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Abstract
The term epistasis refers to interactions between multiple genetic loci. Genetic epistasis is

important in regulating biological function and is considered to explain part of the ‘missing

heritability,’ which involves marginal genetic effects that cannot be accounted for in

genome-wide association studies. Thus, the study of epistasis is of great interest to geneti-

cists. However, estimating epistatic effects for quantitative traits is challenging due to the

large number of interaction effects that must be estimated, thus significantly increasing

computing demands. Here, we present a new web server-based tool, the Pipeline for esti-

mating EPIStatic genetic effects (PEPIS), for analyzing polygenic epistatic effects. The

PEPIS software package is based on a new linear mixed model that has been used to pre-

dict the performance of hybrid rice. The PEPIS includes two main sub-pipelines: the first for

kinship matrix calculation, and the second for polygenic component analyses and genome

scanning for main and epistatic effects. To accommodate the demand for high-performance

computation, the PEPIS utilizes C/C++ for mathematical matrix computing. In addition, the

modules for kinship matrix calculations and main and epistatic-effect genome scanning

employ parallel computing technology that effectively utilizes multiple computer nodes

across our networked cluster, thus significantly improving the computational speed. For

example, when analyzing the same immortalized F2 rice population genotypic data exam-

ined in a previous study, the PEPIS returned identical results at each analysis step with the

original prototype R code, but the computational time was reduced from more than one

month to about five minutes. These advances will help overcome the bottleneck frequently

encountered in genome wide epistatic genetic effect analysis and enable accommodation

of the high computational demand. The PEPIS is publically available at http://bioinfo.noble.

org/PolyGenic_QTL/.
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Author Summary

A new mixed-model was recently developed for mapping DNA regions that are associated
with variations in observable traits, known as quantitative trait loci. This model incorpo-
rates multiple polygenic covariance genetic structures and has been used to successfully
predict yield in hybrid rice. However, quantitatively examining interactions between mul-
tiple genetic elements, i.e. epistatic effects, across the entire genome is computationally
demanding, which greatly hinders real-world applications of the model, especially in eval-
uating large populations and multiple genetic markers. In order to overcome these compu-
tational challenges, we developed a tool known as the PEPIS—Pipeline for estimating
EPIStatic genetic effects in genome wide. We implemented the PEPIS in efficient C/C++
programming language and successfully incorporated several highly efficient open-source
mathematical operation and optimization libraries to perform the computational demand-
ing mathematical matrix operations required for these types of analyses. Furthermore, the
computational demand is distributed across multiple nodes on our networked Linux com-
puting cluster in order to increase the speed of analyses. Our PEPIS tool will thus help
overcome the bottleneck in genetic epistasis analysis.

This is a PLOS Computational Biology Software Article.

Introduction
Epistasis, the interaction among multiple genetic loci, contributes significantly to phenotypic
variation associated with the expression of polygenic complex traits. Epistatic effects have
emerged as a possible explanation for ‘missing heritability,’ that is, marginal genetic effects that
cannot be accounted for in a genome-wide association study (GWAS). Examinations of epi-
static effects may also enhance understanding of the hierarchical architecture of gene interac-
tions and genetic pathways [1].

Depending on the characteristics of a given study population, variations in the epistatic
effects associated with a quantitative trait can be classified based on a number of different vari-
ance components, such as additive by additive, additive by dominance, dominance by additive,
and dominance by dominance, for example [2]. The relative importance of each variance com-
ponent usually varies across different traits.

GWAS has played important roles in the identification of possible connections between sin-
gle-nucleotide polymorphisms (SNPs) and various diseases [3]. However, a number of studies
that have identified genetic susceptibility factors failed to account for the effects of interactions
between multiple genetic loci [4,5], which may help explain why the genetic variability of indi-
vidual genes by GWAS can only explain ~40% variation of psychiatric disorders [4]. This
inability to provide complete genetic explanations gives support to the concept of missing heri-
tability. Careful analyses of epistatic effects may help close the gap in our understanding of
missing heritability [4,6].

