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Purpose: Radiomics is the process to automate tumor feature extraction from medical images. This
has shown potential for quantifying the tumor phenotype and predicting treatment response. The
three major challenges of radiomics research and clinical adoption are: (a) lack of standardized
methodology for radiomics analyses, (b) lack of a universal lexicon to denote features that are seman-
tically equivalent, and (c) lists of feature values alone do not sufficiently capture the details of feature
extraction that might nonetheless strongly affect feature values (e.g. image normalization or interpola-
tion parameters). These barriers hamper multicenter validation studies applying subtly different
imaging protocols, preprocessing steps and radiomics software. We propose an open-source ontol-
ogy-guided radiomics analysis workflow (O-RAW) to address the above challenges in the following
manner: (a) distributing a free and open-source software package for radiomics analysis, (b) deploy-
ing a standard lexicon to uniquely describe features in common usage and (c) provide methods to
publish radiomic features as a semantically interoperable data graph object complying to FAIR (find-
able accessible interoperable reusable) data principles.
Methods: O-RAW was developed in Python, and has three major modules using open-source com-
ponent libraries (PyRadiomics Extension and PyRadiomics). First, PyRadiomics Extension takes
standard DICOM-RT (Radiotherapy) input objects (i.e. a DICOM series and an RTSTRUCT file)
and parses them as arrays of voxel intensities and a binary mask corresponding to a volume of inter-
est (VOI). Next, these arrays are passed into PyRadiomics, which performs the feature extraction pro-
cedure and returns a Python dictionary object. Lastly, PyRadiomics Extension parses this dictionary
as a W3C-compliant Semantic Web “triple store” (i.e., list of subject-predicate-object statements)
with relevant semantic meta-labels drawn from the radiation oncology ontology and radiomics ontol-
ogy. The output can be published on an SPARQL endpoint, and can be remotely examined via
SPARQL queries or to a comma separated file for further analysis.
Results: We showed that O-RAW executed efficiently on four datasets with different modalities,
RIDER (CT), MMD (CT), CROSS (PET) and THUNDER (MR). The test was performed on an HP
laptop running Windows 7 operating system and 8GB RAM on which we noted execution time
including DICOM images and associated RTSTRUCT matching, binary mask conversion of a single
VOI, batch-processing of feature extraction (105 basic features in PyRadiomics), and the conversion
to an resource description framework (RDF) object. The results were (RIDER) 407.3, (MMD) 123.5,
(CROSS) 513.2 and (THUNDER) 128.9 s for a single VOI. In addition, we demonstrated a use case,
taking images from a public repository and publishing the radiomics results as FAIR data in this
study on www.radiomics.org. Finally, we provided a practical instance to show how a user could
query radiomic features and track the calculation details based on the RDF graph object created by
O-RAW via a simple SPARQL query.
Conclusions: We implemented O-RAW for FAIR radiomics analysis, and successfully published
radiomic features from DICOM-RT objects as semantic web triples. Its practicability and flexibil-
ity can greatly increase the development of radiomics research and ease transfer to clinical prac-
tice. © 2019 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of
American Association of Physicists in Medicine. [https://doi.org/10.1002/mp.13844]
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1. INTRODUCTION

Imaging has developed rapidly in the healthcare field and is
commonly used in clinical practice. When integrated into
clinical decision support systems (CDSS), 1 medical imaging
could play a key role in precision medicine2 that could lead
to better customized healthcare at an individual patient level.
Multimodality medical imaging is routinely used in clinical

practice, and plays a critical role in how doctors diagnose and
treat cancer.

With rising utilization of imaging technology, there has
been an increasing interest in the use of quantitative tumor
markers derived from imaging data. Radiomics3–5 is an
important development in quantitative imaging analysis,
where digitally encoded medical images containing informa-
tion related to tumor pathophysiology are converted into
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high-dimensional mineable features.5,6 Radiomics requires a
high-throughput computerized tumor feature extraction pro-
cess that can operate on vast quantities of digital imaging
data. The features extracted from imaging data have been
associated with key clinical outcomes (e.g., overall survival).
Previous studies7–11 have shown the value of radiomics on
quantifying the tumor phenotype and predicting treatment
response in clinical settings. By developing diagnostic and
prognostic signatures, radiomics is expected to provide addi-
tional and complementary information to clinical factors for
decision support.

