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Endocannabinoids and their G-protein coupled receptors (GPCR) are a current research focus in the area of obesity due to the
system’s role in food intake and glucose and lipid metabolism. Importantly, overweight and obese individuals often have higher
circulating levels of the arachidonic acid-derived endocannabinoids anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) and an
altered pattern of receptor expression. Consequently, this leads to an increase in orexigenic stimuli, changes in fatty acid synthesis,
insulin sensitivity, and glucose utilisation, with preferential energy storage in adipose tissue. As endocannabinoids are products
of dietary fats, modification of dietary intake may modulate their levels, with eicosapentaenoic and docosahexaenoic acid based
endocannabinoids being able to displace arachidonic acid from cell membranes, reducing AEA and 2-AG production. Similarly,
oleoyl ethanolamide, a product of oleic acid, induces satiety, decreases circulating fatty acid concentrations, increases the capacity
for 𝛽-oxidation, and is capable of inhibiting the action of AEA and 2-AG in adipose tissue. Thus, understanding how dietary fats
alter endocannabinoid system activity is a pertinent area of research due to public health messages promoting a shift towards plant-
derived fats, which are rich sources of AEA and 2-AGprecursor fatty acids, possibly encouraging excessive energy intake andweight
gain.

1. Introduction

Overweight and obesity rates are reaching epidemic pro-
portions worldwide [1] and as such are considered two of
the most important medical conditions of current day, due
not only to the effect on general health and further disease
development (such as type II diabetes mellitus (T2D) and
cardiovascular disease) but also to the financial burdenplaced
on the healthcare system [2]. For excess body weight to
develop a positive energy balance is required, either through
insufficient energy expenditure or excessive energy intake [3].
Populations in developed countries are currently consuming
more than 30% of their energy intake in the form of energy
dense fats, a dietary pattern often coupled with an excessive
intake of highly palatable, sugar-rich processed, and conve-
nience foods, promoting accumulation of excess body weight
[4, 5]. Food intake is influenced greatly by appetite, with

homeostatic food intake being in response to an increase
in appetite triggered by a decrease in energy availability;
conversely, hedonic food intake is triggered by appetite in
response to endogenous and exogenous stimuli and often
occurs in satiated or postprandial states [6]. Both homeostatic
ingestion and hedonic ingestion result in an increase in cir-
culating neurotransmitters, hormones, and glucocorticoids
which have the potential to regulate the activity of a num-
ber of G-protein coupled receptors (GPCR), including the
cannabinoid receptors [7, 8].

2. The Endocannabinoid System

The endocannabinoid system is implicated in both homeo-
static and hedonic food intakes [9], with activation of the
system resulting in an increase in hunger [10, 11]. Specifically,

http://dx.doi.org/10.1155/2013/361895


2 International Journal of Endocrinology

anandamide (AEA) and 2-arachidonoyl glycerol (2-AG),
which are derivatives of arachidonic acid (AA) [7, 12, 13],
bind to the main two receptors, cannabinoid receptor 1 (CB

1
)

and cannabinoid receptor 2 (CB
2
), leading to activation of

pathways to initiate food intake in the limbic system [14],
hypothalamus [15, 16] and hindbrain [17]. CB

1
and CB

2

belong to the GPCR class of receptors, generally signalling
through Gi/o proteins, though chronic low level stimulation
triggers a shift to signalling through Gs proteins [18]. AEA
is a ligand for CB

1
[19], with a reduced affinity for CB

2
[12],

whereas 2-AG binds to both receptors [20–22]. Though there
are structural differences between the glycerol-based and the
N-acylethanolamine- (NAE-) based endocannabinoids, they
share common receptor pathways and functions, with all
compounds involved in appetite and modulation of metabo-
lism signalling through GPCR or altering GPCR signalling
[21, 23, 24].