Obtaining a thorough understanding of the genetic architecture of a quantitative trait is par-
ticularly important in plant and animal breeding in order to develop optimal breeding strate-
gies and obtain maximum genetic gains [7]. To date, however, most applications of
quantitative genetics in plant and animal breeding have involved additive models based on the
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assumption that non-additive genetic effects are not important [2,8]. Unfortunately, breeding
populations rarely exhibit such ideal conditions, leading to confounding of genetic values asso-
ciated with additive and non-additive effects. Under the non-ideal conditions of real-world
practice, a large proportion of the variance resulting from interactions between alleles (i.e.,
dominance and epistasis) may appear as additive variance [9].

A considerable amount of attention has been given to mapping of quantitative trait loci
(QTL) to examine epistatic effects [10–15]. Xu et al. recently proposed a new mixed-model
method for QTL mapping that incorporates multiple polygenic covariance structures [16]. In
this model, genome-wide markers are used to initially estimate six different kinship matrices.
Then, the total genetic variance was partitioned into six variance components. Each kinship
matrix corresponds to one of the variance components: additive, dominance, additive by addi-
tive, dominance by dominance, additive by dominance, and dominance by additive. The six
different kinship matrices, along with the six estimated polygenic variances, are then examined
by polygenic QTL mapping. This model has been used to successfully predict the performance
of hybrid rice [17] using released rice SNP data [18,19]. However, the large number of interac-
tion effects to be estimated poses a significant obstacle in epistatic-effect QTL mapping.
Although the ~270,000 original SNPs in the study by Xu et al. [16] were eventually converted
into 1,619 synthetic markers (bins) [18], complete analysis of all 278 immortalized F2 (IMF2)
individuals using their prototype R (www.r-project.org) scripts would take more than one
month.

Motivated by the challenge presented by the tremendous computational demand associated
with epistatic QTL mapping, we conducted a thorough investigation of the model developed
by Xu et al. and re-implemented the model algorithm using C/C++, resulting in the develop-
ment of a web server-based tool named PEPIS (Pipeline for estimating EPIStatic genetic
effects). The PEPIS employs parallelized kinship matrix calculations and main- and epistatic-
effect genome scanning. Large computational analyses are divided and allocated to computa-
tional nodes on our networked Linux clusters. Furthermore, an open-source C++ linear algebra
library, Armadillo [20], was utilized for mathematical matrix operations. The benefit of these
strategies is a substantial reduction in computational time. Using the released IMF2 population
rice SNP data, PEPIS reported the same result at each step when compared with the original
prototype script developed by Xu., but reduced the whole analysis time from more than one
month to about five minutes. Herein, we believe that this is a remarkable achievement that has
overcome the bottleneck in epistatic analysis and thus empowers the high computational
demanding of epistatic QTL mapping.

Genetic Model and Statistical Analysis Method
As the genetic model and statistical method proposed by Xu et al. [16,17] served as the basis
for the development of the PEPIS, a brief review of their work is in order. First, the genotype of
individual j in bin k is numerically coded into two variables, as follows:

Zjk ¼
þ1 for A

0 for H and

�1 for B

Wjk ¼

0 for A

1 for H

0 for B

ð1Þ

8>>>><
>>>>:

8>>>><
>>>>:

where Zjk andWjk represent additive and dominance indicators, respectively, and A (the first
homozygote), H (heterozygote), and B (the second homozygote) indicate the three genotypes.
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Let y be an n×1 vector for the quantitative trait values of all n individuals. It can be expressed
by the following complete epistatic model form bins,

y ¼ Xbþ
Xm
k¼1

Zkakþ
Xm
k¼1

Wkdkþ
Xm�1

k¼1

Xm

k0 ¼kþ1

ðZk#Zk0 ÞðaaÞkk0 þ
Xm�1

k¼1

Xm

k0 ¼kþ1

ðZk#Wk0 ÞðadÞkk0 þ

Xm�1

k¼1

Xm

k0 ¼kþ1

ðWk#Zk0 ÞðdaÞkk0 þ
Xm�1

k¼1

Xm

k0 ¼kþ1

ðWk#Wk0 ÞðddÞkk0 þ ε

ð2Þ

where Xβ represents non-genetic effects and ak and dk represent additive and dominance
effects, respectively, for bin k. The terms (aa)kk', (ad)kk', (da)kk', and (dd)kk' represent additive
by additive, additive by dominance, dominance by additive, and dominance by dominance
effects, respectively, for bins k and k'.

