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Abstract
Previous studies have suggested that resting-state functional connectivity plays a central role in the physiopathology of major
depressive disorder (MDD). However, the individualized diagnosis of MDD based on resting-state functional connectivity is still
unclear, especially in first episode drug-naive patients with MDD. Resting state functional magnetic resonance imaging was
enrolled from 30 first episode drug-naive patients with MDD and age- and gender-matched 31 healthy controls. Whole brain
functional connectivity was computed and viewed as classification features. Multivariate pattern analysis (MVPA) was per-
formed to discriminate patients with MDD from controls. The experimental results exhibited a correct classification rate of
82.25% (p < 0.001) with sensitivity of 83.87% and specificity of 80.64%. Almost all of the consensus connections (125/128)
were cross-network interaction among default mode network (DMN), salience network (SN), central executive network (CEN),
visual cortex network (VN), Cerebellum and Other. Moreover, the supramarginal gyrus exhibited high discriminative power in
classification. Our findings suggested cross-network interaction can be used as an effective biomarker for MDD clinical diag-
nosis, which may reveal the potential pathological mechanism for major depression. The current study further confirmed reliable
application of MVPA in discriminating MDD patients from healthy controls.
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Introduction

As one of the most common psychiatric disorders worldwide,
major depressive disorder (MDD) is characterized by persis-
tent, pervasive feelings of sadness, guilt, and worthlessness,
which leads to serious economic impact to the families and
bring great burden to the society (World Health Organization
2017). However, the diagnosis of MDD is still challenging
because the diagnosis is primarily based on both the patient’s

self-reported symptoms and the psychiatrist’s experience
(American Psychiatric Association 2013). Reliable MDD de-
tection becomes difficult especially in the condition without
experienced psychiatrist, which limits subsequent treatment of
this disease (Mitchell et al. 2009; Nabbe et al. 2017).
Obviously, it is necessary to develop an automated and objec-
tive method to help to diagnosis MDD.

In the last decade, multi-modal magnetic resonance imag-
ing (MRI) techniques have been widely used to characterize
the underlying pathophysiology of mental diseases (Buckner
2010). Compared with the task MRI, resting-state fMRI has
attracted considerable attention owing to easier implementa-
tion and fewer requirements to the patients (Greicius et al.
2003; Fox and Raichle 2007). Although some studies have
focused on investigating dynamic functional connectivity (Li
et al. 2019; Liao et al. 2019) or combined dynamic and static
connectivity (Liao et al. 2018), resting-state functional con-
nectivity (static) has always been proven effective in revealing
the alterations of brain functional networks in neuropsychiat-
ric disorders including Alzheimer (Badhwar et al. 2017),
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schizophrenia (Dong et al. 2018) and depression (Greicius
et al. 2007; Greicius 2008).

The default mode network (DMN) refers to some brain areas
that form an integrated system for self-related activity, including
autobiographical, self-monitoring and social functions, which
mainly contained the medial prefrontal cortex, anterior cingulate
cortex, posterior cingulate cortex, inferior parietal lobule,
parahippocampal gyrus and hippocampus (Raichle et al.
2001). The salience network (SN) usually is involved in pro-
cessing emotion or monitoring for salient events (Seeley et al.
2007), which included insula, amygdala, temporal poles, super
temporal gyrus, pallidum and caudate (Menon 2011). The cen-
tral executive network (CEN) is responsible for high-level cog-
nitive functions, notably the control of attention and working
memory (Mulders et al. 2015), which were anchored in dorso-
lateral prefrontal cortex, and posterior parietal cortex (Seeley
et al. 2007; Habas et al. 2009). Although findings are somewhat
inconsistent, previous studies have revealed that the pathophys-
iology ofMDD involves a large-scale dysfunction in brain func-
tional networks such as DMN, SN and CEN (Greicius et al.
2007; Sexton et al. 2012; Zhu et al. 2012; Hamilton et al.
2013; Guo et al. 2014b; Manoliu et al. 2014a). However, most
of these studies traditionally adopt the univariate analysis, which
has neglect the highly interconnected nature of the brain
(Davatzikos, 2004). Whether altered resting-state functional
connectivity could be used in the individualized diagnosis of
MDD is still unknown.

How to differentiate MDD at the individual level is the key
problem to be settled. With the incoming of artificial intelli-
gence era, machine learning methods have been used widely
in brain image analysis (Liu et al. 2012; Smith 2012; Liu et al.
2015).As one of the typical supervised machine learning
methods, multivariate pattern analysis (MVPA) can extract
stable identification features from brain image data to differ-
entiate patients from healthy controls at the individual subject
level (Orru et al. 2012; Wolfers et al. 2015). In contrast to the
univariate statistical methods, MVPA could further detect ex-
citing spatially distributed information to highlight neural
mechanisms of psychiatric disease. An increasing number of
neuroimaging studies focused on applying MVPA to discrim-
inate MDD patients from healthy controls (Fu et al. 2008;
Craddock et al. 2009; Liu et al. 2012; Zeng et al. 2012; Ma
et al. 2013; Zhong et al. 2017). A recent meta-analysis of
multivariate pattern recognition studies to differentiate pa-
tients diagnosed with MDD from healthy controls has con-
firmed high representational capacity of MVPA methods to
identify neuroimaging-based biomarkers of depression
(Kambeitz et al. 2017). It is noteworthy that resting state func-
tional connectivity has been proved to be superior classifica-
tion accuracy of diagnostic models, compared with structural
MRI or task-based fMRI data (Kambeitz et al. 2017).

Several studies have demonstrated the clinical value of
resting state functional connectivity to distinguish MDD from

healthy controls based on MVPA methods (Zeng et al. 2012;
Zhong et al. 2017). The majority of the most discriminating
functional connections were located within or across different
resting state networks, such as DMN, SN and CEN, which
were related to emotional and cognitive function (Zeng et al.
2012; Ma et al. 2013). In addition to methodological differ-
ence among these studies, the variable diagnostic performance
may due to demographic and clinical characteristics of de-
pressed patients. It was reported that antidepressant medicine
and old age could cause alterations in brain function and struc-
tures (Anand et al. 2005; Guo et al. 2014c). Therefore, it was
necessary and crucial to explore neuroimaging-based diagnos-
tic models in first episode treatment-naïve young major de-
pression. Though a few pioneering studies have now emerged
on these topics, no final conclusion has yet been reached (Guo
et al. 2014a; Zheng et al. 2019).