Endocannabinoids are products of dietary fatty acids (FA)
and were originally thought to be generated on demand [25–
27], though it is now known that AEA can be stored in intra-
cellular lipid droplets [28]. As such, modulation of cannabi-
noid receptor function can occur via modification of dietary
FA intake. Current dietary guidelines recommend a shift
away from animal-derived fats in favour of plant fats, in
an effort to reduce saturated fat intake and cardiovascular
disease risk, which has resulted in an increased intake of
polyunsaturated fatty acids (PUFA), especially that of linoleic
acid [29, 30]. Linoleic acid is easily converted by the human
body to AA via 𝛾-linoleic acid and eicosatetraenoic acid, a
pathway dependent on the actions of two desaturases and one
elongase [31]. AA can then be converted to AEA via several
pathways as shown in Figure 1, including the condensation
of AA and ethanolamide due to the reverse activity of fatty
acid amide hydrolase (FAAH), as reviewed by Sugiura [32].
As FAAH is also themain enzyme responsible forAEAbreak-
down, its action is also capable of decreasing cannabinoid
receptor activation through a reduction in the availability of
agonists [33]. Another anabolic pathway involves the biosyn-
thesis ofN-arachidonoyl phosphatidylethanolamine (NAPE)
resulting from the transfer of sn-1 position AA from phos-
pholipids to phosphatidylethanolamine by a Ca2+, dependent
N-acyltransferase. NAPE can then be converted to AEA
and phosphatidic acid by N-acyl phosphatidylethanolamine
specific phospholipase D (NAPE-PLD) and is believed to be
the major source of AEA [34, 35]. Similarly there are several
pathways through which 2-AG can be synthesised, as shown
in Figure 2. One of these pathways involves the conversion
of diacylglycerol to 2-AG via diacylglycerol lipase, with
diacylglycerol being produced from phosphatidylinositol,
phosphatidylcholine, or phosphatidic acid, with the latter
two being synthesised by phospholipase C and phosphatases,
respectively [36, 37]. Phospholipase C is also capable of con-
verting phosphatidylinositol bisphosphate to diacylglycerol
and lysophosphatidylinositol to 2-AG, though this requires
a specific phospholipase C isoform [38]. As phospholipase C
(which is a key enzyme in 2-AG synthesis) is part of down-
stream GPCR signalling, producing diacylglycerol, it has
been found that other GPCRs, including the angiotensin AT

1

receptor, are capable of paracrine transactivation of CB
1
[39,

40], which may indicate that 2-AG synthesis can be influ-
enced by activation of coexpressed GPCRs.

With dietary fats being the only source of FA required
for synthesis of endocannabinoids, it is possible that what is
being consumed is capable of modulating circulating endo-
cannabinoid levels, thus influencing GPCR signalling in an
acute time frame and affecting appetite and subsequent food
intake. Also, specific FA, such as AA, are favourably incor-
porated into phospholipids as opposed to triglycerides [41],
further affecting their fate in regard to endocannabinoid
synthesis due to their cellular location; however, the role of
storage in the acute effects of dietary fats and later endocan-
nabinoid synthesis requires further investigation.

3. Overweight, Obesity, and
the Endocannabinoid System

Clear associations between body weight and modulation of
the endocannabinoid system have been found. The most
common of these is that circulating 2-AG levels are sig-
nificantly increased in obese individuals compared to lean
controls [42, 43]. Furthermore, there are positive correlations
between 2-AG and body mass index (BMI) (kg/m2) [44],
waist circumference, and intra-abdominal adiposity [43, 45].
This may be due to the activity of monoacylglycerol lipase
(MGL), which primarily degrades 2-AG, not increasing with
BMI [43, 45], though expression of FAAH, which is also
capable of breaking down 2-AG [46], does increase with BMI
[47]. This increase in 2-AG may also be a result of increased
diacylglycerol lipase in obesity, which has been demonstrated
in both animal [48, 49] and human adipocytes [50, 51],
though this may be site specific [50] and influenced by
dietary composition [52]. An increase in FAAH has been
found to result in decreased subcutaneous adipose tissue 2-
AG levels in obese subjects when compared to lean controls
[53], with 2-AG also being positively correlated with visceral
CB
1
gene expression [42]. Body weight has also been found

to influence cannabinoid receptor expression,with significant
correlations found between CB

