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Abstract

In ruminants, the level of food intake affects net chewing efficiency and hence faecal

particle size. For nonruminants, corresponding data are lacking. Here, we report the

effect of an increased food intake of a mixed diet in four domestic rabbit does due to

lactation, and assess changes in particle size (as determined by wet sieving analysis)

along the rabbit digestive tract. During lactation, rabbits achieved a distinctively

higher dry matter intake than at maintenance, with a concomitant reduction in

mean retention times of solute and particle markers, an increase in dry matter gut

fill, a reduction in apparent digestibility of dry matter, and an overall increase in

digestible dry matter intake. By contrast, there was no change in faecal mean

particle size (mean ± SD: 0.58 ± 0.02 vs. 0.56 ± 0.01mm). A comparison of diet,

stomach content and faecal mean particle size suggested that 98% of particle size

reduction occurred due to ingestive mastication and 2% due to digestive processes.

Very fine particles passing the finest sieve, putatively not only of dietary but mainly

of microbial origin, were particularly concentrated in caecum contents, which cor-

responds to retention of microbes via a ‘wash‐back' colonic separation mechanism,

to concentrate them in caecotrophs that are re‐ingested. This study gives rise to the

hypothesis that chewing efficiency on a consistent diet is not impaired by intake

level in nonruminant mammals.
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1 | INTRODUCTION

Reducing food particle size by chewing is a prominent characteristic

of mammals (Reilly et al., 2001). Apart from making ingestion phy-

sically feasible, particle size reduction enhances the rate of digestion

(Bjorndal et al., 1990; Hummel et al., 2020), and a compromise of

chewing efficiency is among the limiting factors for mammalian

survival and reproductive success (King et al., 2005; Kojola

et al., 1998; Skogland, 1988). Accordingly, preventing an impairment

of chewing efficiency is important for mammals.
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Different factors can influence particle size reduction of food.

The diet itself is among them, as different diets may be chewed to

different sizes (Hummel et al., 2008; Jalali et al., 2015; Kljak

et al., 2019). The factors producing these effects are not well un-

derstood, likely because the interplay of dental morphology, chewing

movements and various physical characteristics of food is complex

and not easily measured beyond the resulting particle size. In ter-

restrial herbivores, mastication is the main factor contributing to

particle size reduction, with microbial fermentation and enzymatic

digestion playing only a minor role (McLeod & Minson, 1988; Poppi

et al., 1980; Spalinger & Robbins, 1992). Therefore, faecal particle

size is used as a proxy for chewing efficiency (Fritz et al., 2009).

Nevertheless, particle size reduction along the gastrointestinal tract

does occur to a minor degree, and this effect is suggested to be more

relevant in small herbivores (reviewed in Naumova et al., 2021).

The time an animal allocates to chewing is most likely another

important factor for chewing efficiency. On the one hand, oral pro-

cessing via chewing is considered the main factor responsible for the

‘functional response' observation that instantaneous food intake

does not increase monotonously with offered food density, but

reaches a plateau (Hummel & Clauss, 2011; Yearsley et al., 2001). On

the other hand, chewing intensity might decrease, due to time con-

straints, at increasing levels of food intake. Theoretically, there could

be a trade‐off between the amount of food ingested, and the in-

tensity with which it is masticated. For domestic ruminants, such a

trade‐off has been shown experimentally, where higher levels of

intake of a consistent diet led to reduced chewing intensity (Coulon

et al., 1987) and larger particles in the faeces (Kaske & Groth, 1997;

Kovács et al., 1997; Shaver et al., 1988). To minimize this effect,

animals might increase time spent chewing at the cost of other ac-

tivities, as shown in lactating cattle (Coulon et al., 1987) or mountain

goats (Oreamnos americanus) (Hamel & Côté, 2008) and koalas

(Phascolarctos cinereus) (Logan & Sanson, 2003), or increase their

chewing frequency to compensate for the effect, as shown in lac-

tating bighorn sheep (Ovis canadensis) (Blanchard, 2005).