However, three major challenges impede the pace of radio-
mics research and its clinical adoption: (a) lack of standard-
ized methodology for radiomics analyses; (b) insufficient
information in the feature lexicon to fully characterize the
preprocessing steps leading up to feature extraction; and (c)
insufficient information in the extracted feature values for an
independent investigator to reproduce the same values (such
as image normalization or interpolation parameters). These
issues above hamper multicenter studies because of subtly
different imaging protocols, preprocessing steps and extrac-
tion software. As a result, the development of radiomics
research has been impeded. There is a need for an open-
source package to make radiomic features more readily com-
parable for researchers and clinical users. We hypothesize
that comparative research will be supported if we not only
share radiomic features values, but also information about the
preprocessing and computational steps that led to that speci-
fic feature value.

An option to address the sharing problem is to progres-
sively lengthen a human-readable label as the feature name,
for example log.sigma.3.0.mm.3D_firstorder_Kurtosis, but
this can become unwieldy if the complexity of metadata
increases. An alternative is to provide comprehensive dic-
tionaries so that feature definitions can be cross-referenced,
however this also becomes cumbersome when multiple soft-
ware packages, imaging settings and processing steps come
into play. The Semantic Web approach has added value here,
since each calculated value of a feature can be defined with a
unique identifier independently of its human-readable feature
name and additional unique identifiers can be attached which
acts as metadata describing that feature. For the purpose of
easy comparison, sharing and validation of radiomic results,
a feasible approach is to build FAIR (findable, accessible,
interoperable, reusable)12 radiomic data via an open and
extensible semantic ontology for annotating radiomic feature
values with metadata and unique identifiers.

In this article, we propose an open-source ontology-
guided radiomics analysis workflow (O-RAW) to address the
above challenges in the following manner: (a) distributing a
free and open-source software package for radiomics analy-
sis, (b) using a domain-specific semantic web ontology to
uniquely describe features in common usage, and (c) provid-
ing methods to publish radiomic features as a semantically-
interoperable data graph object complying to FAIR data prin-
ciples. With this resource, we aim to support further stan-
dardization radiomics analysis with the use of ontologies,

promote multicenter collaboration via a novel learning
approach using Semantic web [i.e., resource description
framework (RDF)]13–15 and hence increase the potential for
wide external validation and validity of radiomics-assisted
clinical prediction models.

2. MATERIALS AND METHODS

2.A. Datasets

Imaging data from different modalities (i.e., CT, PET and
MRI) were used in this study:

1. RIDER test-retest dataset16: 31 sets of lung tumor CT
scans with associated RTSTRUCT;

2. Multidelineation (MMD) dataset17: 21 sets of lung
tumor CT scans and corresponding RTSTRUCT with
manual delineations from five different oncologists;

3. CROSS trial dataset18: 79 sets of esophageal tumor
PET scans and corresponding RTSTRUCT.

4. THUNDER trial dataset: 23 apparent diffusion coeffi-
cient (ADC) maps in locally advanced rectal cancer
patients. Corresponding RTSTRUCT was delineated
manually by three different observers.

Of the above, the RIDER and MMD datasets are publi-
cally available via an image repository (http://xnat.bmia.nl).

2.B. O-RAW architecture

The O-RAW (version 2.0) workflow package (https://git
lab.com/UM-CDS/o-raw) was developed using the Python
programming language, which encapsulates the workflow in
three major steps and uses two open-source component
packages (PyRadiomics19 as radiomics feature extractor and
PyRadiomics Extension20). PyRadiomics is an open-source
package for radiomics extraction, which can be applied on
both two and three-dimensional medical imaging. The pri-
mary goal of PyRadiomics is to build an open-source plat-
form that could provide standardized methods for easy and
reproducible radiomics extraction and analysis. To achieve
this goal, four steps are applied in PyRadiomics: (a) loading
and pre-processing of scans and associated segmentation;
(b) application of enabled filters; (c) radiomic features
extraction from different classes; and (d) returning a Python
dictionary object containing, configuration information, fea-
ture names and values. There are several available open-
source radiomics software such as MITK,21 Mazda,22 PyRa-
diomics,19 IBEX23 and CERR.24 Apte et al.,24 described the
main characteristics including limitations of some software
(Table S1). The current limitations of PyRadiomics are par-
tially solved by O-RAW, such as (a) directly take original
DICOM images and RTSTRUCT files as input; (b) describ-
ing the process of feature extraction by a universal lexicon
(i.e., an ontology) rather than literal expressions. The PyRa-
diomics Extension package aims to extend the functionality
of PyRadiomics on both the input and output sides and
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allows users to employ native DICOM series and
RTSTRUCT directly for radiomics extraction, and convert
the radiomic features (Python dictionary object) to RDF
using the relevant semantic ontology (i.e., Radiomics Ontol-
ogy25). The conversion is done by mapping individual radio-
mic feature of PyRadiomics to unique identifiers defined by
the image biomarker standardisation initiative (IBSI). If fea-
tures do not exist or do not match with the IBSI identifiers,
these are defined and labeled using the domain-specific
Radiomics Ontology.