1
expression and BMI [54],

percentage body fat [42], and the presence of the metabolic
syndrome (independent of BMI) [54]. A correlation in obese
individuals has also been found between circulating insulin
and increased visceral adipose tissue CB

1
expression, com-

pounded by the presence of the metabolic syndrome, perpet-
uating visceral lipogenesis due to the role ofCB

1
in promoting

energy storage in adipose tissue [54].
Overweight and obese individuals often have a dysregu-

lation of the endocannabinoid system in peripheral tissues,
affecting glucose and lipid metabolism [50, 55, 56]. Demon-
strating this, a study using paired adipose tissue samples
found greater CB

1
mRNA expression in visceral adipose tis-

sue than subcutaneous, with a negative correlation between
visceral fatmass and FAAHmRNAexpression [42]. Similarly,
other studies have found that genes involved in 2-AG,
CB
1
, and MGL synthesis are downregulated in gluteal and

upregulated in abdominal adipose tissue of obese individuals
[50, 55]. As activation of CB

1
results in increased glucose
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Figure 1: Anandamide synthesis pathway. Pathways involved in the synthesis of anandamide from dietary linoleic acid and arachidonic acid,
via the addition of either phosphatidyl ethanolamide or ethanolamide, the latter also resulting in phosphatidic acid production. Adapted from
the works of Salem et al. [31], Sugiura [32], Cravatt et al. [33], Cadas et al. [34], and Okamoto et al. [35].
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Figure 2: 2-arachidonoyl glycerol synthesis pathway. Pathways involved in the synthesis of 2-arachidonoyl glycerol from dietary linoleic acid
and arachidonic acid, as well as from phosphatidylinositol, phosphatidylinositol bisphosphate, phosphatidylcholine and phosphatidic acid.
Adapted from the works of Salem et al. [31], Venance et al. [36], Kondo et al. [37], and Tsutsumi et al. [38].

uptake [57], this may indicate preferential energy storage in
abdominal adipose tissue. Supporting this, glucose uptake in
adipocytes is increased by treatment with 2-AG [58] or AEA
(which increased glucose uptake 2-fold) [59] with insulin
resistant adipocytes from obese mice showing increased
expression of endocannabinoid synthesising enzymes and

decreased degrading enzymes [48]. Moreover, CB
1
expres-

sion is increased in adipocytes during differentiation, as
is peroxisome proliferator-activated receptor 𝛾 (PPAR𝛾)
expression which promotes lipid uptake and adipogenesis
[50, 60], both of which are perpetuated by hyperglycaemic
conditions [61]. Also, agonism of CB

1
with either WIN
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55212-2 [62] or HU-210 [61] in cultured adipocytes increases
PPAR𝛾 expression, lipid droplet formation, and adipocyte
differentiation [61, 62]. PPAR𝛾 activity increases adipocyte
differentiation. During differentiation, CB

1
expression is

increased, and subsequent increases in CB
1
activity increase

PPAR𝛾 expression. Thus, chronic stimulation of CB
1
may

lead to a cycle of increased adipocyte differentiation and
thus further CB

1
expression. In contrast, in normal weight

wild-type mice, agonism of CB
1
with HU-210 significantly

reduces glucose uptake from skeletal muscle fibres (due
to decreased serine/threonine-specific protein kinase (Akt)
phosphorylation) curtailing whole body uptake [63]. Simi-
larly CB

1
agonism with arachidonoyl-2-chloroethylamide in

lean rat muscle significantly reduces both basal and insulin
stimulated glucose uptake [64].