Corresponding studies for nonruminants are scarce. Horses did

not show significant variation in faecal particle size across a very

large range of intake levels (31–93 g kg−0.75 d−1; Clauss et al., 2014);

however, this range was achieved by varying degrees of food

restriction below ad libitum intake at maintenance energy require-

ments. Therefore, in that study, the expectation had been that the

low intake level might lead, due to hunger, to more hastily food

intake and hence less thorough mastication, as observed in rumi-

nants (Luginbuhl et al., 1989). Investigations with nonruminants un-

der conditions of increased intake, such as during lactation, are

lacking to our knowledge. The aim of this study was to address this

gap and test whether the increased intake during lactation would

affect chewing efficiency in rabbits.

2 | MATERIALS AND METHODS

Experiments were performed under Animal Experiment Licence

56‐2 of the Official Veterinary Office, Bonn, Germany. Four female

domestic rabbits (Oryctolagus cuniculus) of the Czech Spot breed, of

unknown relatedness, aged 8 months at the beginning of the study,

were used at three different time points: at maintenance and in

primiparous lactation for the assessment of intake on digesta re-

tention, digestibility, gut fill and faecal particle size, and later again

at maintenance for the assessment of particle size in different

sections of the digestive tract. Rabbits were adult (non‐lactating = 8

months; lactating = 11 and 14 months) and without obvious dental

problems. They were fed a diet with a constant proportion of 50%

chopped grass hay and 50% concentrate (Table 1) at two food in-

take levels representative for maintenance and lactation (Table 2),

based on intake levels for does in the literature (Gidenne &

Lebas, 2006; Lebas et al., 1975). The concentrate was fed twice

daily at 08:00 and 16:00; the hay was given in several smaller

portions across the day. The diet was always consumed completely.

Animals had ad libitum access to water. During the collection per-

iods, they were kept in cages allowing separation of individuals and

total collection of faeces. The litter (4–6 young) was kept in a se-

parate nest box. Suckling was allowed twice daily at 08:30 and

16:30, and the mothers were weighed before and after nursing to

confirm milk production and the corresponding higher energy and

nutrient requirements during lactation.

TABLE 1 Feeds used in the present
study (means with standard
deviation; n = 3)

Grass hay Pelleted dieta Total diet

Total ash g kg‐1 DM 105 ± 24 95 ± 1 100 ± 12

Crude protein g kg‐1 DM 111 ± 22 190 ± 4 150 ± 13

Ether extracts g kg‐1 DM 25 ± 7 29 ± 0 27 ± 3

Neutral detergent fibre g kg‐1 DM 496 ± 84 367 ± 10 431 ± 47

Acid detergent fibre g kg‐1 DM 311 ± 45 206 ± 6 259 ± 20

Acid detergent lignin g kg‐1 DM 51 ± 1 58 ± 5 54 ± 3

Mean particle size mm 21.13 0.58 10.85

aIngredients in % of dry matter (DM): lucerne meal (38.00), wheat middlings (18.70), soybean meal

(12.00), sunflower meal (10.00), barley grain (8.00), oats huskmeal (6.25), molasses (4.75), soybean oil

(0.45), feeding lime (0.45), monocalcium phosphate (0.15), mineral‐vitamin‐mix (1.25).
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The length of the experimental period at maintenance was

22 days, consisting of a 14‐day period for adaptation (during which

the diet was fed at the designated amount) and an 8‐day period for

collecting samples. The length of the period during lactation was,

adapted to the peak of lactation curve, 19 days including 14 days

adaptation and a 5‐day period for collecting samples, starting 3 days

postpartum. Samples of feedstuffs were taken daily during the trial

and were pooled. Faeces were collected quantitatively at intervals

necessary for determination of digesta mean retention time (MRT).

