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SUMMARY

Here we present EdgeSHAPer, a workflow for explaining graph neural networks
by approximating Shapley values using Monte Carlo sampling. In this protocol,
we describe steps to execute Python scripts for a chemical dataset from the orig-
inal publication; however, this approach is also applicable to any user-provided
dataset. We also detail steps encompassing neural network training, an explana-
tion phase, and analysis via feature mapping.
For complete details on the use and execution of this protocol, please refer to
Mastropietro et al. (2022).1

BEFORE YOU BEGIN

This protocol details the use of EdgeSHAPer, an explanation method for any graph neural network

(GNN) that relies on a Monte Carlo sampling procedure for the approximation of Shapley values,

which are used to quantify edge importance. The software was developed in the Windows environ-

ment but is also usable under Linux and macOS. The method was implemented using Python code

with the aid of several deep learning libraries such as PyTorch4 and PyTorch Geometric.5 Below we

illustrate the installation and workflow with compound data from the original EdgeSHAPer publica-

tion1 as well as with custom data. The installation and execution times reported are based on a ma-

chine with the capabilities listed in thematerials and equipment section. Using a different systemwill

likely alter the performances and execution times.

Installation

Timing: 10 min

1. Install Python 3 (version 3.8 tested and recommended) and the required packages creating a

conda virtual environment (suggested):

a. Install Anaconda from https://www.anaconda.com/products/distribution.

b. Download or clone the original GitHub repository from https://github.com/AndMastro/

EdgeSHAPer:

>git clone https://github.com/AndMastro/EdgeSHAPer.git
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Note: Git should be installed to run the former command.

c. Create a brand-new conda environment using the chosen .yml file provided in the repository

containing all the necessary libraries:

i. Open the file .yml corresponding to the desired PyTorch and CUDA version and edit the

parameter prefix with your conda environments folder.

ii. Open a terminal of your choice in the repository folder (the Anaconda Prompt is suitable).

iii. Run the following command:

Note:Weprovide .yml files with different versions of PyTorch and CUDA. Further versionsmay

be compatible but not tested yet. Choose the proper versions according to your machine and

GPU capabilities.

Alternatives: Instead of using Anaconda, one can use a local Python installation and add the

required packages using pip. The list of the required packages can be found in the key re-

sources table. The libraries can be installed via:

Troubleshooting 1.

2. Install the additional module required for the visualization by running the command:

Troubleshooting 2.

KEY RESOURCES TABLE

>conda env create -f edgeshaper_*.yml

>pip install name_of_package

>pip install git+git://github.com/c-feldmann/rdkit_heatmaps

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Compound activity data ChEMBL 30 ChEMBL: https://doi.org/10.6019/CHEMBL.
database.30

Putative aggregators Aggregator Advisor http://advisor.docking.org/faq/#Data

Data sets Mastropietro et al.1

Feldmann et al.3
https://github.com/AndMastro/EdgeSHAPer/
tree/main/experiments/data
Mendeley Data: https://doi.org/
10.17632/bs6myg75tr.2

Software and algorithms

RDKit 2021.09.4 Zenodo Zenodo: https://doi.org/10.5281/zenodo.
6605135

Lilly-Medchem-Rules GitHub https://github.com/IanAWatson/
Lilly-Medchem-Rules

EdgeSHAPer This paper
Mastropietro et al.1

Zenodo2

https://github.com/AndMastro/EdgeSHAPer
Zenodo: https://doi.org/10.5281/
zenodo.7267068

scikit-learn 1.0.2 GitHub https://github.com/scikit-learn/scikit-learn

PyTorch 1.10.1 or PyTorch 1.10.1_cuda10.2 or
PyTorch 1.12.1 or PyTorch 1.12.1_cuda11.6 (use
CUDA versions if a GPU is available)

GitHub https://github.com/pytorch/pytorch

rdkit-heatmap 0.1 GitHub https://github.com/c-feldmann/rdkit_heatmaps

(Continued on next page)
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MATERIALS AND EQUIPMENT

Alternatives: The protocol was also tested using a machine with Windows 10, Intel Core

i7700HQ@max 3.8 GHz, NVIDIA GeForce GTX 1060 Max-Q with 6 GB of dedicated memory,

and 16 GB of RAM. The execution times are longer, as expected, but the software is readily

usable. Different configurations are expected to be suitable as well, with likely performance

differences.

STEP-BY-STEP METHOD DETAILS

EdgeSHAPer is applicable to a trained GNN model. We show how to derive a four-layer graph con-

volutional network (GCN)6 and then use EdgeSHAPer to explain predictions for an input graph of

choice. Initially, we present a step-by-step guide on how to use EdgeSHAPer on chemical com-

pounds encoded as SMILES strings7 and the resulting molecular graphs to which the method was

originally applied. Then, we show how to import the module into any Python program for custom

data and tasks.