The aim of this study was to explore diagnostic models at
an individual level to differentiate patients with MDD from
healthy controls. MVPA and resting state functional connec-
tivity were used as a diagnostic tool in first-episode, treatment-
naive young adults with MDD and carefully matched healthy
control subjects. We hypothesized that relative to healthy con-
trols, abnormal cross-network functional connectivity were
expected to be observed in resting state networks involved
in emotional and cognitive function in MDD group.

Materials and methods

Participants

Patients with MDDwere recruited from the psychiatric clinic at
Xiangya Hospital of Central South University in Changsha,
China. Patients with MDD were diagnosed according to the
Structured Clinical Interview for DSM-IV by independent as-
sessments of two psychiatrists. All of the patients were
experiencing their first episode of depression and had never
received medication. Closely matched healthy subjects were
recruited through advertisements from several colleges in
Changsha. All subjects were right-handed. In order to reduce
the influence of addictive substance, all subjects were required
to be abstinent from caffeine, nicotine, alcohol and other addic-
tive substance at least oneweek prior to the fMRI scanning. The
shared exclusion criteria for patients and control subjects in-
cluded any major medical illnesses; clinical diagnosis of neu-
rologic trauma; any history of psychiatric disorder in the control
subjects or any history of psychiatric disorder, except major
depression, in the MDD patients; any history of substance
abuse or alcohol in the past 6months; and any contraindications
to imaging scanning. Finally, 30 patients with MDD and 31
matched healthy controls were recruited (Table 1).

Written informed consent was obtained from all participants
prior to the study, which was approved by the Institutional
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Review Board of Xiangya Hospital of Central South University
for Brain Research. The methods were conducted in accordance
with relevant approved guidelines and regulations.

Measures

Depressive severity was measured using the CES-D scale
(Radloff 1977), a 20-item self-report instrument to assess de-
pressive symptoms in the general population. The Chinese
version of the CES-D has been found to have high degrees
of reliability and validity (Wang et al. 2013). In this study, the
internal consistency of the CES-D was good (Cronbach’s al-
pha = 0.93).

MRI data acquisition

Resting state fMRI images were captured by a 3T Siemens
Magnetom Symphony scanner. During scanning, all partici-
pants were asked to rest with their eyes closed and to try not to
think of anything systematically. All subjects placed their
heads in a standard head coil (16-channel). Participants were
positioned comfortably on the scanner bed and fitted with soft
ear plugs; foam pad was used to minimize head movement.

Functional images were obtained axially using a single-
shot, gradient-recalled echo-planar imaging sequence parallel
to the line of the anterior-posterior commissure: repetition
time/echo time = 2000/40 ms, thickness/gap = 5/0 mm, field
of view = 240 × 240 mm, flip angle = 90°, matrix = 64 × 64,
slices = 26, 150 volumes.

High-resolution T1-weighted images were also acquired
with a three-dimensional spoiled gradient-recalled sequence
in an axial orientation: repetition time = 8.5 msec, echo time =
3.2 ms, flip angle = 15°, field of view = 25 cm, matrix =
256 × 256, slice thickness = 1.0 mm, 176 slices.

Image preprocessing

Image preprocessing was carried out using the Data Processing
& Analysis for Brain Imaging software package (DPABI, http://
rfmri.org/dpabi). After discarding of the first 10 volumes of each
functional time series, slice timing, and realignment of head
motion, data from three patients and two healthy subjects were
excluded because their translation or rotation exceeded ±1.5 mm
or ± 1.5°. The images were then spatially normalized to a

standard template (Montreal Neurological Institute, Montreal,
Quebec, Canada). The sources of spurious variance were
regressed out including 6 parameters from head-motion correc-
tion (Friston 24-parameter model), white matter and cerebrospi-
nal fluid signal. The resulting images were spatially smoothed
with a Gaussian filter of 8 mm full-width half-maximum kernel.
Linear detrending and temporal bandpass (0.01–0.08 Hz) filter-
ing were performed to remove low-frequency drifts and physio-
logical high-frequency noise. In view of the influence of head
motion on functional connectivity results, the data was further
performed with the scrubbing method to remove time points
affected by head motions (Yan et al. 2013; Power et al. 2014).

Anatomical parcellation

The registered functional MRI volumes with the Montreal
Neurological Institute template were divided into 116 regions
according to the automated anatomical labelling atlas
(Tzourio-Mazoyer et al. 2002). The atlas divides the cerebrum
into 90 regions (45 in each hemisphere) and divides the cere-
bellum into 26 regions (9 in each cerebellar hemisphere and 8
in the vermis). We evaluated functional connectivity between
pairs of regions by calculating Pearson correlation coeffi-
cients. For each subject, we obtained a resting-state functional
network captured by a 116 × 116 symmetric matrix.
According to previous studies (Menon 2011, 2018; Supekar
et al. 2019), these regions were divided into six different
resting-state networks, such as DMN, SN, CEN, VN,
Cerebellum and Other. The VN mainly comprised lingual
gyrus, fusiform, cuneus and occipital lobe (Zeng et al. 2012).

MVPA

Feature selection

Feature selection was used to construct the feature space for
classification by retaining the most discriminating functional
connections. The discriminative power of a feature can be
quantitatively measured. The F score method was used for
feature ranking in this current study for its simplity and effec-
tiveness (Chen and Lin 2006), which has been widely used in
mental disease (Liu et al. 2015; Chen et al. 2016) and other
fields (Wang 2007; Akay 2009). F score of the ith feature is
defined as follows:

Table 1 Demographic and
clinical characteristics of the
MDD and control groups

Characteristic MDD Control t /χ2 p Cohen’s d

Age 22.29 ± 1 .47 21.18 ± 3.32 0.43 0.72 0.15

Sex (female/male) 16/14 16/15 0.01 0.84

CES-D 39.25 ± 5.75 18.33 ± 5.14 13.10 0 3.12

Age at onset (years) 21.17 ± 3.22 NA

Illness duration (months) 8.35 ± 4.46 NA
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MDD instance, and x −ð Þ
k;i is the ith feature of the kth healthy

control instance. The denominator represents the discrimina-
tion within each of the MDD and healthy control sets, while
the numerator represents the discrimination between the two
sets. Obviously, the larger the F score is, the more likely the
feature is of more potential to discriminate the groups.