Two different markers were ingested by the animals on day 15 with a

small proportion of morning concentrate. The animals were dosed

with 2.7 g chromium (Cr)‐mordanted fibre (based on 1–2mm parti-

cles from grass hay) and 0.27 g cobalt(III)ethylene diamine tetra-

acetate (Co‐EDTA; solutes) (Udén et al., 1980). To ensure total

consumption, Co‐EDTA was dissolved in water, mixed with the

concentrate and the Cr‐mordanted fibre, and dried again before

feeding (60°C, 6 h). Note that passage markers need to be basically

indigestible and that their excretion patterns have to be interpreted

correspondingly, and that depending on the study objective and the

degree to which marker migration is relevant, ytterbium‐labelled
particles or Cr‐mordanted fibre might be considered the more sui-

table particle marker in rabbits (Gidenne, 1988). Faecal samples

were collected at time intervals of increasing length (Day 1–2: 4 h;

Day 3–5: 6 h; Day 6–7: 8 h; Day 7–8: 12 h). One part was dried at

60°C for 24 h and after that at 100°C for another 24 h, and then

milled and stored for marker analysis; another part was pooled over

the sampling period and stored frozen for wet‐sieving and chemical

analysis.

After the litters had been weaned and the rabbits were on

maintenance intake level, they were euthanized within 1.5 h after a

morning meal and dissected. The total contents of stomach, caecum,

and colon were taken and stored frozen. A representative part of the

sample was used for wet sieving.

Chemical analysis was done according to VDLUFA (2012) for dry

matter (DM) (method 3.1; drying at 103°C), ash (method 8.1; com-

bustion at 550°C), crude protein (method 4.1.2; Dumas method; in-

strument FP‐328; LecoEnterprise) and starch (enzymatically; method

7.2.3). Ether extract was analyzed after acid hydrolysis using an

ANKOM Extractor (Ankom Technology) according to AOCS and

Firestone (2009) (Am 5‐04 official method). Neutral detergent fibre

(NDFom; not assayed with a heat stable amylase), and, in feeds, acid

detergent fibre (ADFom) and acid detergent lignin were analysed

following Van Soest and Robertson (1985); all values are given

without residual ash. Analysis of faecal samples for retention

TABLE 2 Body mass and measures of
digestive physiology (means with standard
deviation) in four rabbits (Oryctolagus
cuniculus) fed at maintenance or during
lactation

Measure Unit Maintenance Lactation pa

Body mass kg 3.61 ± 0.06 4.30 ± 0.61 0.106

Dry matter intake g d−1 110 220 –

Relative dry matter intake g kg−0.75 d−1 42 ± 0 75 ± 8 0.004

g kg−0.67 d−1 47 ± 0 84 ± 8 0.003

Mean retention time h

MRTsolute 76 ± 6 53 ± 4 0.001

MRTparticle 26 ± 2 17 ± 4 0.008

MRTparticle/MRTsolute 0.34 ± 0.04 0.33 ± 0.06 0.595

Faecal excretion g DM d−1 24 ± 2 78 ± 12 0.004

Dry matter GIT fill g 72 ± 5 107 ± 19 0.024

g kg−1 BM 20 ± 1 25 ± 4 0.047

Apparent digestibility %

Dry matter 78 ± 2 65 ± 5 0.028

Organic matter 78 ± 1 64 ± 5 0.023

Crude protein 82 ± 2 76 ± 4 0.135

Neutral detergent fibre 67 ± 2 38 ± 10 0.018

Relative digestible dry matter intake g kg−0.67 d−1 37 ± 1 54 ± 7 0.019

Mean faecal particle size mm 0.56 ± 0.01 0.58 ± 0.02 0.546

Very fine faecal particles % all particles 20.4 ± 4.0 25.2 ± 10.2 0.437

Abbreviation: MRT, mean retention time.
aPaired t test.
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markers followed the procedure of Behrend et al. (2004) and

Hummel et al. (2005): Approximately 0.3 g dry faeces were mixed in

test tubes with 5ml 72% H2SO4 and placed on a shaker overnight.

The following day, the samples were filtrated into fresh tubes. Co

and Cr were directly measured in this solution by atomic absorption

spectroscopy (Perkin‐Elmer 1100 B).

The faeces and feeds were also subjected to a wet‐sieving pro-

cedure (sieves of 16, 8, 4, 2, 1, 0.5, 0.25, 0.125, and 0.063mm mesh

size). Known amounts of samples were soaked in water before

sieving to separate all cohering particles (hay for 10min, concentrate

for 30min, faeces overnight in a refrigerator). Wet sieving was done

for 10min with a water flow of 2 l/min sprayed on the top sieve using

a Vibrotronic Type VE 1 (Retsch Technology, Haan, Germany). The

amplitude of the sieve shaker was adjusted at 2mm.