Figure 1 shows the workflow of radiomics analysis pro-
posed in O-RAW. First, imaging data from a local reposi-
tory or web data repository (i.e., XNAT) are retrieved
(pyxnat library26). Second, PyRadiomics Extension takes
standard DICOM-RT inputs (DICOM images and the asso-
ciated RTSTRUCT file) and parses them as arrays of voxel
intensities and a binary mask for each volume of interest
(VOI). Next, the arrays are passed into PyRadiomics that
performs the above mentioned feature extraction and returns
a Python dictionary object to PyRadiomics Extension.
Then, PyRadiomics Extension parses the dictionary as a
W3C-compliant semantic web “triple store” (i.e., RDF)
with metalabels attached from the radiation oncology ontol-
ogy27 and the IBSI compliant Radiomics Ontology.25 The
RDF result can be published to an http-accessible endpoint,
and examined via SPARQL Protocol and RDF Query Lan-
guage (SPARQL) queries. The information stored in RDF
format include the radiomics feature unique identifier, its
name and value, pre-processing approaches, VOI(s), the
patient identifier, and the radiomics software used. Finally,
an external application can perform machine learning algo-
rithms on the RDF triple store and return results back to
learning application. Briefly, PyRadiomics is the radiomics
feature extractor, and PyRadiomics Extension is the input
and output extension of PyRadiomics to handle DICOM
images and RDF object. O-RAW is the workflow incorpo-
rating these tools to make radiomics study easily and con-
nect to external application. In principle this modular set-
up should allow for other modules e.g. other binary conver-
sion methods (e.g. Plastimatch or CERR) or other radio-
mics feature extractor software (e.g. IBEX or CERR), if in-
and output are known.

3. RESULTS

In order to assess O-RAW, three tests were performed in
this study. In the first test, the ability of O-RAW to handle
multiple modalities was verified on four datasets, RIDER
(CT), MMD (CT), CROSS (PET) and THUNDER (MR).
The results show that O-RAW can perform radiomics analysis
on different imaging modalities. O-RAW executed efficiently
on these datasets on a laptop running Windows 7 operating
system and 8GB RAM, on which the execution time was
noted of a common radiomics analysis. This included
DICOM images and associated RTSTRUCT matching, bin-
ary mask conversion, feature extraction (105 basic features),
and conversion of RDF object. The results were (RIDER)

407.3, (MMD) 123.5, (CROSS) 513.2 and (THUNDER)
128.9 s for a single VOI.

Second, to evaluate the method of binary mask conversion
in O-RAW, we used Plastimatch (version 1.7.3), PyRadiomics
Extension and CERR (MATLAB) to convert binary masks
for 100 randomly selected patients from MMD and CROSS
datasets with CT and PET scans. This test led to a mask in
NRRD format per VOI per application. The flowchart is
shown in Fig. 2 (pipeline 1, 2 and 3). The Dice similarity
coefficient28 of binary masks converted by three approaches
were all exactly unity, which indicated that conversion by
either Plastimatch, PyRadiomics Extension and CERR result
in the same binary mask.

O-RAW provides two user-configurable options of output
format, CSV (Comma delimited) and RDF (default). On the
one hand, the simpler csv file output can be saved in the
export directory given in the configuration file of O-RAW,
which contains the information of patient ID, VOI(s), and
values of radiomic features. To track more details of radiomic
features extraction (e.g., preprocessing methods), information
should be saved in other flat tables, which is the limitation of
using relational tables to present data using a rigid and prede-
fined structure (known as a schema). Another and preferred
option is to save radiomic features in the RDF format, which
allows full expressivity of features and their details. The
information can be retrieved by using SPARQL queries from
a SPARQL endpoint (e.g., Blazegraph), which not only
includes patient identifiers, VOI(s), and values of radiomic
features, but also feature units, preprocessing and radiomics
software details.