In this model, the terms
Xm
k¼1

Zkak and
Xm
k¼1

Wkdk describe polygenic main effects; whereas

Xm�1

k¼1

Xm

k0 ¼kþ1

ðZk#Zk0 ÞðaaÞkk0 ,
Xm�1

k¼1

Xm

k0 ¼kþ1

ðZk#Zk0 ÞðadÞkk0 ,
Xm�1

k¼1

Xm

k0 ¼kþ1

ðZk#Zk0 ÞðdaÞkk0 , and

Xm�1

k¼1

Xm

k0 ¼kþ1

ðZk#Zk0 ÞðddÞkk0 describe polygenic epistatic effects.

When the genetic effects are treated as normally distributed random variables with a mean
of zero and a common variance across all markers or marker pairs, we have a mixed-model
results. Let s2

a, s
2
d , s

2
aa, s

2
ad , s

2
da, and s

2
dd be the variance components associated with each of the

six types of genetic effects. The expectation of y is E(y) = Xβ, and the variance matrix of y is

VarðyÞ ¼ Kas
2
a þ Kds

2
d þ Kaas

2
aa þ Kads

2
ad þ Kdas

2
da þ Kdds

2
dd þ Is2 ð3Þ

where σ2 represents the residual error variance.
Each Kmatrix corresponds to a marker-generated kinship matrix, and its value can be cal-

culated utilizing the formulas reported by Xu et al. [16]. Genetic similarities between all of the
individuals in the sample can be assessed using the corresponding matrices. The variance com-
ponents can be estimated using standard mixed-model procedures in conjunction with the
marker-generated kinship matrices using the restricted maximum likelihood method (REML).

Two likelihood values are needed, one associated with the alternative hypothesis, H1, and
the other with the null hypothesis, H0. The likelihood ratio test (LRT) can be used as an indica-
tor of the degree of deviation ofH1 fromH0. In the original prototype script code developed by
Xu et al., the restricted maximum-likelihood estimation (REML) method was employed to esti-
mate the variance components and the vector y ¼ ½s2

a; s
2
d; s

2
aa; s

2
ad; s

2
da; s

2
dd�. The REML log-

likelihood function is defined below

LðyÞ ¼ 1

2
lnjV j � 1

2
yTPXy �

1

2
lnjXTV�1Xj ð4Þ

where PX = V−1−V−1X(XTV−1X)−1XTV−1.
The variance matrix shown in Eq (3) can thus be rewritten as

VarðyÞ ¼ ðKala þ Kdld þ Kaalaa þ Kadlad þ Kdalda þ Kddldd þ IÞs2 ð5Þ

where la ¼ s2
a=s

2, ld ¼ s2
d=s

2, lad ¼ s2
aa=s

2, lad ¼ s2
ad=s

2, lda ¼ s2
da=s

2, and ldd ¼ s2
dd=s

2 are
variance ratios. The six polygenic variance ratios are then collected in a vector λ = [λa,λd,λaa,
λaa,λda,λdd]. Let K = [Ka,Kd,Kaa,Kad,Kda,Kdd]

T, then we have Var(y) = V = (Kλ + I)σ2.
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Given the six variance ratios, a complete polygenic structure for a target quantitative trait
can be examined in detail. One-dimensional (1D) genome scanning for main effects and two-
dimensional (2D) genome scanning for epistatic effects can be employed to estimate individual
marker/bin (main) effects and marker/bin pair interaction (epistatic) effects. Here, the individ-
ual main and epistatic effects correspond to two and four degrees of freedom LRT test, respec-
tively. In theory, the four degrees of freedom LRT test needs four distinguishable genotypic
forms. However, it is rare but possible that only three or less distinguishable genotypic forms
occur for a marker/bin pair. This will lead to less than four degrees of freedom for the LRT test
for epistatic effects. If we adopt a random model approach, there will be no problem for param-
eter estimation even if less than four genotypic forms exist. In other words, the random model
does not depend on full rank of the design matrix.