Data preparation

Timing: 15 min

The first step consists of data preparation. A specific format is required and must be generated

(manual step).

1. The data need to be formatted as a comma separated value (.csv) file, in which the SMILES string

and label of each compoundmust be present (any other attribute will be ignored by the program)

(Figure 1 provides an example):

a. Create a .csv file with the required format containing all the molecules.

b. Place the file in a folder of interest.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

matplotlib 3.5.1 GitHub https://github.com/matplotlib/matplotlib

networkx 2.6.3 GitHub https://github.com/networkx/networkx

numpy 1.22.0 GitHub https://github.com/numpy/numpy

tqdm 4.62.3 GitHub https://github.com/tqdm/tqdm

pyg 2.0.3 GitHub https://github.com/pyg-team/pytorch_geometric

torchdrug 0.1.2 GitHub https://github.com/DeepGraphLearning/
torchdrug

pandas 1.3.5 GitHub https://github.com/pandas-dev/pandas

Other

Intel Core i7-12700H @ max 4.70 GHz CPU N/A N/A

NVIDIA GeForce RTX 3060 Laptop GPU N/A N/A

16 GB RAM N/A N/A

Windows/Linux/macOS Operating System N/A N/A

Computational resources

Component Brand Model/capabilities/version

CPU Intel Core i7-12700H @ max 4.70 GHz

GPU NVIDIA GeForce RTX 3060 Laptop (6 GB)

RAM N/A 16 GB

Operating System Windows/Linux/macOS 11/Ubuntu 22.04/Catalina
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2. Open the parameters.yml file which contains configurable parameters for the trainer and

explainer scripts. Edit this file based on needs.

Optional: It is also possible to create .txt files listing compounds used as training, validation,

and test sets. Here, the molecules are identified by their SMILES strings, separated by a new

line. An exemplary file is shown in Figure 2 (having same format for training, validation, and

test sets).

Note: The repository contains data from the original publication,1 which can be used to test

the algorithm.

Graph neural network training

Timing: 5 min

This step is required for training a GNN. We provide a script to derive a four-layer GCN. However,

this step can be omitted if a GNN model is already available. In this case, please, refer to the use of

EdgeSHAPer via custom code as an alternative execution (see below).

3. Run the script for model training:

a. Open a terminal in the repository root folder.

b. If not already active, activate the conda environment:

Troubleshooting 3.

c. Run the trainer_script.py:

The script will load the arguments contained in the configuration file parameters.yml. This file

may be subject to change with future developments, so please, refer to the GitHub repository

for an up-to-date version. The current editable and main parameters include:

Figure 1. Excerpt of a suitable input file

The columns in this file simply indicate the SMILES

field and the label field. Custom names instead must

be specified in the scripts. In our case study, we have

binary labels stating the compound to be active (0) or

inactive (1) (consistent with standard programming

indexing) against a target of interest (in this case, the

dopamine D2 receptor). If additional columns are

present, they are ignored (not used in the code).

Figure 2. Excerpt of a file for the specification of

training, validation, and test sets

All three files have the same format (SMILES strings

separated by a new line).

>conda activate edgeshaper_env

>python trainer_script.py
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i. DATA_FILE: your dataset in .csv format.

ii. TRAIN_DATA_FILE (optional): .txt file with training samples.

iii. VALIDATION_DATA_FILE (optional): .txt file with validation samples.

iv. TEST_DATA_FILE (optional): .txt file with test samples.

v. SAVE_FOLDER_DATA_SPLIT (optional): the folder path where to save the data split into

training, validation, and test sets. Three .txt files will be generated if this option is used.

vi. SMILES_FIELD_NAME: column name for the SMILES field in DATA_FILE.

vii. LABEL_FIELD_NAME: column name for the label field in DATA_FILE.

viii. MODEL_SAVE_FOLDER: location in which the trained model will be saved.

ix. HIDDEN_CHANNELS: number of hidden channels used for the neural network.

x. BATCH_SIZE: batch size used for neural network training.

xi. EPOCHS: number of epochs for which the network will be trained.

xii. SEED (optional): seed for the random number generator.

Note: At the time of writing, the default values found in the parameters.yml file are the ones

used in Mastropietro et al.1

Note: If training, validation, and test data are not provided, the complete dataset will be

divided into training, validation, and test sets according to an 80%:10%:10% ratio. In this

case, it might be useful to specify the parameter SAVE_FOLDER_DATA_SPLIT in order to

save the resulting data split. The generated files have the same format as the file in Figure 2.