Relative dry matter intake was expressed per BM0.75 and also

per BM0.67 as suggested for small herbivores (Müller et al., 2013).

Digestibility was calculated as the amount (of nutrient) not elimi-

nated as faeces in percent of the amount ingested. The calculation of

MRT from faecal marker concentrations was done according to

Thielemans et al. (1978), as

MRT = Σ tiCidti
Σ Cidti

with Ci = marker concentration in the faecal samples from the

interval represented by time ti (hour after marker administration,

using the midpoint of the sampling interval) and dti = the interval

(hour) of the respective sample

dti = ((ti+1‐ti) + (ti‐ti−1))/2

Dry matter gut fill was estimated from dry matter intake, par-

ticle MRT, and dry matter digestibility using the linear equation of

Holleman and White (1989). Mean particle size (MPS) of material

retained on the sieves was calculated as dMean following Fritz et al.

(2012). The difference between the amount of dry matter subjected

to sieve analysis (as calculated from the amount of sample and the

respective dry matter concentration) and the dry matter retained on

all sieves was calculated to represent the very fine particle

(<0.063mm) fraction. Sieve analysis data for the gastrointestinal

tract of five domestic rabbits from Fritz (2007) were subjected to the

same calculations.

Statistical analyses were performed in R (R Core Team, 2017).

Differences between the maintenance and lactation intake levels

were assessed by paired t test. Differences between the GIT sections

(stomach, caecum, colon) in the percentage of very fine particles and

in MPS were assessed by mixed models using the “nlme” package

(Pinheiro et al., 2016), where individual was a random factor (to

account for repeated measures), with post hoc Tukey tests per-

formed using the “emmeans” package (Lenth et al., 2018). The sig-

nificance level was set to 0.05.

3 | RESULTS

As planned, the rabbits had a significantly higher food intake during

lactation, both in absolute and relative terms (Table 1). Daily milk

production, determined by weighing mothers before and after

suckling, corresponded to published lactation information for do-

mestic rabbits (Casado et al., 2006) (Figure 1). Maximal milk yield

ranged between 171 and 182 g/day in the four does, with the peak

occurring between the 11th and the 17th day of lactation.

Retention marker excretion curves resembled those reported

earlier for rabbits (Franz et al., 2011) (Figure 2a), with a fast descent

of the concentration of the particle marker but a slow, gradual

descent of the solute marker that was interrupted more or less

regularly by secondary peaks of this marker that indicate copro-

phagy. At the higher intake, MRTsolute (Figure 2b) and MRTparticle

(Figure 2c) were significantly shorter; their ratio, however, remained

unchanged (Table 2).

On the higher intake, the rabbits also had a higher faecal output,

a higher dry matter gut fill, and lower apparent digestibility of dry

matter, organic matter and NDF; the digestibility of crude protein,

however, remained unchanged (Table 2). Regardless of the lower

digestibility, overall digestible dry matter intake was higher at the

increased intake (Table 2). There was no difference in the percentage

of very fine particles or the MPS in the faeces between the two

intake levels (Figure 3a, Table 2).

In the four rabbits of the present study, a distinct drop in particle

size was evident when comparing sieve fractions of the diet and the

stomach contents (Figure 3b). The percentage of very fine particles

was highest in the caecum, and this was significantly different from

both the stomach (p < .001) and the colon (p = .001), with no differ-

ence between stomach and colon (p = .684) (Figure 3b). The MPS was

lowest in the caecum (0.41 ± 0.01mm), intermediate in the colon

(0.54 ± 0.03mm) and highest in the stomach (0.77 ± 0.02mm); pair‐
wise differences were significant between the three sites (p always

<.001). In the five rabbits from Fritz (2007), the percentage of very

fine particles was also highest in the caecum, and this was

F IGURE 1 Mean (±standard deviation) daily milk production in

the four rabbits (Oryctolagus cuniculus) of the present study [Color
figure can be viewed at wileyonlinelibrary.com]
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(a)