Design and Implementation

Design Overview
We developed the PEPIS for rapid epistatic QTL mapping analyses. The PEPIS is composed of
two primary sub-pipelines. Sub-pipeline 1 is used for kinship matrix calculations, and sub-
pipeline 2 is used for polygenic QTL mapping and integrates three related analysis modules:
one for polygenic variance component analysis, another for genome scanning for main effects,
and the third module for genome scanning for epistatic effects. The four modules (sub-pipeline
1 and the three modules of sub-pipeline 2) are designated ‘km_cal’, ‘pc_anal’, ‘gs_main’, and
‘gs_epis’, respectively. All the modules were coded in C/C++ and compiled into four separate
executable command line programs. Several perl and cshell script files were then developed to
function as a wrapper to streamline the complete pipeline.

When coded genotype data are provided, module km_cal calculates and delivers the corre-
sponding kinship matrices. When phenotypic quantitative trait data are provided, module
pc_anal estimates and delivers the six polygenic variances utilizing both the quantitative trait
data and the available kinship matrices. Following the performance of various information
aggregation procedures, including kinship matrix weighing and matrix eigen decomposition,
modules gs_main and gs_epis calculate and return 1D LRT values for all markers (bins) and
2D LRT values for all marker (bin) pairs, respectively. Fig 1 illustrates the overall flow of poly-
genic QTL mapping analyses in the PEPIS.

To increase the flexibility of analyses, the PEPIS allows users to run only a portion of the
pipeline according to the input data and user-configured parameters (e.g., users can perform
only kinship matrix calculations and polygenic variance component analyses, or they can per-
form only kinship matrix calculations or even only calculate some of the kinship matrices).
Such configuration flexibility allows users to utilize specific PEPIS-generated information with
their own statistical genetics models.

Computational Implementation of Mathematical Matrix Operations and
LRT Optimization
A complete analysis requires processing of a large volume of genotypic matrix data and neces-
sarily involves complex mathematical matrix operations, such as transposition, inversion,
determinant calculation, and eigen decomposition, which can be easily prototyped in R or
MATLAB (www.mathworks.com) without considering speed. However, as our goal in develop-
ing the PEPIS was to speed up the analysis of genotypic data to identify epistatic effects, we uti-
lized C/C++ and a C++ linear algebra package, thus enabling highly efficient processing.

PEPIS: Pipeline for Epistatic QTL Mapping and GWASs
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Because C++ is the programming language used in this project, we chose the C++-based lin-
ear algebra library Armadillo [20], which is an open-source program that provides a good bal-
ance between speed and ease of use. Furthermore, Armadillo’s API syntax was deliberately
designed to be similar to MATLAB. A comparison of performance indicated that Armadillo is
substantially faster than both MATLAB and previously developed C++ libraries such as IT+
+ and Newmat (http://www.robertnz.net/nm_intro.htm) [20]. Based on these advantages, we
incorporated Armadillo source codes (http://arma.sourceforge.net/) for performing the mathe-
matical matrix operations in the PEPIS.

Fig 1. Flowchart illustrating polygenic QTLmapping using the PEPIS. The PEPIS is divided into two
parts: sub-pipeline 1, used for the six polygenic kinship matrix calculations, and sub-pipeline 2, used for the
six polygenic component ratio estimations and further genome scanning for main and epistatic genetic
effects.

doi:10.1371/journal.pcbi.1004925.g001
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Armadillo utilizes the BLAS (Basic Linear Algebra Subprograms, http://www.netlib.org/
blas/) and LAPACK (Linear Algebra Package, http://www.netlib.org/lapack) for low-level com-
putations such as basic vector and matrix and linear algebra operations. As such, it was neces-
sary to incorporate both of these packages in the PEPIS.

LRT analysis requires two maximum-likelihood estimations, one of the alternative hypothe-
sisH1, and one of the null hypothesis, H0. Furthermore, the maximum-likelihood estimation is
even more computationally demanding, as it is essentially a bound constrained optimization
procedure. The R environment provides the ‘optim()’ function and the ‘L-BFGS-B’ algorithm
[21,22] options for users to perform specific optimizations. To develop the PEPIS in C/C++,
we therefore adopted and incorporated the L-BFGS-B open-source codes in C (http://users.
iems.northwestern.edu/~nocedal/lbfgsb.html) for the optimization sub-routine, which is also
utilized as an optimization tool in the R environment.