In Fig. 3, we show a real world example, which demon-
strates the importance of tracking computation details and the
feasibility of describing radiomics via an RDF graph object.
As shown in [Fig. 3(a)], a dataset with 48 patients is first ran-
domly split into two subgroups without overlap, 24 patients
for each. One subgroup data was sent to our partner in the
UK. The radiomics of the subgroup1 were computed by PyR-
adiomics in MAASTRO and converted into RDF format. The
radiomics of the subgroup2 were computed by Radiomics
tool A and converted into RDF format as well. We combined
radiomics of the two subgroups into a mixed group. Second,
all 48 patients were computed by PyRadiomics only as PyRa-
diomics group. As a demonstration, we only select the feature
entropy, which is defined identically, in terms of definition,
formula and IBSI29 code, in both two software (PyRadiomics
and Radiomics tool A) implementations. Concordance corre-
lation coefficients (CCC) was calculated between the PyRa-
diomics group and mixed group, which yielded a CCC score
of 0.3. The feature entropy values of two groups are shown in
[Fig. 3(b)], where some cases in the mixed group were
approximately identical to feature values in the PyRadiomics
group, but some are not. Then, a simple SPARQL query
shown in [Fig. 3(c)] was used to track the computation
details. According to the returned result [Fig. 3(d)], the rea-
son of the low CCC score is caused by using different soft-
ware (PyRadiomics vs MATLAB radiomics toolbox). By
analysing more computational details such as image
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preprocessing or filter methods, one could further investigate
why these two entropy values are different between software
implementation.

The visualization of RDF graph data generated by O-
RAW is presented in Fig. 4. This RDF graph object complies
with the radiomics output structure of IBSI that as described
in the Radiomics Ontology. Moreover, we showed an exam-
ple in the Fig. S1, which describes how radiomic features are
queried and computation details are tracked by a simple
SPARQL query.

4. DISCUSSION

Our work (O-RAW) aims to address the lack of a standard-
ized methodology for radiomics analysis. Most radiomics
toolboxes are developed in-house without public and stan-
dardized documentation on the details of the radiomics calcu-
lation and analysis, which makes it difficult to reproduce and
validate radiomics studies. Besides in-house developments,
there are radiomics toolboxes which are publicly available,

such as MITK,21 Mazda,22 PyRadiomics,19 IBEX,23 CERR24

and LifeX,31 and also commercial implementations exist.
Each of these have different capabilities and limitations,24

showcasing the need for standardization efforts such as pre-
sented in this study.

The O-RAW workflow package was developed using two
open-source component packages (PyRadiomics, and PyRa-
diomics Extension), of which functionalities are clarified
here. PyRadiomics plays the role of a radiomics feature
extractor using native file formats as input (e.g., NRRD for-
mat) and output (e.g., CSV). PyRadiomics Extension allows
the use of standardized file formats as input (DICOM images
and RTSTRUCT) and output (RDF) based on an ontology
(i.e., Radiomics Ontology and Semantic DICOM ontology).
The O-RAW package integrates PyRadiomics and PyRadio-
mics Extension to implement batch processing including
DICOM handling, ROI selection and exclusion, conversion
from RDF to additional standardized file formats (CSV), and
so on. The main innovation of O-RAW is thus in orchestrat-
ing the workflow of a radiomics study. It can work with any

FIG. 1. The generalized workflow of O-RAW. First, DICOM imaging data are captured from a local or web repository. Second, DICOM images and the associ-
ated RTSTRUCT files are converted into binary masks according the feature extractor input requirements. The radiomics extractor then calculates features and
exports these in a (usually) custom output format. The features are then mapped to RDF to achieve semantic interoperability and published in an http-accessible
endpoint, from which they can be queried with SPARQL and used in a learning application. O-RAW, Ontology-guided Radiomics Analysis Workflow; RDF,
resource description framework.

FIG. 2. Three approaches (CERR, Plastimatch, and PyRadiomics Extension) shown in pipeline 1, 2, 3 were used for binary mask conversion. All three methods
converted binary mask in NRRD format. One hundred randomly selected patients from MMD and CROSS datasets with CT and PET scans. The Dice similarity
coefficient was used as the comparison measurement.
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radiomics feature extraction software, provided that they
accept standard formats for input (i.e., file formats that can be
read by ITK) and export data according to the Radiomics
Ontology.