(b)

(c)

F IGURE 2 Marker excretion graphs (solute marker: Co‐EDTA;
small particle (1–2mm) marker: Cr‐mordanted fibre) in rabbits

(Oryctolagus cuniculus) on a consistent diet; (a) example in a single
rabbit on maintenance dry matter intake (DMI) level; (b) mean (with
standard deviation) solute marker excretion of 4 rabbits on
maintenance (maint) and lactation (lact) DMI; (c) mean (with
standard deviation) particle marker excretion of four rabbits on
maintenance and lactation DMI. Note the secondary excretion peaks
for the solute marker indicating coprophagy, and the faster marker
excretion on the lactation intake level

(a)

(b)

(c)

F IGURE 3 Mean (with standard deviation) percentage of dry
matter of faeces and gastrointestinal contents of rabbits (Oryctolagus
cuniculus) submitted to wet sieve analysis; (a) particle size
distribution of the faeces of four rabbits on a consistent diet at
maintenance (maint) or lactation (lact) dry matter intake level; (b)
particle size distribution of gastrotinestinal contents of the same four
rabbits after slaughter in comparison to the particle size distribution
of the diet;
(c) gastrointestinal contents of five rabbits and two samples of soft
faeces from the study of Fritz (2007)
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significantly different from the stomach (p < .001) but not from the

colon (p = .105), with a significant difference between stomach and

colon (p = .005) (Figure 3c). The MPS was lowest in the caecum

(0.45 ± 0.04mm), intermediate in the colon (0.47 ± 0.03mm) and

highest in the stomach (0.55 ± 0.06mm); differences were significant

between stomach and caecum (p = .015), stomach and colon

(p = .040), but not between caecum and colon (p = .786). Additionally,

two samples of “soft faeces” or “caecotrophs” had a MPS of 0.53mm;

in terms of the proportion of very fine particles, they were numeri-

cally between the caecum and the colon contents (Figure 3c).

4 | DISCUSSION

Our study indicates that different intake levels, while affecting di-

gestive physiology in ways corresponding to previous reports, do not

affect chewing efficiency as measured by faecal particle size in rab-

bits. Additionally, they indicate that very fine particles accumulate

particularly in the caecum of rabbits, and that particle size reduction

does not only occur at ingestion via chewing, but also during passage

through the gastrointestinal tract.

Evidently, an important constraint of the present study was the

low number of animals at n = 4. Initially, it had been planned to use

six rabbits, but two failed to deliver a litter successfully in the time

available for the project. Nevertheless, given the nature of our

results, with either clear or no differences, our findings can be

considered reliable. The rabbits used were primiparous, and had

comparatively small litter sizes (4–6 young); therefore, the lactation

dry matter intake was, at 66–82 g kg−0.75 d−1, not as high as some

values reported in the literature for lactating rabbit does with larger

litters of ≥8 young on a comparable diet (e.g., 106 g kg−0.75 d−1 in

Pascual et al., 1999). The use of primiparous animals in the present

study most likely does not represent an important constraint, given

that the milk production was as expected for rabbits. In cattle, an

ontogenetic decrease of chewing intensity has been demonstrated

(Grandl et al., 2016). For example, primiparous cows have a higher

chewing intensity, that is, they chew more per dry matter intake,

than multiparous cows (Beauchemin & Rode, 1994). This is an effect

of the fact that cattle are bred and give birth at an age where the

molar teeth have not yet erupted completely. As available chewing

surface determines chewing intensity (Pérez‐Barbería &

Gordon, 1998), chewing intensity decreases in parallel with molar

eruption (Grandl et al., 2018). In rabbits, the permanent dentition has

completely erupted within the first month after birth (Bertonnier‐
Brouty et al., 2020; Michaeli et al., 1980), so that the animals used in

the present study, with an initial age of 8 months, had their fully

functional dentition.

We fed the rabbits a mixed diet, rather than a forage‐only diet that

would on the one hand resemble more closely the natural diet of rabbits,

and on the other hand require a distinctively longer intake (Müller

et al., 2014; Schröder, 2000) and hence might more probably exert a time

constraint. In the future, it might be interesting to repeat this assessment

on a forage‐only diet that requires distinctively more time for ingestion

than the mixed diet of our study (Zumbrock, 2002). Another limitation

was that we did not have the equipment to document the chewing

behaviour of the rabbits, and therefore could not determine chewing

intensity (in chews per gram dry matter intake).