Parallel Strategy for Distributed High-Performance Computing
As our goal was to facilitate rapid epistatic QTL mapping, we first needed to analyze the
computational complexity of the model and resolve the fundamental problems associated with
the computationally demanding nature of these analyses. If we suppose that the number of
individuals is represented by n and the number of markers/bins bym, then the number of total
genetic effects is 2m+4C(m,2) = 2m2. In the formulas for calculating the six kinship matrices
[16], each kinship matrix is a square matrix of size n×n and matrix cell value K[i,j] = K[j,i].

Considering this symmetric feature, the multiplication time for Ka and Kd is
mnðnþ1Þ

2
, which is on

the order of O(mn2). The multiplication time for Kaa, Kad, Kda, and Kdd is
mðm�1Þnðnþ1Þ

4
, which is

on the order of O(m2n2). These estimations clearly demonstrate the enormity of the multiplica-
tion demand associated with kinship matrix calculations, especially when both the individual
and marker/bin numbers are large. However, the procedure used to calculate each matrix cell

value is the same; thus, all nðnþ1Þ
2

loops for matrix cell calculation can be parallelized.

The polygenic variance component analysis module needs essentially only one optimization
for a seven-parameter log-likelihood estimation. The main-effects genome scanning module
requiresm times two degrees of freedom LRT estimation, and the epistatic-effects genome

scanning module requires mðm�1Þ
2

times four degrees of freedom LRT estimation. Similarly, the

procedure to estimate the LRT is the same, so them times two degrees of freedom LRT estima-

tion and mðm�1Þ
2

times four degrees of freedom LRT estimation can also be parallelized.

As demonstrated above, the computationally intensive modules for kinship matrix calcula-
tions and genome scanning for main and epistatic effects can be parallelized to increase the
speed and efficiency of the analyses. The strategy utilized in the PEPIS for parallel high-perfor-
mance distributed computing is summarized in Table 1. Currently, the PEPIS is configured to
efficiently utilize ~500 central processing unit (CPU) nodes in our Linux clusters for parallel
computations.

Table 1. Summary of parallel strategy in the PEPIS for increasing analysis speed.

Processing Model Computation complexity description Repetitive parallelizable Allocated job for each CPU node
with p parallelizable CPUs

calculation unit

Kinship matrix
calculation

n(n+1)/2 loops for 6 kinship matrix cell calculations.
m(m−1)n(n+1)+mn(n+1) times multiplication

6 kinship matrix cell
calculations

n(n+1)/2p loops for 6 matrix cell
calculations

Genome scanning for
main effects

m times 2 degrees of freedom LRT estimation 2 degrees of freedom
LRT estimation

m/p times 2 degrees of freedom LRT
estimation

Genome scanning for
epistatic effects

m(m−1)/2 times 4 degrees of freedom LRT estimation 4 degrees of freedom
LRT estimation

m(m−1)/2p times 4 degrees of
freedom LRT estimation

doi:10.1371/journal.pcbi.1004925.t001
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Results
The PEPIS is a web-based program developed in C/C++ to facilitate efficient and rapid epistatic
QTL mapping. We verified that the PEPIS could meet our performance expectations by analyz-
ing the same IMF2 rice population genotypic and field phenotypic trait data sets examined by
Xu et al. [16].

Field Data and IMF2 Population
The IMF2 population described by Hua et al. [23,24] consisted of 360 crosses made by random
matches of 240 recombinant inbred lines (RILs) derived by single-seed descent from a cross
between the Zhenshan 97 and Minghui 63 rice hybrids. Field data pertaining to yield (YIELD),
number of tillers per plant (TILLER), number of grains per panicle (GRAIN), and thousand-
grain weight (KGW) were collected during the 1998 and 1999 rice growing seasons from repli-
cated field trials on the Huazhong Agricultural University Experimental Farm in Wuhan,
China. Over 270,000 high-density SNP markers were used to infer recombination breakpoints
(crossovers), which were then used to construct a total of 1,619 bins [18]. The bins were treated
as “new markers” for association studies. The bin map was constructed by genotyping the RIL
population sequences [18,19]. Of the 360 crosses, only 278 were available in both phenotypes
and bin genotypes. Therefore, the bin genotype data were stored in an n×m = 278×1,619
matrix. The Zhenshan 97 genotype was coded as ‘A,’ the Minghui 63 genotype as ‘B,’ and the
heterozygote as ‘H.’We downloaded the genotype and phenotype data from the website speci-
fied by Zhou et al. [25].