4. Acute Modulation of
the Endocannabinoid System

Research on acute modulation of the endocannabinoid sys-
tem by dietary intake in humans is extremely limited and
has generally focused on macronutrient ratios rather than
specific FA intakes. Gatta-Cherifi et al. (2011) and Matias et
al. (2006) have assessed the effect of food intake on acute
concentrations of endocannabinoids [61, 65]. Gatta-Cherifi
et al. (2011) compared nondiabetic insulin resistant obese
subjects to healthy normal weight participants (though not
age or gender matched [65]), whereas Matias et al. (2006)
compared healthy participants (though the average BMI
was 28.6 ± 1.9, classifying them as overweight according
to the World Health Organisation [61]) to obese diabetic
hyperglycaemic subjects. These studies tested different meal
compositions with Gatta-Cherifi et al. (2011) using a meal
comprising 35% of energy from lipids, 45% carbohydrate, and
20% protein [65], while Matias et al. (2006) utilised a high fat
meal (44.15% of energy from lipids, 39.25% carbohydrate, and
16.6% protein [61]). Both studies showed obese subjects to
have increased fasting plasmaAEA and 2-AG concentrations,
indicating potential chronic cannabinoid receptor overstimu-
lation [61, 65], with Gatta-Cherifi et al. (2011) finding positive
correlations between AEA/2-AG levels and both BMI and
waist circumference [65]. A positive correlation was also
found between AEA and insulin levels in the obese group
[65], demonstrating CB

1
overactivity in insulin resistant

individuals. This study also found that in the hour after meal
consumption AEA levels decreased only in lean subjects,
indicating greater orexigenic stimulus in the obese individu-
als [65], possibly leading to short term hedonic food intake
and therefore excess energy intake. Meal consumption by
normoglycaemic participants in theMatias et al. (2006) study
resulted in transient hyperglycaemia, triggering significant
insulin level increases and a concomitant reduction in AEA
levels [61] with results from the same study (assessing saliva
as opposed to plasma) finding significant reductions in oleoyl
ethanolamide (OEA) [66].

A study byMonteleone et al. (2012) investigated the acute
(2 hour) influence of hedonic eating in healthyweight satiated
individuals with two different meals, one which subjects

found extremely palatable and one with the same energy
density and nutrient composition which was not considered
palatable [9]. One major strength of this study was that
participants consumed as much of the palatable food as they
wanted in a 10-minute period and were then given the same
volume of the nonpalatablemeal to eat in the same time frame
during a second session, removing the variables of time taken
to eat and amounts of ingested nutrients. In the 120 min-
utes after consumption there were no significant differences
between the two meals in appetite or satiety scores. Both
meals triggered significant AEA and OEA decreases, though
the palatable meal resulted in significantly increased plasma
2-AG 2 hours postprandially, accompanied by a significant
rise in ghrelin [9]. Supporting this finding, a study assessing
2-AG changes in mice in response to a palatable high fat
diet found that levels were increased when compared to
control fed animals, which further induced a preference for
the high fat diet [67]. This may demonstrate the cyclic nature
between hedonic eating, or the intake of pleasurable foods,
and increases in 2-AG and orexigenic cannabinoid receptor
stimulation.

One study investigating the effect of ethanol on endo-
cannabinoid levels involved the consumption of a test meal
(21% of energy from lipids, 62.9% carbohydrates, and 16.1%
protein) in a group of 19 lean premenopausal women [68].
This is the only research thus far, to the author’s knowledge,
to demonstrate a correlation between serum FA and their
respective endocannabinoids (2-AGwas notmeasured in this
study) [68], though this study was performed in a nonfasting
cohort. This study found the strongest correlation between
OEA and its precursor, oleic acid, though a correlation was
also found between AA and AEA [68]. Furthermore, a corre-
lation was found between circulating AEA levels and serum
total free FA and BMI over the three-hour monitoring period
[68], though unfortunately relationships between consumed
FA, serum FA, and circulating endocannabinoids were not
investigated. With the subjects in this study being lean and
having normal blood lipid profiles, this demonstrates that
without the modulation of the endocannabinoid system by
obesity, a high fatmealmay still be capable of increasing acute
circulating AEA and therefore CB

1
stimulation, possibly

perpetuating further food intake, preferential adipose tissue
energy storage, and adipogenesis.