Support vector machine classification

Support vector machine (SVM) classifier was adopted for
classification, which works well when the number of training
samples is small but the number of features is large (Vapnik
2000). SVM classification is one type of supervised learning
which consists of two steps: training and testing. During the
training step, SVM forms the decision function from the train-
ing data set with its class labels. During the testing step, it
predicts the class labels of new test examples (Liu et al.
2015). A linear kernel SVM was used, in order to reduce the
risk of overfitting the data and allow direct extraction of the
feature weights (Pereira et al. 2009). The SVM classifier was
implemented using LIBSVM toolbox with default parameters
(Chang and Lin 2011).

Evaluation of the performance of the classifier

Due to our limited number of samples, a LOOCV strategywas
employed to evaluate the performance of the classifier
(Scholkopf and Smola 2001; Liu et al. 2015; Chen et al.
2016). In brief, suppose there were n samples in total. In each
LOOCV trial, n-1 samples were used as the training set and
the remaining one was used as the testing set. This procedure
was repeated n trials. Classifiers were built for each training
set and testedwith its corresponding testing subject. Accuracy,
sensitivity, and specificity could be used to quantify the per-
formance of the classifier based on the results of LOOCV.
Utilizing of LOOCV strategy could get stable weights of each
feature and the weights got from the training dataset were
more close to the whole dataset (Anderson et al. 2014).

Classification weight definition

In each trial of LOOCV, the final features used in classifica-
tion differed because feature ranking was based on a slightly

different subset of the data. Consensus features were defined
(Liu et al. 2015; Chen et al. 2016). They were regarded as the
common features always selected to form the final features set
from each LOOCV iteration. The weight of the consensus
feature was the average value of the classification weight
across all trials of LOOCV. The weight of a consensus feature
was defined as zero if this connection was not selected as a
classification feature.

To represent the relative contribution of different regions
for classification, the classification weight of each region was
evaluated by summing one-half of the classification weight of
the connections associated with that region (splitting the
weight of connections into the regions they connects) (Meier
et al. 2012). Of note, if a region did not form any consensus
feature, it was given a region weight of zero. We defined a
region (consensus feature) with greater weights if its weight
was at least 1 standard deviation greater than the average of
the weight of all the regions (consensus features) (Tian et al.
2011; Liu et al. 2015).

Permutation test of classification performance

To estimate the statistical significance of observed classification
accuracy is a challenging problem due to the high dimensionality
of the fMRI data and the relatively small number of training ex-
amples. Some researchers have proposed a framework of permu-
tation test, which is a nonparametric technique inwhich a reference
distribution is obtained by calculating all possible values of the test
statistic under rearrangements of the labels of the samples (Golland
and Fischl 2003). The permutation test has widely used in classi-
fying brain states (Mourao-Miranda et al. 2005), sexual dimor-
phism (Wang et al. 2012) and resting-state brain function (Zhu
et al. 2008; Liu et al. 2015). In the current analysis, the class labels
of the training data were randomly permuted 1000 times. The
same entire classification process including feature selection was
carried out with each set of permuted class labels. The accuracies
were obtained across all permutations. Based on these null proba-
bility distributions and the observed statistic corresponding to the
actual labeling, p value was calculated as the proportion of accu-
racies that are equal to or greater than the accuracy obtained by the
non-permutated (original) data (Liu et al. 2015). The smaller is the
p value, the more reasonable to reject the null hypothesis. Usually
a threshold of p< 0.05 is meaningful.

Result

A relatively high classification accuracy of 82.25% was
achieved in this study (sensitivity 83.87%, specificity
80.64%, p < 0.001). The receiver operating characteristic
(ROC) curve of the classifier was shown in Fig. 1. The area
under the ROC curve (AUC) was 0.892, indicating a good
classification power.
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128 consensus features were identified in the cross-valida-
tion. Similar to the previous studies, brain regions related to
consensus functional connectivity were found to be located
primarily in 6 resting state networks: DMN, SN, CEN, VN,
Cerebellum and Other. Almost the entire consensus connec-
tions (125/128) used to distinguish MDD from healthy con-
trols belonged to the cross-network interaction. Some consen-
sus features exhibited greater weights than others, which
means that its weight was at least one standard deviation great-
er than average weight of all the regions (Tian et al. 2011). 128
consensus features were shown in Fig. 2.

The mean weight of consensus features across two networks
is one indicator to represent the role of interactions across these
two networks to some extent. Therefore, the mean weight of
consensus features cross 6 networks was calculated. Cross-
network interactions in 6 networks were constructed in Fig. 3.
Some cross-network interactions exhibited greater weights than
others. The cross-network interactions with greater weight were
mainly located across DMN, SN, CEN and VN.

Several brain regions exhibited greater weights than others.
These regions contain right supramarginal gyrus and right
infer parietal lobule (involved in DMN), super temporal gyrus
and left putamen (involved in SN), left super occipital gyrus,
and lingual gyrus (involved in VN). Of all, the supramarginal
gyrus exhibited highest discriminative power. Figure 4
showed these regions.

Discussion

In this study, resting state functional connectivity was used as
the feature to identify first-episode, drug-naïve MDD patients
from health populations using MVPA methods. Four main
results were revealed: (1) a correct classification rate was
82.25% and the AUC value was 0.892, indicating the impor-
tant value of whole brain resting state functional connectivity
to identify MDD patients from healthy controls; (2) almost all
of the consensus connections (125/128) used to distinguish
MDD belonged to cross-network connection among DMN,
SN, CEN, VN, Cerebellum and Other; (3) The consensus
connections with greater weight were mainly located across
DMN, SN, CEN and VN. (4) The supramarginal gyrus exhib-
ited the highest discriminative power.