The response of herbivores that increase intake of a consistent diet

can generally react along a continuum of two extremes (Hume, 2005):

given spare gut capacity, they can increase their gut fill and retain their

original digesta retention time, or their gut fill remains constant, and

digesta retention time decreases markedly. Typically, herbivores will

show both effects, at varying degrees depending on their digestive

anatomy and physiology (Clauss et al., 2007; Findeisen et al., 2021; Munn

et al., 2015). With both an increase in gut fill and a decrease in retention

time, the rabbits of the present study were no exception. Shorter re-

tention times at higher intakes have been reported previously in rabbits

(Bellier & Gidenne, 1996; Gidenne & Feugier, 2009). While intake gen-

erally affects both the retention of particle and solute markers, their ratio

typically remains constant (reviewed in Clauss et al., 2014), as in the

present study, suggesting that a specific degree of “digesta washing” (i.e.,

movement of liquid in relation to the movement of particulate matter) is

a distinct feature of species‐specific digestive physiology (Müller

et al., 2011).

Because, in contrast to auto‐enzymatic digestion of non‐fibre sub-

stances, microbial digestion and fermentation of fibre is distinctively

time‐dependent (Hummel et al., 2006), one would intuitively expect that

at shorter retention times, digestibility, and in particular fibre digestibility,

is reduced. This was also evident in the present study, where an absolute

increase (measured as g d−1) in dry matter intake of 100%, representing

an about 80% increase in relative dry matter intake (from 47 to 84 g

kg−0.67 d−1), only led to a 48% increase in relative digestible dry matter

intake (from 37 to 54 g kg−0.67 d−1, Table 2). It should be noted, however,

that this does not mean that longer retention times, observed at ever‐
decreasing intakes, lead to ever‐increasing digestibility: below a certain

intake level, fibre digestibility is also reduced, most likely due to a

shortage of nutrients necessary for microbial action (reviewed in Clauss

et al., 2014).

Chewing efficiency as measured by faecal particle size is apparently

not reduced by higher intake levels in rabbits. At least at the intake level

of the present study, rabbits are not time‐constrained to achieve the

required food intake. Together with the finding of no effect of an intake

reduction on chewing efficiency in horses (Clauss et al., 2014), this leads

to the hypothesis that in nonruminants, a given diet is always chewed to

a certain size before it is swallowed (Prinz & Lucas, 1997). The setpoints

for this size or the related number of chews, and why this differs—in

terms of the resulting particle size—between different diets also in

nonruminants (Clauss et al., 2014; Naumova et al., 2021) remains to be

clarified.

By contrast, in domestic ruminants, higher intakes influence faecal

particle size (see Introduction). It could be speculated that this could be

an effect of different diets used across experiments. However, a parallel

experiment to the present one, in which domestic goats (Capra hircus)

were fed a similar 50:50 mixture of grass hay and a concentrate feed at

maintenance and lactation intake, also documented that a similar in-

crease in faecal particle size with intake was evident as in other ruminant
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studies (Findeisen et al., 2021). The difference between ruminants and

nonruminants might stem from the fact that in ruminants, ingestive

mastication is less systematic and consistent, and hence possibly less

‘fixed', than in nonruminants (Dittmann et al., 2017). The effect of intake

on faecal particle size then stems from the fact that at high fill of the

reticulorumen, larger particles may escape retention and re‐mastication

(Hummel et al., 2018), rather than a reduction in rumination chewing

efficiency itself (Findeisen et al., 2021).