We selected PyRadiomics as the feature extractor in O-
RAW, as it best fits the concept of O-RAW currently, in
terms of well standardized documentation, universal pro-
gramming language (Python), fully open-sourced code, rapid
maturation and an active community of user-developers.
With O-RAW also fully open source, the process of making
radiomic features FAIR using associated ontologies can be
reproduced easily by others. Although we used PyRadio-
mics, it is important to note that the modular nature of O-

RAW allows easy integration of other radiomics toolkits as
long as its input and output are known. When including a
different radiomics toolkit, syntactic and semantic interoper-
ability has to be created. With regard to syntactic interoper-
ability, O-RAW uses DICOM as its input syntax and RDF
as its output syntax. In current radiomics feature extraction
tools, either DICOM is already accepted (e.g., in CERR)
requiring no change. If another standardized input format
(e.g., NRRD) is accepted, then tools exist to convert
DICOM into these formats (e.g., ITK). Output formats of
radiomics toolkits vary (Python dictionary, CSV, etc) but
many tools exist to convert such application data into RDF
(https://www.w3.org/wiki/ConverterToRdf) – requiring

FIG. 3. A real world example showing the use of an ontology-supported description of a radiomics feature rather than just using the feature name. a) Flowchart
indicating the use of two different radiomics feature extraction software implementation (PyRadiomics and MATLAB). b) Comparison of entropy values calcu-
lated by a mix of MATLAB and PyRadiomics (x-axis) to PyRadiomics alone (y-axis). The black dots indicate entropy calculated by MATLAB which has a con-
cordance correlation coefficient of only 0.04 with PyRadiomics calculated entropy. c) SPARQL query to retrieve patient ID, radiomic feature name,
programming language, software version, and feature value. d) Returned results of SPARQL query, where one can see the feature entropy was computed by two
software implementations (MATLAB and Python/PyRadiomics).
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simple configuration of those tools. Achieving syntactic
interoperability is therefore not very difficult. With regard to
semantic interoperability, recent standardization efforts for
radiomic features, including the Radiomics Ontology, which
has also implemented the IBSI standard, have emerged but
have not yet been implemented widely. Custom code is thus
necessary to map the native nomenclature to semantically
standardized radiomic features. Also, details on how the
radiomic features were calculated (e.g. filtering, software
version etc.) need to be configured in O-RAW. As an exam-
ple, the current study used an in-house MATLAB (Radio-
mics tool A) implementation from our UK partner and
mapped its MATLAB output to RDF. In practice, this is a
two-step process: (a) Filling in the toolkit details in the con-
figuration file of O-RAW including computational details as
described in the literature.32 This configuration table is used
to create a base RDF graph containing information on the
radiomics toolkit and its settings. (b) Mapping native names
of features to Radiomics Ontology codes, by filling in map-
ping table with two columns: one is the feature names out-
put from the users’ radiomics toolkit and the other one is the
Radiomics Ontology codes. This mapping table is then used
to create the individual radiomics features in RDF. The two
extra steps can be avoided when using PyRadiomics, as the
process of mapping is implemented automatically via the
PyRadiomics Extension in O-RAW.

In all cases, O-RAW allowed users to track the details
(e.g., feature calculation approaches or parameters) of each
step within a typical radiomics analysis workflow. We feel
the primary aim and benefit of O-RAW was thus demon-
strated which is to support reproducible and interoperable
radiomics research with the use of ontologies, promote

multicenter collaboration and hence increase the potential for
wider external validation studies of radiomics-assisted clini-
cal prediction models.

The use of a standard and publicly accessible lexicon, the
IBSI compliant Radiomics Ontology,25 explicitly documents
the definitions and mathematical formulas of radiomic fea-
tures. Using an ontology is a major improvement over using a
human-readable label alone, which is not sufficient to guar-
antee semantic equivalence and interoperability. We feel cre-
ating semantic interoperability through the use of ontologies
is essential for the comparison and validation of radiomic
studies, given the diverse software implementations, prepro-
cessing approaches and feature labels which are in active use.

For example, using an ontology first forces one to choose
if a feature called “entropy” is the Intensity Histogram
Entropy (IBSI ID = TLU2)25 or textural feature Joint
Entropy (IBSI ID = TU9B).25 Second, using an ontology,
two users who compute Joint Entropy can also note what
pixel spacing and software implementation was used to com-
pute their respective Joint Entropies. We have shown in this
study that O-RAW can offer such detailed expressiveness by
using the Radiomics Ontology to describe features and attach
metadata for those features, resulting in semantic interoper-
ability and ultimately FAIR data.