EdgeSHAPer explanation execution

Timing: 1–1.5 min per molecule

The last step facilitates the execution of the EdgeSHAPer explainability module. The user is required

to submit a .txt file containing the names of the compounds whose predictions should be explained,

separated by a new line.

CRITICAL: The molecules to be explained should not be contained in the training or vali-

dation sets according to standard machine learning practice.

4. Run the explainer script:

a. With a terminal opened in the repository root folder, run:

The parameters read from the parameters.yml file include:

i. MODEL: model file to load.

ii. DATA_FILE: your dataset in .csv format.

iii. MOLECULES_TO_EXPLAIN: .txt file with the SMILES strings of the molecules to explain.

iv. TARGET_CLASS: class label for which the explanation should be computed.

v. SMILES_FIELD_NAME: column name for the SMILES field in DATA_FILE.

vi. LABEL_FIELD_NAME: column name for the label field in DATA_FILE.

vii. MINIMAL_SETS: Boolean flag stating whether to compute minimal informative sets (full

details are provided in the original publication).

viii. SAVE_FOLDER_PATH: folder path where to save the explanations, along with additional

information.

ix. HIDDEN_CHANNELS: number of hidden channels in the network to be loaded.

x. SAMPLING_STEPS: number of Monte Carlo sampling steps.

>python explainer_script.py
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xi. VISUALIZATION: Boolean flag specifying whether to generate visualizations for the

generated explanations (which will be saved in SAVE_FOLDER_PATH).

xii. TOLERANCE (optional): permitted deviation between the predicted probability and sum

of Shapley values approximation.

xiii. SEED (optional): seed for the random number generator.

Alternatives: The previous step is used to run the EdgeSHAPer algorithm from a script. How-

ever, EdgeSHAPer can also be imported into a project, enabling customizable applications.

To use EdgeSHAPer as a component of custom Python code, proceed as follows:

The edgeshaper function returns a Python list containing Shapley values for the edges in the

same order as in the provided edge_index. This allows a user to freely execute EdgeSHAPer in

custom code, providing high flexibility and the possibility of explaining predictions in applica-

bility domains other than cheminformatics. The parameter model denotes the pre-trained

GNNmodel used for the prediction, x and edge_index are the respective features of the graph

nodes and the edge index indicating the links among nodes. M is the number of Monte Carlo

sampling steps to perform and target_class is the class label for which the explanation is per-

formed. Finally, device indicates whether the model should run on GPU for hardware acceler-

ation or on CPU. Further details concerning additional accepted parameters are provided in

the GitHub repository.

A second alternative is the use of the provided Edgeshaper class, which offers additional func-

tionalities. First, instantiate an Edgeshaper object, then call its methods:

The method explain applies the EdgeSHAPer algorithm and returns a list of the Shapley values

calculated for each edge (the order is consistent with the one in edge_index). P is a parameter

used for the generation of the random graphs (indicating the edge existence probability) for

Monte Carlo sampling; passing None will use the graph density of the explained graph as the

default probability (more details are reported in the original publication1). The parameter de-

viation can be used to set a permitted deviation of the sum of the Shapley values from the pre-

dicted probability. The default setting isNone, corresponding to no predefined deviation and

performing the requested Monte Carlo sampling steps M. Further parameters include log_-

odds and seed. The former is a Boolean flag set to use log odds instead of probability as

the target for the Shapley value approximation. The latter represents the optional seed for

the random number generator.

from edgeshaper import edgeshaper

model = YOUR_GNN_MODEL

edge_index = YOUR_GRAPH_EDGE_INDEX

x = YOUR_GRAPH_NODES_FEATURES

device = "cuda" # or "cpu"

target_class = YOUR_TARGET_CLASS

edges_explanations = edgeshaper(model, x, edge_index, M = 100, target_class = TARGET_CLASS,

device = device)

from edgeshaper import Edgeshaper

edgeshaper_explainer = Edgeshaper(model, x, edge_index, device = device)

edges_explanations = edgeshaper_explainer.explain(M = 100, target_class = TARGET_CLASS, P =

None, deviation = TOLERANCE, log_odds = False, seed = SEED)
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Additional methods provided by the Edgeshaper class are compute_pertinent_positivite_set

and compute_minimal_top_k_set, which return the minimal informative sets from the explana-

tions along with Infidelity and Fidelity scores, respectively. Let us consider the following

example:

Then, after computing explanations for the compound and optionally minimal sets, they can

be visualized with the method visualize_molecule_explanations:

This method relies on several parameters. The first parameter is smiles, which contains the

SMILES strings of the molecule to be explained and the second one is save_path, which indi-

cates the folder where to save the generated images. Finally, the parameters pertinent_pos-

itive and minimal_top_k_sets determine whether visualizations are also created for the mini-

mal informative sets.