Submission of Representative Case Analysis Data to the PEPIS and
Results Returned
The coded additive and dominance genotypic data were stored as two n×m = 278×1,619 matri-
ces and then submitted to the PEPIS. Simultaneously, the YIELD, KGW, GRAIN, and TILLER
quantitative phenotypic data were stored as a n×1 = 278×1 column vector for each trait and
submitted to the PEPIS. Upon clicking the submit icon, the PEPIS allocates the entire process-
ing job to the available computer nodes distributed across our networked Linux clusters. Once
all of the distributed computing jobs are completed, the results are returned as a pop-up page,
and users are given the option to download the results from each analysis step. Using the same
IMF2 population rice data, the PEPIS returns the same result at each step when compared with
the original prototype script developed by Xu et al. [16], but reduced the whole analysis time
from more than one month to about five minutes. The significant difference in analysis time
demonstrates that the PEPIS is capable of performing large-scale epistatic QTL mapping based
on data from large numbers of individuals and markers/bins.

The user interface for data submission and return of results is shown in Fig 2. The results
returned include the six ‘gzip’ files corresponding to the six polygenic kinship matrices, as well
as three '.txt' files corresponding to the results of polygenic variance component analysis and
genome scanning for main and epistatic effects. The analysis results are explained in detail
below.

PEPIS Results and Biological Implications
Based on the results of polygenic variance component analyses, the polygenic structure of a tar-
get quantitative trait can be dissected. Pie charts illustrating the polygenic variance component
ratios for the traits YIELD, KGW, GRAIN, and TILLER are shown in Fig 3. Substantial differ-
ences between the polygenic structures were observed for the different traits. For example,
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additive genetic variance accounted for 73% of trait variance for KGW, whereas epistatic
genetic variance was the major contributor to variance for YIELD.

The 1D LRT distributions across all markers/bins were plotted based on the results of
genome scanning for main-effect QTL mapping. Plots of the main-effect LRTs for traits

Fig 2. PEPIS user interfaces. (A) Data submission and (B) Results return.

doi:10.1371/journal.pcbi.1004925.g002
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YIELD, KGW, GRAIN, and TILLER across the complete rice genome are shown in Fig 4. The
LRT statistic can be used to declare the statistical significance for each marker/bin, herein, if we
set a statistic threshold which also called p value, the marker/bin above the threshold suggest
an association with the trait, further, the marker/bin under a narrower peak means a higher
resolution and indicates a more specific association to the trait.

The 2D LRT distributions across all marker/bin pairs were also calculated based on the
results of genome scanning for epistatic-effect QTL mapping. Fig 5 shows the 2D epistatic-
effect LRTs for the traits YIELD, KGW, GRAIN, and TILLER across the complete rice genome.
Due to the symmetrical nature of the data, only a lower triangular matrix is shown for each

Fig 3. Pie charts illustrating the polygenic structure of the quantitative traits of rice. (A) YIELD, (B) KGW, (C) GRAIN, and (D) TILLER.

doi:10.1371/journal.pcbi.1004925.g003
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trait instead of the entire square matrix for all of the mðm�1Þ
2

possible combinational marker/bin

pairs. The 2D LRT statistic can be used to declare the statistical significance of each marker/bin

Fig 4. Plot of main-effect LRT results for quantitative traits with the markers/bins distributed across
the complete rice genome. (A) YIELD, (B) KGW, (C) GRAIN, and (D) TILLER. Dashed lines distinguish the
12 chromosomes and corresponding marker/bin numbers for the complete rice genome.

doi:10.1371/journal.pcbi.1004925.g004
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pair, herein, a statistic threshold can be set, the marker/bin pair above the threshold suggests
an association with the trait.

