary diabetes technologies could be considered a
gateway for precision medicine in type 1 diabetes, as they
enable treatment to be continually adjusted to the condition
of the patient, just as Joslin had hoped. However, a number of
barriers remain. New technologies are not accessible to every-
one because of their cost. This global disparity in the avail-
ability of therapies is one of the main barriers to enabling
precision treatment in type 1 diabetes. While closed-loop
systems provide significant improvements in insulin delivery
and glucose monitoring, thus improving glycaemic control
and reducing the daily burden of living with diabetes, there
are ongoing challenges related to their implementation and
they are not yet able to provide an ‘attach and forget’ solution.
Furthermore, a diagnosis of diabetes still imposes additional
responsibilities and requires planning and self-monitoring.
Such a marked readjustment of daily life is inevitably physi-
cally and psychologically draining [133]. Depression levels
among adults with type 1 diabetes are higher than in the gener-
al population [134]. Distinct from depression, diabetes distress
[135, 136] is also common in diabetes [137] and is a product
of emotional adjustment to the demands of diabetes. Diabetes
distress has been found to be significantly associated with
higher HbA1c levels [138], with a recent study demonstrating
that this was pronounced in youth of lower socioeconomic
status and/or racial and ethnic minority youth [139].
Although there are established measures of diabetes distress,
including the Problem Areas in Diabetes scale [140] and the
Diabetes Distress Scale [141], these emotional issues are
frequently not integrated into care. The recognition and under-
standing of emotional issues in diabetes care is a crucial step
towards a person-centred and collaborative approach to care
[133]. The recently updated ADA Standards of Medical Care
encourage providers to assess symptoms of diabetes distress,
depression, anxiety, disordered eating and cognitive capacities
using appropriate standardised and validated tools at the initial
visit, at periodic intervals and when there is a change in
disease, treatment or life circumstance [142]. Integrating
tailored education and professional counselling with standard
glucose and well-being metrics may improve the precision of
clinical decision making and could aid in predicting future
emotional crises [18].
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Summary

Significant progress has been made in the personalisation
of type 1 diabetes treatment since the discovery of insu-
lin in 1922. These improvements include technological
advancements in insulin delivery, marked advances in
glucose monitoring and the recognition that these techni-
cal advances need to be accompanied by personal and
psychosocial support for people with type 1 diabetes.
Defining the aetiopathogenesis of type 1 diabetes as a
complex autoimmune disease, as summarised by the
Eisenbarth model nearly 40 years ago, has opened up
the possibility of better prediction, diagnosis and, poten-
tially in the future, prevention of type 1 diabetes.
Recently, Florez and Pearson proposed a roadmap to
achieve pharmacological precision medicine in monogen-
ic and type 2 diabetes [143]. Inspired by this construct,
Fig. 2 highlights a similar approach in type 1 diabetes.
Here, we outline a roadmap for precision medicine in
type 1 diabetes across the aspects of prediction, preven-
tion, diagnosis and treatment, highlighting gaps that
could be targeted in the future. We are facing a future
of increasingly detailed omics techniques and real-time
metabolic monitoring that can describe human biology
and disease pathogenesis in ever more detail. We hope
that improved prediction and understanding of type 1
diabetes through these methods will ultimately lead to a
better understanding of variation in type 1 diabetes path-
ogenesis and improved disease-modifying treatments and
biological interventions that can prevent, stop or reverse
type 1 diabetes pathogenesis.
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