5. Influence of High Fat Diets on
Endocannabinoid Synthesis

Worldwide, high fat diets (∼40% of energy) are increasing
in prevalence due to the low cost of fats and also due to
their palatability [69, 70]. High fat diets are capable of mod-
ulating levels of endocannabinoids regardless of their FA
composition [71–73]. In animals, high fat diets trigger binge
eating patterns [67] and result in significantly increased
intestinal motility [56] and AEA and 2-AG levels [74, 75]
possibly increasing cannabinoid receptor stimulation. High
fat diets also result in increased FA synthesis which is in
part due to chronic CB

1
activation increasing expression of
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the lipogenic transcription factor sterol regulatory element-
binding protein-1c (SREBP-1c), triggering greater production
of acetyl coenzyme-A carboxylase-1 and fatty acid synthase
[75]. Increased levels of AEA and 2-AG in response to high fat
diets in animals have been found to occur due to decreased
MGL and FAAH activity and increased NAPE-PLD action
[76], which occurs irrespective of ingestion, as demonstrated
by sham feeding studies [73, 77]. Compounding this, a high
fat diet when part of both hypercaloric and isocaloric diets
has been found to decrease OEA levels independent of
NAPE-PLD activity, further promoting food intake [72].

6. The Effect of Dietary Saturated Fat Intake
on Endocannabinoid Production

Research into the effect of saturated fats on the endocannabi-
noid system is extremely limited with the exception of
palmitic and stearic acids. One study, however, using a
pharmacological dose of stearoyl ethanolamide, has demon-
strated a reduction in food intake in starved mice when
administered intravenously [78]. The levels of the palmitic
acid based palmitoyl ethanolamide (PEA) are, however, not
believed to be affected by starvation/refeeding or greatly
affected by the intake of any specific nutrients [79]. However,
levels of PEA have been found to be reduced in rat brain,
liver, and small intestine when eicosapentaenoic acid (EPA)
and docosahexaenoic acid (DHA) are administered orally in
pharmacological quantities [80]. To the authors’ knowledge
only one study has found PEA to modulate appetite [81],
though it has been demonstrated to be capable of activating
PPAR𝛼 [82] and is also able to bind to GPR55 [83]; however,
further research is required to confirm these observations.

One study has investigated lauroyl ethanolamide, from
the precursor lauric acid, finding it capable of stopping AEA
synthesis in cultured rat basophilic leukaemia and glioma
cells [84]. This is supported by human studies which have
found that intraduodenal infusion of lauric acid decreases
appetite and energy intake [85, 86] with it having a greater
effect on appetite and subsequent energy intake than an oleic
acid infusion of the same load [87], although these studies
did not investigate the involvement of the endocannabinoid
system.

7. The Effect of Dietary Oleic Acid on
Endocannabinoid Production

Themain monounsaturated fatty acid (MUFA) to be investi-
gated in relation to endocannabinoid synthesis has been oleic
acid, the primary FA in olive oil [72]. This is due to oleic acid
being the precursor for OEA, with synthesis being dependent
on the membrane FA transporter CD36 [88]. OEA has been
found to reduce levels of ghrelin and neuropeptide YY [89]
and subsequently food intake [90] in starved rats when
administered intravenously [91, 92]. Oral administration as
part of a high fat diet in mice results in increased FAAH
and adiponectin gene expression, resulting in decreased food
intake and adipose tissue mass indicative of a reduction in
CB
1
agonism [27, 93]. Oral administration also decreases

hepatocyte lipid content, serum triglycerides and cholesterol
[94], gastric emptying, and intestinal motility [76]. Further-
more, OEA increases satiety through activation of PPAR𝛼
[95] as well as increasing PPAR𝛼 regulated gene expression,
including that of PPAR𝛼, fatty acid translocase, fatty acid
transport protein 1 [96], liver fatty-acid binding protein,
and uncoupling protein-2 [94]. This therefore increases 𝛽-
oxidation capacity and decreases circulating FA [97, 98]
which may be precursors for endocannabinoid synthesis
or contribute to decreased glucose uptake as a result of
lipotoxicity [99]. OEA’s hyperphagic actions are mediated
by GPR119, resulting in an increase in cyclic adenosine
monophosphate and adenylate cyclase, which is believed to
occur through G