In summary, although the overall polygenic structure of several hybrid rice target traits can
be obtained based on the data illustrated in Fig 3, greater detail regarding the genetic composi-
tion of these traits can be obtained from the 1D main-effect LRT data illustrated in Fig 4 and
the 2D epistatic-effect LRT data illustrated in Fig 5. The high-intensity profile peaks in Fig 4
suggest that genetic loci are associated with the target traits examined in this study, for exam-
ple, in Fig 4(B), two high-intensity profile peaks located in chromosome 3 and chromosome 5
are two predominant genetic loci for trait KGW. Similarly, the high-intensity pixel points in
Fig 5 suggest that a marker/bin pair is associated with each of the target traits, for example, the
vertical scale bars in in Fig 5(A) represented by a number of pixel points with comparatively

Fig 5. Two-dimensional illustration of epistatic-effect LRTs for quantitative traits with marker/bin pairs distributed across the complete rice
genome. (A)YIELD, (B) KGW, (C) GRAIN, and (D) TILLER.

doi:10.1371/journal.pcbi.1004925.g005
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high intensities and vertically scattered between marker/bin 1000-marker/bin 1600, suggest
that there are numerous genetic marker interaction pairs. These pairs could be used to con-
struct a more complex marker-marker interaction/regulation network for the trait of YIELD.

Performance Analysis and Discussion
PEPIS was dedicatedly developed for epistatic genetic estimation. In generally, it has four inde-
pendent modules including kinship matrix calculation, polygenic component analysis, genome
scanning/mapping for main and epistatic effects. Currently, several software tools, such as
TASSEL [26], GCTA [27,28], PLINK [28], etc. have been successfully developed for genome
wide association mapping and complex trait analysis. These tools also need to calculate the kin-
ship [26] / genetic relationship [27,28] matrix at first, and then estimate the genetic variances
that can explain the phenotypic variances. In this regard, they have some similar functionalities
as the PEPIS. However, all these tools are based on an additive linear model and ignore the epi-
static effect. They calculated only one additive kinship matrix, and produced only a 1D likeli-
hood-based association mapping. Comparatively, PEPIS is based on a full polygenic linear
model. Therefore, PEPIS needs to calculate six polygenic kinship matrices, and produces both
1D and 2D likelihood based association mapping. The incorporation of epistatic effects results
in a huge number of genetic epistatic effects to be estimated and presents a significant increase
in computational burden.

Although PEPIS is equipped with a parallel strategy in a distributed Linux computing clus-
ter, it is useful to perform a benchmark evaluation on the computation performance of PEPIS
at different data scale. To accomplish this, we specifically generated a series of simulated data
sets by varying bin/marker numbers and sample size. These simulated data sets are available in
S1 File, which include 11 sub directories and each contains three '.txt' files, corresponding to
the genotypic additive Z Matrix, dominance WMatrix, and vector of phenotypic values. The
additive Z Matrix and dominance WMatrix are randomly generated but constrained by for-
mula 1. We submitted each of the 11 data sets to PEPIS and recorded the running time for kin-
ship matrix only and the whole running time for epistatic effect estimation and association
mapping. Two scenarios of the simulation experiment were considered, and one was to fix the
number of bins but vary the sample size (the number of individuals), the other was the oppo-
site. The running times for kinship matrix calculations are shown in S1 Table and the overall
running times for epistatic effect estimation and association mapping are shown in S2 Table.

From S1 Table, we can see that 1) the running time for calculating the main effect kinship
matrix increases moderately with the increase of the number of bins; and 2) the running time
for calculating the entire set of polygenic kinship matrices increases intensely with the increase
of sample size and number of markers/bins. Such observations are consistent with our previous
complexity analysis for kinship matrix calculation. The computational burden for main effect
kinship matrix calculation is on the order of O(mn2), while the computational burden for epi-
static effect kinship matrix calculation is on the order of O(m2n2).wherem and n are the num-
ber of markers/bins and the sample size, respectively.

From S2 Table, we observe the followings: 1) the running time for epistatic effect estimation
and association mapping increases intensely with the increase of the sample size and the num-
ber of markers/bins; and 2) the running time increases faster with the increase of sample size
compared with the increase of bin number. Our in-depth investigation revealed that the mod-
ule for polygenic variance component analysis takes significant amount of time when the sam-
ple size is very large, because the module is essentially an optimization procedure for a seven-
parameter log-likelihood estimation, which takes the six polygenic kinship matrices as a whole
input and cannot be parallelized.
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It is well known that increasing the marker density and the sample size can further increase
the resolution of QTL mapping and reduce the uncertainty of inferred genotypes. However, the
high density markers can result in a huge number of marker pairs for epistasis detection. In
PEPIS, the module for polygenic variant component analysis is still a bottleneck if the sample
size is more than 5,000.