Consistent with previous findings, cross-network inter-
action was found to be altered in patients with MDD. DMN,
SN, CEN, VN and Cerebellum have been commonly
regarded as key resting state networks in MDD, with ab-
normalities having been observed in blood oxygenation
level-dependent fMRI activation, as well as in baseline me-
tabolism or perfusion (Gong and He 2015; Mulders et al.
2015). However, it should be noted that the networks did
not function independently. It may be not enough to only
investigate the connectivity within one specific network. In
addition to the within-network connectivity, cross-network

Fig. 1 ROC curve of the classifier
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connectivity was also investigated by a large number of
studies on resting-state functional connectivity in MDD
(Brakowski et al. 2017). The interplay between the DMN
and CEN and their sub-networks have been hot topics in
this field (Mantini et al. 2007; Manoliu et al. 2014b; Zhu
et al. 2017; Liu et al. 2018). A meta-analysis study

suggested that altered connectivity between neural systems
involved in cognitive control and those that support sa-
lience or emotion processing may relate to deficits regulat-
ing mood in MDD (Kaiser et al. 2015). Our study extends
these prior findings by providing new evidence for ab-
normal resting-state functional connectivity in MDD.

Fig. 2 Regions and distribution of 128 consensus features. Different
colors of nodes belong to different networks. Purple means default
mode network (DMN), green means salience network (SN), orange
means central executive network (CEN), blue means visual cortical
network (VN), grey means Cerebellum network, red means Other

network. Red lines represent the connections with more classification
weight, and black lines represent the connections whose classification
weight were under the mean plus/minus the standard error of all connec-
tions used as classification features
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It is worth noting that aberrant functional organization of
DMN, SN and CEN was observed in the resting-state data of
MDD subjects. The recently proposed “triple-network”model
emphasized the corporation among these three networks,
which has been revealed to underlie a wide range of psycho-
pathologies, including schizophrenia, autism and attention-
deficit/hyperactivity disorder (Bressler and Menon 2010;

Menon 2011). Dysfunction of three networks has remarkably
occurred in many mental and neurological disorders (Manoliu
et al. 2014b). With a similar pathophysiological mechanism
observed in schizophrenia, MDD is reported to demonstrate
common causal dysconnectivity between DMN and SN, as
well as opposing functional dysconnectivity of DMN-CEN
and SN-CEN (Jiang et al. 2017). Significantly decreased

Fig. 4 Nodes with greater
classification weight which is
higher the mean plus the standard
error of all connections. Nodes
with purple color were located in
DMN, green in SN, orange in
CEN, blue in VN, grey in
Cerebellum, and red means Other
network

Fig. 3 Cross-network interaction
among 6 resting state networks.
Red lines represent connections
with greater weight than mean
weight plus the standard error of
all connections; black lines
represent left connection except
the greater connections
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interaction degree between DMN and CEN was reported in
MDD (Zheng et al. 2015). Consistent with previous studies,
our study suggested that the abnormal triple networks interac-
tion in resting state of MDD patients.

As a part of DMN, the supramarginal gyrus showed highest
classification weight in present study. Great difference in the
functional connectivity of the DMN between individuals with
MDD and healthy controls has been revealed (Greicius et al.
2007; Zhu et al. 2012; Hamilton et al. 2015). As anterior to the
junction of parietal and temporal cortex, the supramarginal
gyrus is traditionally known to be involved in several cogni-
tive functions, including speech repetition, auditory short-
term memory (Buchsbaum and D'Esposito 2009; Baldo
et al. 2012). However, recent converging evidence from mul-
tiple methods and experiments that the supramarginal gyrus is
crucial for overcoming emotional egocentricity in social
judgement, which is closely associated with self-referential
processing (Silani et al. 2013). Damage of supramarginal gy-
rus and adjacent areas can produce a variety of disorders as-
sociated with distorted body knowledge and self-awareness
(Berlucchi and Aglioti 1997).

Although the classification accuracy of this present study
was favorable, several limitations should be noted. As well as
many previous studies in this field (Zeng et al. 2012; Liu et al.
2015; Zhong et al. 2017), the first limitation is related to small
sample size with no comorbid conditions, so we may be cau-
tious in generalizing the findings of this study to more larger
samples with comorbid diagnoses. In the future, larger sample
size, multicenter imaging data and a large independent test
data set are welcome to confirm the classification results.
Secondly, we only explored resting state functional connec-
tivity and did not consider brain structural connectivity, dy-
namic functional connectivity (Li et al. 2019; Liao et al. 2019)
or combined dynamic and static connectivity (Liao et al.
2018). Functional and structural, static or dynamic imaging
data will be combined to provide more reliable diagnostic
information. Thirdly, automated anatomical labeling atlas
was used in this study. Previous studies revealed that different
templates could impact the generated connections at a certain
degree, more brain templates would be used to confirm the
accuracy.

Conclusion

In summary, we have demonstrated multivariate pattern anal-
ysis methods can identify first episode drug-naive patients
with MDD from healthy controls based on resting-state func-
tional connectivity with a correct classification rate of 82.25%
(p < 0.001, sensitivity 83.87%, specificity 80.64%). Almost
all of the most discriminating consensus connections were
cross-network connectivity among DMN, SN, CEN, VN,
Cerebellum and Other network, which implied the emotional

and cognitive impairments characteristic of MDD. Moreover,
the supramarginal gyrus located in DMN exhibited the highest
discriminative power in classification. The current study fur-
ther confirmed reliable application of MVPA in the discrimi-
nating MDD patients from healthy controls. More important-
ly, these results support the cross-network interaction as an
effective biomarker for MDD clinical diagnosis, which may
reveal the potential pathological mechanism for major
depression.

Acknowledgements This research was supported by grants from the
National Natural Science Foundation of China (61972460 and
61802443), Hunan Province Science Fund for Distinguished Young
Scholars (2019JJ20037), Foundation for the Author of National
Excellent Doctoral Dissertation of PR China (201411), Philosophy and
Social Science Fund Project of Hunan Province (17YBA426), Youth
Science fund of Xiangya hospital, central south university (2017Q19).

Compliance with ethical standards

Conflict of interest The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Akay, M. F. (2009). Support vector machines combined with feature
selection for breast cancer diagnosis. Expert Systems with
Applications, 36(2), 3240–3247. https://doi.org/10.1016/j.eswa.
2008.01.009.

American Psychiatric Association. (2013). Major depressive disorder,
diagnostic and statistical manual of mental disorders 5.
Washington, DC: American Psychiatric Association.