Finally, flat tables for radiomics output do not suffi-
ciently capture the methodological steps that affect feature
values. For instance, image resampling prior to features
extraction might affect the result.33,34 However, a two
dimensional table that only describes the radiomic feature
names and their values is not sufficient to determine which
methodologies of pre- and postprocessing are used for radio-
mics calculation. It is impossible to know if radiomic

FIG. 4. Visualization of nodes and relations as an RDF graph object generated by O-RAW. The structure follows the IBSI compliant Radiomics Ontology. More
details, see.30 The radiomics graph is able to link to a clinical data graph via Patient ID.
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features from two flat tables use the same pre-processing
method(s) without any further information, though their
value might be equal.

We identified the challenges for radiomics research as: (a)
lack of standardized methodology for radiomics analyses, (b)
lack of a universal lexicon to denote features that are semanti-
cally equivalent, and (c) lists of feature values alone do not
sufficiently capture the details of feature extraction that might
nonetheless strongly affect feature values (e.g. image normal-
ization or interpolation parameters). We have demonstrated
that O-RAW is capable of handling these challenges. First,
the radiomics extractor used in O-RAW is PyRadiomics,
which is the largest open-source radiomics package and has
attracted more and more attention of researchers in the radio-
mics community. Second, the IBSI compliant Radiomics
Ontology is applied in O-RAW to guide radiomics analysis,
which offers unambiguous metadata to note if two radiomic
features are equivalent semantically or not. Third, the default
output format is RDF within O-RAW, which can link radio-
mic features and values to related meta-data, such as patient
ID, VOI, unit, preprocessing, and software version. The
uniqueness of a radiomic feature is not the name of the fea-
ture, but the details describing how the feature is computed.
As shown in Fig. 4, when two features have an identical
name, they may not be identical. Their computation settings,
such as image processing and filter methods, may be differ-
ent, which can be tracked by using ontologies such as pro-
posed in O-RAW.

One of the benefits of using RDF graphs to store radio-
mics data which we will study in future work, that is it allows
the linkage to other RDF graphs e.g. containing clinical data
such as histology and other biological characteristics of the
tumor and outcomes which are important in many radiomics
studies to derive relations between the imaging phenotype
and tumor genotype and to make clinically relevant predic-
tion models. Similarly, RDF allows as to leverage work done
in the Semantic DICOM ontology (https://www.ncbi.nlm.nih.
gov/pubmed/25160167) and store the complete DICOM
header in RDF and link it to the Radiomics RDF. This is part
of our future works as it would make it unnecessary to derive
and store DICOM header information (e.g. slice thickness
and pixel spacing) in O-RAWas is done now.

Finally, O-RAW is able to generate FAIR data: (a) radio-
mics data and extraction details could be published with a
Findable(F) and unique identifier; (b) radiomics data and
metadata are described with the Radiomics Ontology, which
make them accessible(A) and understandable by machines
and humans; (c) data uses a formal, standardized and applica-
ble ontology for knowledge representation, which makes
interoperability(I) among multicenters possible; (d) data
offers explicit information on provenance and licenses for
reuse (R).

A current limitation of the O-RAW package is that multi-
center studies based on querying the feature RDFs must be
based on PyRadiomics or converted to RDF triples. Future
work will involve three aspects. First, we will to extend our
method to convert features generated in native format and

nomenclature into IBSI compliant, ontology-based to other
radiomics software, and will cooperate with other willing
developers to address the challenge to create syntactic and
semantic interoperability between radiomics studies. With
such interoperability O-RAW would allow identification of
differences in feature calculation between different packages/
vendors. Second, a distributed learning study among multi-
centers will be performed to link clinical outcome, DICOM
header and radiomic features via O-RAW. Finally, accurate
and robust automatic segmentation of tumor tool will be inte-
grated into our workflow. It means that O-RAW will extract
radiomics from original DICOM images without a require-
ment for any other (manual) annotation information (i.e.,
RTSTRUCT).

5. CONCLUSIONS

In this study, we successfully implemented O-RAW for
radiomics analysis from radiotherapy-based images to ontol-
ogy guided FAIR data. Its practical use and flexibility can
greatly promote the advance of radiomics research and may
help the associated achievements transfer to clinical practice.
The development goal of O-RAW is to help radiomics users
on both input and output sides. First, it allows to import origi-
nal DICOM images and RTSTRUCT files that are commonly
used in the radiation oncology field. Second, the output is
machine-readable data with related ontologies, which pro-
motes the standardization in terms of radiomic features, pre-
and postprocessing.
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SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Fig S1: Shows an example, which describes how radiomic
features are queried and computation details are tracked by a
simple SPARQL query. The radiomic features could be
linked to the clinical data of the patient by patient ID.
Table S1: The primary characteristics of publicly available
open-source radiomics extraction tools.
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