Note: The GitHub repository is continuously maintained and updated. Hence, settings and

scripts are modified periodically to improve the algorithm and enhance the number of fea-

tures provided. However, to ensure reproducibility, we keep an active branch in the repos-

itory named protocol, representing a snapshot of the protocol presented here. A

README file states if the main branch is up-to-date or if it has recently been edited. Apart

from such updates, general use instructions will remain valid including the main up-to-

date branch.

EXPECTED OUTCOMES

For each input compound, the output of EdgeSHAPer includes several files. The first output file is a

.txt file with Shapley values importance scores for each edge in the graph (e.g., bond in a molecular

graph) along with additional information in accordance with specified parameter settings. An

excerpt of this file is presented in Figure 3.

This file contains information about the explanations. It reports the class for which the explanation

was carried out and the SMILES string of the explained molecule. Importantly, the Shapley value

for each edge (indicated by its index) and the sum of the Shapley values themselves are given.

Finally, the indices comprising the minimal informative sets are reported together with Fidelity

(FID+) and Infidelity (FID-) scores. The latter scores are used to evaluate the quality of an explana-

tion. Ideally, a model should achieve high Fidelity and low Infidelity values. Additional details con-

cerning these evaluation metrics can be found in the original paper.1

Furthermore, a series of high-resolution .png images highlighting the bond with color gradients ac-

cording to their importance magnitude is obtained, together with minimal informative sets, if re-

quested (for more details, see the original work1 and the corresponding GitHub repository). Exem-

plary output images are shown in Figure 4.

pert_positive_set, infidelity_score = edgeshaper_explainer.compute_pertinent_positivite_

set()

minimal_top_k_set, fidelity_score = edgeshaper_explainer.compute_minimal_top_k_set()

edgeshaper_explainer.visualize_molecule_explanations(smiles, save_path = SAVE_PATH, per-

tinent_positive = True, minimal_top_k = True)
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QUANTIFICATION AND STATISTICAL ANALYSIS

A variance and convergence analysis of EdgeSHAPer was reported in the original work to study the

evolution of the Shapley value approximation for increasing numbers of sampling steps. In this anal-

ysis, 100 steps were found to be sufficient for obtaining high-quality approximations. Figure 5 shows

the (A) variance and (B) error for the sum of the Shapley values for all edges of a test compound.

LIMITATIONS

EdgeSHAPer relies on a Monte Carlo sampling approach for the approximation of Shapley values.

Thus, the magnitude of importance values might slightly vary across multiple runs employing

different seeds for random number generators, given the intrinsic stochastic nature of the method.

TROUBLESHOOTING

Problem 1

Related to ‘‘installation’’. The environment files were generated and tested under aWindows system.

The installation via the .yml file may fail while using a different operating system.

Potential solution

Install the required packages using the pip alternative.

Figure 4. Output heatmap generated by the explainer_script.py

If requested via the parameters.yml file, minimal informative sets are also generated. Red gradient bonds make

positive contributions to the output probability, while blue gradient bonds indicate negative contributions.

Figure 3. Excerpt of a file generated using explainer_script.py

This file contains explanation results such as the Shapley values assigned to each edge and minimal informative sets.

Additional information might be added in future updates.
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Problem 2

Related to ‘‘installation’’. The command.

could fail producing an error.

Potential solution

� run the following command instead:

Figure 5. Variance and convergence analysis of EdgeSHAPer

(A and B) (A) Variance and (B) quadratic error for the sum of Shapley values of a test compound. The figure was taken

from the original publication.1

>pip install git+git://github.com/c-feldmann/rdkit_heatmaps

>pip install git+https://github.com/c-feldmann/rdkit_heatmaps
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Problem 3

Related to ‘‘graph neural network training’’. If operating in a Windows PowerShell one might

encounter the error message ‘‘conda is not recognized as an internal or external command’’. This

means that conda was not initialized in the PowerShell.

Potential solution

� run the following command:

� restart your terminal.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and software should be directed to and will be ad-

dressed by the lead contact, J.B. (bajorath@bit.uni-bonn.de).

Materials availability

Not applicable.

Data and code availability

The source code and compound data used by this protocol can be accessed at https://github.com/

AndMastro/EdgeSHAPer and are also provided in an open access desposition at Zenodo: https://

doi.org/10.5281/zenodo.7267068.2 The compound data, training, validation, and test sets are

also available as Mendeley Data: https://doi.org/10.17632/bs6myg75tr.2.3
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