Similar to previous reports in several nonruminant herbivores (re-

viewed in Naumova et al., 2021), a reduction of particle size along the

digestive tract was evident in both the rabbits of our study and those

previously analysed by Fritz (2007) (Figure 3b,c). For ruminants, McLeod

and Minson (1988) reported that 82% of large particle breakdown was

due to mastication (ingestive as well as rumination), and 18% due to

digestive processes and friction. Using the MPS results of the third part

of the present study, a diet of an average MPS of 10.85mm was reduced

to a faecal particle size of 0.54mm, that is, a total difference of

10.31mm. Ignoring a possible effect of coprophagy, 10.08mm of this size

reduction (or 98%) occurred at the transition from the diet to the sto-

mach, that is, by ingestive chewing, and only 0.23mm (or 2%) during the

passage from the stomach to the colon. Thus, the concept that masti-

cation is mainly responsible for particle size reduction in terrestrial

herbivores is supported. However, material in the stomach need not

stem completely from ingested feed. Even though slaughtering of the

animals was timed to occur after a morning meal, which ensured that

freshly ingested and masticated feed was present in their stomachs, we

cannot exclude that disintegrated “soft faeces” or “caecotrophs” con-

stituted some part of the stomach contents. Even though caecotrophs

are not chewed and are hence visible as distinct, round entities for a

certain period of time (cf. the supplementary information of Schulz

et al., 2013) before they disintegrate, they consist of particularly small

particles (see below). Hence, the size reduction effect of ingestive mas-

tication may be overestimated when comparing the particle size of diet

and stomach contents. The fact that the reduction in digestibility with

reduced retention times in the present study was not accompanied by a

reduction in faecal particle size or the proportion of very fine particles in

the faeces supports the notion that digestion itself has a comparatively

minor effect on particle size reduction. Note that even in ruminants, with

their distinctively longer particle retention than in rabbits (Müller

et al., 2013), digestion effects only a minor part of the overall particle size

reduction (McLeod & Minson, 1988).

The particles that pass through the finest sieve—in our study,

0.063mm—represent unknown material. In contrast to Gidenne et al.

(1989), who reported that this fraction was lower in rabbit hard faeces

than particles between 0.315 and 0.05mm, our results for hard faeces

from several experiments consistently found it to be higher (Figure 3). As

outlined in Naumova et al. (2021), this material should not only be

considered of dietary, but also of microbial origin. Rabbits have a colonic

separation mechanism of the “wash‐back” type, which uses a retrograde

fluid flow in the proximal colon to wash very fine particles, and especially

microbes, back into the caecum (Björnhag & Snipes, 1999; Cork

et al., 1999), so that detailed analyses can trace an increasing deprivation

of gut contents of very fine particles along the length of the colon

(Björnhag, 1972). Our findings of long solute marker retention times

(Figure 2), and of a particularly high accumulation of very fine particles at

this site (Fig. 3BC), correspond to these descriptions. These microbes

then form a major component of the so‐called “soft faeces” or “caeco-

trophs” that are excreted at certain times and directly reingested by the

animal from the anus. With respect to MPS as derived from particles

retained on sieves (i.e., without accounting for the very fine ones passing

the lowest sieve), soft and hard faeces of rabbits are not different (Udén

& Van Soest, 1982), which was confirmed in the few samples of the

present study. However, one would expect a higher proportion of very

fine particles in the soft faeces. The clear separation of caecum and colon

contents in the proportion of very fine particles in the present study most

likely stems from the clearly defined timepoint of euthanasia shortly after

the morning meal, at a time when the colonic separation mechanism can

be expected to be active and hard faeces fill the distal colon. Similar

information was not available for the rabbits from Fritz (2007).

In conclusion, we did not find evidence of an intake con-

straint on chewing efficiency in rabbits fed a mixed diet at

maintenance and during lactation. While the majority of particle

size reduction occurred during ingestion (presumably due to

mastication), a small additional particle size reduction occurred

along the digestive tract (presumably due to digestion). Given

that the only reports on an intake constraint on chewing effi-

ciency available in the literature so far stem from ruminants, we

hypothesize that this is due to the peculiar particle retention

mechanism in ruminants that is linked to a relaxation of ingestive

chewing consistency, and that in nonruminant mammals, chewing

efficiency should remain constant for a given diet at varying le-

vels of intake. This would mean that in nonruminant herbivores,

energy and nutrient extraction efficiency on a given diet depend

only on the gut capacity‐modified interplay of intake level and

digesta retention.
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