Anand, A., Li, Y., Wang, Y., Wu, J. W., Gao, S. J., Bukhari, L., et al.
(2005). Antidepressant effect on connectivity of the mood-
regulating circuit: An fMRI study. Neuropsychopharmacology,
30(7), 1334–1344. https://doi.org/10.1038/sj.npp.1300725.

Anderson, A., Douglas, P. K., Kerr, W. T., Haynes, V. S., Yuille, A. L.,
Xie, J., Wu, Y. N., Brown, J. A., & Cohen, M. S. (2014). Non-
negative matrix factorization of multimodal MRI, fMRI and pheno-
typic data reveals differential changes in default mode subnetworks
in ADHD. Neuroimage, 102(Pt 1), 207–219. https://doi.org/10.
1016/j.neuroimage.2013.12.015.

Badhwar, A., Tam, A., Dansereau, C., Orban, P., Hoffstaedter, F., &
Bellec, P. (2017). Resting-state network dysfunction in
Alzheimer's disease: A systematic review and meta-analysis.
Alzheimers Dement (Amst), 8, 73–85. https://doi.org/10.1016/j.
dadm.2017.03.007.

1286 Brain Imaging and Behavior 11 (2021) 15:1279–1289

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.eswa.2008.01.009
https://doi.org/10.1016/j.eswa.2008.01.009
https://doi.org/10.1038/sj.npp.1300725
https://doi.org/10.1016/j.neuroimage.2013.12.015
https://doi.org/10.1016/j.neuroimage.2013.12.015
https://doi.org/10.1016/j.dadm.2017.03.007
https://doi.org/10.1016/j.dadm.2017.03.007


Baldo, J. V., Katseff, S., & Dronkers, N. F. (2012). Brain regions under-
lying repetition and auditory-verbal short-term memory deficits in
aphasia: Evidence from voxel-based lesion symptom mapping.
Aphasiology, 26(3–4), 338–354. https://doi.org/10.1080/02687038.
2011.602391.

Berlucchi, G., &Aglioti, S. (1997). The body in the brain: Neural bases of
corporeal awareness. Trends in Neurosciences, 20(12), 560–564.

Brakowski, J., Spinelli, S., Dorig, N., Bosch, O. G., Manoliu, A.,
Holtforth, M. G., et al. (2017). Resting state brain network function
in major depression - depression symptomatology, antidepressant
treatment effects, future research. Journal of Psychiatric Research,
92, 147–159. https://doi.org/10.1016/j.jpsychires.2017.04.007.

Bressler, S. L., &Menon, V. (2010). Large-scale brain networks in cognition:
Emerging methods and principles. Trends in Cognitive Sciences, 14(6),
277–290. https://doi.org/10.1016/j.tics.2010.04.004.

Buchsbaum, B. R., & D'Esposito, M. (2009). Repetition suppression and
reactivation in auditory-verbal short-term recognition memory.
Cerebral Cortex, 19(6), 1474–1485. https://doi.org/10.1093/
cercor/bhn186.

Buckner, R. L. (2010). Human functional connectivity: New tools, unre-
solved questions. Proceedings of the National Academy of Sciences
of the United States of America, 107(24), 10769–10770. https://doi.
org/10.1073/pnas.1005987107.

Chang, C. C., and Lin, C. J. (2011). LIBSVM: A library for support
vector machines. Acm Transactions on Intelligent Systems And
Technology 2(3). Doi: Artn 27 https://doi.org/10.1145/1961189.
1961199.

Chen, H., Duan, X. J., Liu, F., Lu, F. M., Ma, X. J., Zhang, Y. X., et al.
(2016). Multivariate classification of autism spectrum disorder using
frequency-specific resting-state functional connectivity-a multi-cen-
ter study. Progress in Neuro-Psychopharmacology & Biological
Psychiatry, 64, 1–9. https://doi.org/10.1016/j.pnpbp.2015.06.014.

Chen, Y. W., & Lin, C. J. (2006). Combining SVMs with various feature
selection strategies. Feature Extraction, 207, 315–324.

Craddock, R. C., Holtzheimer, P. E., Hu, X. P. P., & Mayberg, H. S.
(2009). Disease state prediction from resting state functional con-
nectivity. Magnetic Resonance in Medicine, 62(6), 1619–1628.
https://doi.org/10.1002/mrm.22159.

Davatzikos, C. (2004). Why voxel-based morphometric analysis should
be used with great caution when characterizing group differences.
Neuroimage, 23(1), 17–20. https://doi.org/10.1016/j.neuroimage.
2004.05.010.

Dong, D., Wang, Y., Chang, X., Luo, C., & Yao, D. (2018). Dysfunction
of large-scale brain networks in schizophrenia: A meta-analysis of
resting-state functional connectivity. Schizophrenia Bulletin, 44(1),
168–181. https://doi.org/10.1093/schbul/sbx034.

Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain
activity observed with functional magnetic resonance imaging.
Nature Reviews. Neuroscience, 8(9), 700–711. https://doi.org/10.
1038/nrn2201.

Fu, C. H. Y., Mourao-Miranda, J., Costafrecla, S. G., Khanna, A.,
Marquand, A. F., Williams, S. C. R., et al. (2008). Pattern classifi-
cation of sad facial processing: Toward the development of neuro-
biological markers in depression. Biological Psychiatry, 63(7), 656–
662. https://doi.org/10.1016/j.biopsych.2007.08.020.

Golland, P., & Fischl, B. (2003). Permutation tests for classification:
Towards statistical significance in image-based studies. Inf
Process Med Imaging, 18, 330–341.

Gong, Q., &He, Y. (2015). Depression, neuroimaging and connectomics:
A selective overview. Biological Psychiatry, 77(3), 223–235.
https://doi.org/10.1016/j.biopsych.2014.08.009.

Greicius, M. (2008). Resting-state functional connectivity in neuropsy-
chiatric disorders. Current Opinion in Neurology, 21(4), 424–430.
https://doi.org/10.1097/WCO.0b013e328306f2c5.

Greicius,M. D., Flores, B. H.,Menon, V., Glover, G. H., Solvason, H. B.,
Kenna, H., Reiss, A. L., & Schatzberg, A. F. (2007). Resting-state

functional connectivity in major depression: Abnormally increased
contributions from subgenual cingulate cortex and thalamus.
Biological Psychiatry, 62(5), 429–437. https://doi.org/10.1016/j.
biopsych.2006.09.020.

Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003).
Functional connectivity in the resting brain: A network analysis of
the default mode hypothesis. Proceedings of the National Academy
of Sciences of the United States of America, 100(1), 253–258.
https://doi.org/10.1073/pnas.0135058100.

Guo, H., Cheng, C., Cao, X. H., Xiang, J., Chen, J. J., & Zhang, K. R.
(2014a). Resting-state functional connectivity abnormalities in first-
onset unmedicated depression.Neural Regeneration Research, 9(2),
153–163. https://doi.org/10.4103/1673-5374.125344.

Guo, W., Liu, F., Yu, M., Zhang, J., Zhang, Z., Liu, J., Xiao, C., & Zhao,
J. (2014b). Functional and anatomical brain deficits in drug-naive
major depressive disorder. Progress in Neuro-Psychopharmacology
& Biological Psychiatry, 54, 1–6. https://doi.org/10.1016/j.pnpbp.
2014.05.008.

Guo, W. B., Liu, F., Zhang, J., Zhang, Z. K., Yu, L. Y., Liu, J. R., et al.
(2014c). Abnormal default-mode network homogeneity in first-ep-
isode, drug-naive major depressive disorder. Plos One 9(3). Doi:
ARTN e91102. https://doi.org/10.1371/journal.pone.0091102.

Habas, C., Kamdar, N., Nguyen, D., Prater, K., Beckmann, C. F., Menon,
V., & Greicius, M. D. (2009). Distinct cerebellar contributions to
intrinsic connectivity networks. The Journal of Neuroscience,
29(26), 8586–8594. https://doi.org/10.1523/JNEUROSCI.1868-09.
2009.

Hamilton, J. P., Chen, M. C., & Gotlib, I. H. (2013). Neural systems
approaches to understanding major depressive disorder: An intrinsic
functional organization perspective. Neurobiology of Disease, 52,
4–11. https://doi.org/10.1016/j.nbd.2012.01.015.

Hamilton, J. P., Farmer, M., Fogelman, P., & Gotlib, I. H. (2015).
Depressive rumination, the default-mode network, and the dark mat-
ter of clinical neuroscience. Biological Psychiatry, 78(4), 224–230.
https://doi.org/10.1016/j.biopsych.2015.02.020.

Jiang, Y., Duan, M., Chen, X., Chang, X., He, H., Li, Y., et al. (2017).
Common and distinct dysfunctional patterns contribute to triple net-
work model in schizophrenia and depression: A preliminary study.
Prog Neuropsychopharmacol Biol Psychiatry, 79(Pt B), 302–310.
https://doi.org/10.1016/j.pnpbp.2017.07.007.

Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D., & Pizzagalli, D. A.
(2015). Large-scale network dysfunction in major depressive disor-
der: A meta-analysis of resting-state functional connectivity. JAMA
Psychiatry, 72(6) , 603–611. ht tps: / /doi .org/10.1001/
jamapsychiatry.2015.0071.

Kambeitz, J., Cabral, C., Sacchet, M. D., Gotlib, I. H., Zahn, R., Serpa,
M. H., Walter, M., Falkai, P., & Koutsouleris, N. (2017). Detecting
neuroimaging biomarkers for depression: A meta-analysis of multi-
variate pattern recognition studies. Biological Psychiatry, 82(5),
330–338. https://doi.org/10.1016/j.biopsych.2016.10.028.

Li, J., Duan, X., Cui, Q., Chen, H., & Liao, W. (2019). More than just
statics: Temporal dynamics of intrinsic brain activity predicts the
suicidal ideation in depressed patients. Psychological Medicine,
49(5), 852–860. https://doi.org/10.1017/S0033291718001502.

Liao,W., Chen, H., Li, J., Ji, G. J.,Wu, G. R., Long, Z., Xu, Q., Duan, X.,
Cui, Q., & Biswal, B. B. (2019). Endless fluctuations: Temporal
dynamics of the amplitude of low frequency fluctuations. IEEE
Transactions on Medical Imaging, 38(11), 2523–2532. https://doi.
org/10.1109/TMI.2019.2904555.

Liao, W., Li, J., Duan, X. J., Cui, Q., Chen, H., & Chen, H. F. (2018).
Static and dynamic connectomics differentiate between depressed
patients with and without suicidal ideation.Human Brain Mapping,
39(10), 4105–4118. https://doi.org/10.1002/hbm.24235.

Liu, F., Guo, W., Fouche, J. P., Wang, Y., Wang, W., Ding, J., Zeng, L.,
Qiu, C., Gong, Q., Zhang, W., & Chen, H. (2015). Multivariate
classification of social anxiety disorder using whole brain functional

1287Brain Imaging and Behavior 11 (2021) 15:1279–1289

https://doi.org/10.1080/02687038.2011.602391
https://doi.org/10.1080/02687038.2011.602391
https://doi.org/10.1016/j.jpsychires.2017.04.007
https://doi.org/10.1016/j.tics.2010.04.004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1073/pnas.1005987107
https://doi.org/10.1073/pnas.1005987107
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1016/j.pnpbp.2015.06.014
https://doi.org/10.1002/mrm.22159
https://doi.org/10.1016/j.neuroimage.2004.05.010
https://doi.org/10.1016/j.neuroimage.2004.05.010
https://doi.org/10.1093/schbul/sbx034
https://doi.org/10.1038/nrn2201
https://doi.org/10.1038/nrn2201
https://doi.org/10.1016/j.biopsych.2007.08.020
https://doi.org/10.1016/j.biopsych.2014.08.009
https://doi.org/10.1097/WCO.0b013e328306f2c5
https://doi.org/10.1016/j.biopsych.2006.09.020
https://doi.org/10.1016/j.biopsych.2006.09.020
https://doi.org/10.1073/pnas.0135058100
https://doi.org/10.4103/1673-5374.125344
https://doi.org/10.1016/j.pnpbp.2014.05.008
https://doi.org/10.1016/j.pnpbp.2014.05.008
https://doi.org/10.1371/journal.pone.0091102
https://doi.org/10.1523/JNEUROSCI.1868-09.2009
https://doi.org/10.1523/JNEUROSCI.1868-09.2009
https://doi.org/10.1016/j.nbd.2012.01.015
https://doi.org/10.1016/j.biopsych.2015.02.020
https://doi.org/10.1016/j.pnpbp.2017.07.007
https://doi.org/10.1001/jamapsychiatry.2015.0071
https://doi.org/10.1001/jamapsychiatry.2015.0071
https://doi.org/10.1016/j.biopsych.2016.10.028
https://doi.org/10.1017/S0033291718001502
https://doi.org/10.1109/TMI.2019.2904555
https://doi.org/10.1109/TMI.2019.2904555
https://doi.org/10.1002/hbm.24235


connectivity. Brain Structure & Function, 220(1), 101–115. https://
doi.org/10.1007/s00429-013-0641-4.