𝛼s coupling [23]. Furthermore activation of
PPAR𝛼 by OEA is believed to reduce inducible nitric oxide
synthase (iNOS) gene expression, triggering a decrease in
nitric oxide, which reduces vagal afferent stimulation and
therefore appetite [23]. Both oleic acid and oleamide have
been found to have similar actions in cultured microglial
cells, through inhibition of lipopolysaccharide (LPS) induced
iNOS activation, decreasing nitric oxide production as well
as phosphorylation of Akt and the mitogen-activated protein
kinase (MAPK) p38 [100, 101], which are both also GPCR
signalling cascade components.

It has also been found that OEA increases FA release from
adipocytes in a dose dependent manner and skeletal muscle
FA uptake and oxidation without affecting glucose utilisation
[102, 103]. Furthermore, OEA can reduce adipose tissue
glucose uptake, mediated through the MAPK p38 and c-Jun
N-terminal kinase (JNK) pathways [104], which inhibits the
actions of AEA and 2-AG in adipose tissue and AEA-induced
hyperphagiawhen both are administered intravenously [105].
This may explain the finding of an inverse correlation bet-
ween adipose tissue MUFA content and degree of obesity
(based on BMI and percentage body fat) and central adipose
tissue distribution [106].

8. The Effect of Dietary Eicosapentaenoic and
Docosahexaenoic Acid on
Endocannabinoid Production

The role of dietary EPA and DHA in modulation of endo-
cannabinoid synthesis has been extensively researched due to
their ability to displace AA from phospholipid membranes
and reduce its synthesis [107–109], resulting in greater
production of eicosapentaenoyl ethanolamide (EPEA) and
docosahexaenoyl ethanolamide (DHEA) (from the precur-
sors EPA and DHA) [109]. While EPEA and DHEA do not
appear to directly affect appetite, they have been demon-
strated to decreasemouse adipocyte interleukin-6 andmono-
cyte chemotactic protein-1 production, indicating anti-
inflammatory properties [110].

Treatment of cultured mouse adipocytes with EPA/DHA
in combination with different free FA found that DHA was
able to counteract the conversion of AA to AEA and impor-
tantly was also able to stop the transfer of AA to the sn-1 posi-
tion of phospholipids, from which AA can be converted to
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AEA [111]. Supplementation studies in both humans and ani-
mals have found that EPA/DHA decrease 2-AG [112, 113] and
AEA [109, 113, 114] levels in obese subjects with a reduction
in plasma n-3/n-6 ratio [112, 114] and a decrease in NAPE-
PLD, FAAH, and CB

2
mRNA expression [107], contributing

to decreased receptor stimulation. Animal and human studies
have also found that DHA/EPA supplementation results in
a decrease in brain 2-AG levels [115], body mass [116] and
prevents the development of obesity [117] and further weight
gain inmouse models [118].This may be due to an increase in
𝛽-oxidation [119] and a decrease in SREBP-1c [120], as well
as the reduction in AEA and 2-AG production decreasing
cannabinoid receptor stimulation and therefore appetite and
food intake. Also possibly contributing to this is DHA/EPA
increasing whole body insulin sensitivity by inhibiting LPS
induced phosphorylation of JNK and nuclear factor kappa-B
degradation and increasing Akt phosphorylation and glucose
transporter type 4 translocation, via a GPR120 dependent
pathway [24].

9. The Effect of Dietary Linoleic Acid on
Endocannabinoid Production

Linoleic acid has been found to modulate endocannabinoid
synthesis due to its ability to be converted toAAby the human
body [31], although the effect of dietary linoleic acid on
human endocannabinoid synthesis has not been investigated.
This is a pertinent area of research due to the rapid increase
in linoleic acid content in the Western diet as a result of a
shift to plant-derived fats and the greater use of soy and corn
oils in food production and manufacturing [29, 30]. These
dietary changes have resulted in a shift in the n-3 to n-6 FA
ratio, as reviewed by Simopoulos [121], with more than 84%
of PUFA fats consumed in the USA being in the form of the
AEA precursor linoleic acid [122]. High linoleic acid diets
promote obesity in both animals and humans [123, 124] and
are correlated with increased fasting blood glucose, fasting
insulin [125], and insulin resistance [126] in humans, making
this an important area of further research.