In summary, with the efficient algorithm implementation in C/C++ and deployment of par-
allel strategy, PEPIS has a powerful computational capability and is able to carry out epistatic
effect analysis and association mapping when the sample size in the scale of several thousands
and the number of markers/bins in the scale of twenty thousand. At these scales, it would
require several years to be completed using the original prototype R programs [16].

Availability and Future Directions
The PEPIS pipeline, the source code and the test data are freely available at http://bioinfo.
noble.org/PolyGenic_QTL/. We are committed to maintaining and improving the specific
function modules per user comments and suggestions.

The current version of the PEPIS can be configured to perform kinship matrix calculations,
polygenic component analyses, the 1D LRT estimations for main-effect QTL mapping, and the
2D LRT estimations for epistatic-effect QTL mapping upon submission of the coded genotypic
and phenotypic data. However, a more user-friendly and efficient visualization of the input
genotypic data and the analysis results returned at each step would be very useful. We are
therefore planning to develop a visualization engine that will allow for more efficient display of
the input genotypic data and the polygenic QTL mapping results returned at each analysis
step. Furthermore, the high intensities for a number of the pixel points shown in Fig 5 are sug-
gestive of the presence of marker interaction pairs that correspond to a biologically meaningful
gene regulatory network. Therefore, we are also planning to develop an LRT (p value)-based
genetic statistical network analysis module that will be incorporated into our publically avail-
able high-performance expression-based gene regulatory network analysis web-server (http://
plantgrn.noble.org/GPLEXUS/) following validation [29].

Difficulties associated with handling high dimensional SNP data and the inability to esti-
mate epistatic effects constitute a significant challenge in GWAS. Reducing the dimensions of
SNP data based on biological information is critical and as such should be the first fundamental
step in estimating epistatic effects. Xu pioneered a groundbreaking methodology for inferring
breakpoints using high density SNP marker data from bi-parental populations and constructed
a bin-based genetic marker data [30]. The segregation patterns are identical for all original
SNP markers within a bin, and each bin in turn is considered to be a synthetic marker.

Binning markers in bi-parental populations is straightforward [30]. If the number of bins is
still very large due to large sample sizes, one can combine several consecutive bins into a larger
bin. As long as the number of these artificially created larger bins is small enough to be handed
by the epistatic model, they can be used as “synthetic markers” for epistatic mapping. Wei and
Xu[31] binned markers for multi-parent advanced generation inter-cross (MAGIC) popula-
tions for QTL mapping. They used the R software “Happy” to infer the parental origin of each
marker for each individual and eventually binning consecutive markers with the same parental
origins. For random populations, binning markers may be very difficult. However, we may use
linkage disequilibrium (LD) value to define “bins”. Consecutive markers with LD larger than a
threshold can be combined together and analyzed as a single bin. Such bins are better called
LD blocks. Our PEPIS can take any numerical genotypic values as input files, regardless
whether the genotypic values are defined as bins or original markers. One of our long term
goals of the project is to incorporate a binning function into the pipeline so that the program
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can directly handle the original SNP data, leading to more practical applications of the PEPIS
for epistatic analyses.

Supporting Information
S1 File. The simulated data at various dimensions with different sample sizes and different
numbers of bins. Eleven sub directories are included, and each contains three '.txt' files corre-
sponding to the additive genotypic Z Matrix, the dominance Wmatrix, and the phenotypic
vector.
(ZIP)

S1 Table. The PEPIS running time for kinship matrix calculation using the simulated data
at various dimensions. Two scenarios are tested corresponding to A) Fixing sample size at
1000 while varying the number of bins from 1,000 to 40,000; and B) Fixing the number of bins
at 1,000 while varying the sample size from 1,000 to 40,000.
(PDF)

S2 Table. The PEPIS running time for estimating the epistatic effect in PEPIS using the
simulated data at various dimensions. Two scenarios are tested corresponding to A) Fixing
the sample size at 1,000 while varying the number of bins from 1000 to 20,000; and B) Fixing
the number of bins at 1,000 while varying the sample size from 1,000 to 10,000.
(PDF)
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