Liu, F., Guo, W., Yu, D., Gao, Q., Gao, K., Xue, Z., du, H., Zhang, J.,
Tan, C., Liu, Z., Zhao, J., & Chen, H. (2012). Classification of
different therapeutic responses of major depressive disorder with
multivariate pattern analysis method based on structural MR scans.
PLoS One, 7(7), e40968. https://doi.org/10.1371/journal.pone.
0040968.

Liu, R., Yue, Y., Hou, Z., Yuan, Y., & Wang, Q. (2018). Risk factors
associated with cognitions for late-onset depression based on ante-
rior and posterior default mode sub-networks. Journal of Affective
Disorders, 235, 544–550. https://doi.org/10.1016/j.jad.2018.04.
065.

Ma, Q. M., Zeng, L. L., Shen, H., Liu, L., & Hu, D. W. (2013). Altered
cerebellar-cerebral resting-state functional connectivity reliably
identifies major depressive disorder. Brain Research, 1495, 86–94.
https://doi.org/10.1016/j.brainres.2012.12.002.

Manoliu, A., Meng, C., Brandl, F., Doll, A., Tahmasian, M., Scherr, M.,
Schwerthöffer D., Zimmer C., Förstl H., Bäuml J., Riedl V.,
Wohlschläger A. M., Sorg C. (2014a). Insular dysfunction within
the salience network is associated with severity of symptoms and
aberrant inter-network connectivity in major depressive disorder.
Frontiers In Human Neuroscience 7. doi: https://doi.org/10.3389/
fnhum.2013.00930.

Manoliu, A., Riedl, V., Zherdin, A., Muhlau, M., Schwerthoffer, D.,
Scherr, M., et al. (2014b). Aberrant dependence of default mode/
central executive network interactions on anterior insular salience
network activity in schizophrenia. Schizophrenia Bulletin, 40(2),
428–437. https://doi.org/10.1093/schbul/sbt037.

Mantini, D., Perrucci, M. G., Del Gratta, C., Romani, G. L., & Corbetta,
M. (2007). Electrophysiological signatures of resting state networks
in the human brain. Proceedings of the National Academy of
Sciences of the United States of America, 104(32), 13170–13175.
https://doi.org/10.1073/pnas.0700668104.

Meier, T. B., Desphande, A. S., Vergun, S., Nair, V. A., Song, J., Biswal,
B. B., Meyerand, M. E., Birn, R. M., & Prabhakaran, V. (2012).
Support vector machine classification and characterization of age-
related reorganization of functional brain networks. Neuroimage,
60(1), 601–613. https://doi.org/10.1016/j.neuroimage.2011.12.052.

Menon, V. (2011). Large-scale brain networks and psychopathology: A
unifying triple network model. Trends in Cognitive Sciences,
15(10), 483–506. https://doi.org/10.1016/j.tics.2011.08.003.

Menon, V. (2018). The triple network model, insight, and large-scale
brain Organization in Autism. Biological Psychiatry, 84(4), 236–
238. https://doi.org/10.1016/j.biopsych.2018.06.012.

Mitchell, A. J., Vaze, A., & Rao, S. (2009). Clinical diagnosis of depres-
sion in primary care: A meta-analysis. Lancet, 374(9690), 609–619.
https://doi.org/10.1016/S0140-6736(09)60879-5.

Mourao-Miranda, J., Bokde, A. L. W., Born, C., Hampel, H., & Stetter,
M. (2005). Classifying brain states and determining the discriminat-
ing activation patterns: Support vector machine on functional MRI
data. Neuroimage, 28(4), 980–995. https://doi.org/10.1016/j.
neuroimage.2005.06.070.

Mulders, P. C., van Eijndhoven, P. F., Schene, A. H., Beckmann, C. F., &
Tendolkar, I. (2015). Resting-state functional connectivity in major
depressive disorder: A review. Neuroscience and Biobehavioral
Reviews, 56, 330–344. https://doi.org/10.1016/j.neubiorev.2015.
07.014.

Nabbe, P., Le Reste, J. Y., Guillou-Landreat, M., Perez, M. A. M.,
Argyriadou, S., Claveria, A., et al. (2017). Which DSM validated
tools for diagnosing depression are usable in primary care research?
A systematic literature review. European Psychiatry, 39, 99–105.
https://doi.org/10.1016/j.eurpsy.2016.08.004.

Orru, G., Pettersson-Yeo, W., Marquand, A. F., Sartori, G., & Mechelli,
A. (2012). Using support vector machine to identify imaging bio-
markers of neurological and psychiatric disease: A critical review.

Neuroscience and Biobehavioral Reviews, 36(4), 1140–1152.
https://doi.org/10.1016/j.neubiorev.2012.01.004.

Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning clas-
sifiers and fMRI: A tutorial overview. Neuroimage, 45(1 Suppl),
S199–S209. https://doi.org/10.1016/j.neuroimage.2008.11.007.

Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L.,
& Petersen, S. E. (2014). Methods to detect, characterize, and re-
move motion artifact in resting state fMRI. Neuroimage, 84, 320–
341. https://doi.org/10.1016/j.neuroimage.2013.08.048.

Radloff, L. S. (1977). A self-report depression scale for research in the
general population. Applied Psychological Measurement, 1, 385–
401.

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard,
D. A., & Shulman, G. L. (2001). A default mode of brain function.
Proceedings of the National Academy of Sciences of the United
States of America, 98(2), 676–682. https://doi.org/10.1073/pnas.
98.2.676.