A study by Alvheim et al. (2012) replicated the Western
diet linoleic acid increase in mouse feed, showing that
increasing energy from linoleic acid from 1% to 8% in a diet
with 60% of energy from lipids caused an increase in AA in
the liver and red blood cells. This resulted in a subsequent
3-fold increase in both 2-AG and AEA and increased food
intake, plasma leptin, and adiposity, possibly as a result of
increased cannabinoid receptor activation; however, receptor
expression and activation were not investigated in this study
[26]. These changes were abolished with the addition of 1%
n-3 PUFA to the 8% diet (resulting in levels comparable
to those of the 1% linoleic acid diet), again demonstrating
the ability of n-3 PUFA to displace AA and decrease endo-
cannabinoid production [26]. A further study by the same
researchers found that substituting fish oil with soy oil in
salmon feed increased linoleic acid, AA, AEA, and 2-AG and
decreased DHA and EPA in the salmon flesh and increased
fat accumulation in the liver [127].These fish were then fed to
mice which resulted in an increased liver content of linoleic

acid, AA, AEA, and 2-AG and decreased DHA and EPA,
accompanied byweight gain and adipose tissue inflammation
when compared to control fed animals [127]. This effectively
demonstrated how changes in the linoleic acid content of
animals produced for consumption can negatively affect the
end consumer. Similarly, a study by Matias et al. (2008) using
mice fed high MUFA and high PUFA diets for a 14-week
period found that the high linoleic PUFA diet increased
muscle 2-AG levels and induced obesity and hyperglycaemia
(with significantly greater blood glucose concentrations than
the MUFA diet) [128] indicating endocannabinoid system
overactivity. Recently Dipatrizio et al. (2013) found that 30
minutes of oral exposure (through sham feeding) to linoleic
acid resulted in an increase in both 2-AG and AEA in rat
jejunums, which also triggered the rats to develop a prefer-
ence towards fats with a high linoleic acid content, which did
not occur when the animals were pre-treated with the CB

1

agonists AM6546 and URB447 [77].

10. Conclusion

The manipulation of dietary FA has shown positive results
in regard to endocannabinoid modulation and decreased
cannabinoid receptor activity, although the majority of stud-
ies have been conducted in animals. These studies, however,
have shown that both acute and sustained dietary FAmodifi-
cation is capable of modulating endocannabinoid production
and therefore cannabinoid receptor activity and due to their
role in appetite, affecting energy intake and therefore body
weight. With obesity rates still escalating in prevalence and
dietary guidelines emphasising a shift towards plant based
fats, further research in this area is essential for the develop-
ment of public health messages directed towards prevention
and treatment of overweight and obesity and their related
comorbidities.
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of an endogenous 2-monoglyceride, present in canine gut, that
binds to cannabinoid receptors,” Biochemical Pharmacology,
vol. 50, no. 1, pp. 83–90, 1995.

[13] S. Munro, K. L. Thomas, and M. Abu-Shaar, “Molecular char-
acterization of a peripheral receptor for cannabinoids,” Nature,
vol. 365, no. 6441, pp. 61–65, 1993.

[14] F. Berrendero, N. Sepe, J. A. Ramos, V. Di Marzo, and J. J.
Fernández-Ruiz, “Analysis of cannabinoid receptor binding and
mRNAexpression and endogenous cannabinoid contents in the
developing rat brain during late gestation and early postnatal
period,” Synapse, vol. 33, no. 3, pp. 181–191, 1999.
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[91] E. Soria-Gómez, K. Guzmán, O. Pech-Rueda, C. J. Montes-
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