Scholkopf, B., & Smola, A. J. (2001). Learning with kernels: Support
vector machines, regularization, optimization, and beyond.
Cambridge: MIT press.

Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H.,
Kenna, H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable
intrinsic connectivity networks for salience processing and execu-
tive control. The Journal of Neuroscience, 27(9), 2349–2356.
https://doi.org/10.1523/JNEUROSCI.5587-06.2007.

Sexton, C. E., Allan, C. L., LeMasurier, M., McDermott, L. M., Kalu, U.
G., Herrmann, L. L., et al. (2012). Magnetic resonance imaging in
late-life depression: Multimodal examination of network disruption.
Archives of General Psychiatry, 69(7), 680–689. https://doi.org/10.
1001/archgenpsychiatry.2011.1862.

Silani, G., Lamm, C., Ruff, C. C., & Singer, T. (2013). Right
Supramarginal Gyrus is crucial to overcome emotional egocentricity
Bias in social judgments. Journal of Neuroscience, 33(39), 15466–
15476. https://doi.org/10.1523/Jneurosci.1488-13.2013.

Smith, K. (2012). Brain imaging: fMRI 2.0. Nature, 484(7392), 24–26.
https://doi.org/10.1038/484024a.

Supekar, K., Cai, W., Krishnadas, R., Palaniyappan, L., & Menon, V.
(2019). Dysregulated brain dynamics in a triple-network saliency
model of schizophrenia and its relation to psychosis. Biological
Psychiatry, 85(1), 60–69. https://doi.org/10.1016/j.biopsych.2018.
07.020.

Tian, L., Wang, J., Yan, C., & He, Y. (2011). Hemisphere- and gender-
related differences in small-world brain networks: A resting-state
functional MRI study. Neuroimage, 54(1), 191–202. https://doi.
org/10.1016/j.neuroimage.2010.07.066.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F.,
Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002).
Automated anatomical labeling of activations in SPM using a mac-
roscopic anatomical parcellation of the MNI MRI single-subject
brain. Neuroimage, 15(1), 273–289. https://doi.org/10.1006/nimg.
2001.0978.

Vapnik, V. (2000). The nature of statistical learning theory. Springer.
Wang, C. J. (2007). Credit scoring with a data mining approach based on

support vector machines. Expert Systems with Applications, 33(4),
847–856.

Wang, L. B., Shen, H., Tang, F., Zang, Y. F., & Hu, D. W. (2012).
Combined structural and resting-state functional MRI analysis of
sexual dimorphism in the young adult human brain: An MVPA
approach. Neuroimage, 61(4), 931–940. https://doi.org/10.1016/j.
neuroimage.2012.03.080.

Wang, M., Armour, C., Wu, Y., Ren, F., Zhu, X., & Yao, S. (2013).
Factor structure of the CES-D and measurement invariance across
gender in mainland Chinese adolescents. Journal of Clinical
Psychology, 69(9), 966–979. https://doi.org/10.1002/jclp.21978.

Wolfers, T., Buitelaar, J. K., Beckmann, C. F., Franke, B., & Marquand,
A. F. (2015). From estimating activation locality to predicting

1288 Brain Imaging and Behavior 11 (2021) 15:1279–1289

https://doi.org/10.1007/s00429-013-0641-4
https://doi.org/10.1007/s00429-013-0641-4
https://doi.org/10.1371/journal.pone.0040968
https://doi.org/10.1371/journal.pone.0040968
https://doi.org/10.1016/j.jad.2018.04.065
https://doi.org/10.1016/j.jad.2018.04.065
https://doi.org/10.1016/j.brainres.2012.12.002
https://doi.org/10.3389/fnhum.2013.00930
https://doi.org/10.3389/fnhum.2013.00930
https://doi.org/10.1093/schbul/sbt037
https://doi.org/10.1073/pnas.0700668104
https://doi.org/10.1016/j.neuroimage.2011.12.052
https://doi.org/10.1016/j.tics.2011.08.003
https://doi.org/10.1016/j.biopsych.2018.06.012
https://doi.org/10.1016/S0140-6736(09)60879-5
https://doi.org/10.1016/j.neuroimage.2005.06.070
https://doi.org/10.1016/j.neuroimage.2005.06.070
https://doi.org/10.1016/j.neubiorev.2015.07.014
https://doi.org/10.1016/j.neubiorev.2015.07.014
https://doi.org/10.1016/j.eurpsy.2016.08.004
https://doi.org/10.1016/j.neubiorev.2012.01.004
https://doi.org/10.1016/j.neuroimage.2008.11.007
https://doi.org/10.1016/j.neuroimage.2013.08.048
https://doi.org/10.1073/pnas.98.2.676
https://doi.org/10.1073/pnas.98.2.676
https://doi.org/10.1523/JNEUROSCI.5587-06.2007
https://doi.org/10.1001/archgenpsychiatry.2011.1862
https://doi.org/10.1001/archgenpsychiatry.2011.1862
https://doi.org/10.1523/Jneurosci.1488-13.2013
https://doi.org/10.1038/484024a
https://doi.org/10.1016/j.biopsych.2018.07.020
https://doi.org/10.1016/j.biopsych.2018.07.020
https://doi.org/10.1016/j.neuroimage.2010.07.066
https://doi.org/10.1016/j.neuroimage.2010.07.066
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1016/j.neuroimage.2012.03.080
https://doi.org/10.1016/j.neuroimage.2012.03.080
https://doi.org/10.1002/jclp.21978


disorder: A review of pattern recognition for neuroimaging-based
psychiatric diagnostics. Neuroscience and Biobehavioral Reviews,
57, 328–349. https://doi.org/10.1016/j.neubiorev.2015.08.001.

World Health Organization. (2017). Depression and other common men-
tal disorders Global Health estimates. Geneva: World Health
Organization.

Yan, C. G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., Di
Martino, A., et al. (2013). A comprehensive assessment of regional
variation in the impact of head micromovements on functional
connectomics. Neuroimage, 76, 183–201. https://doi.org/10.1016/
j.neuroimage.2013.03.004.

Zeng, L. L., Shen, H., Liu, L., Wang, L. B., Li, B. J., Fang, P., et al.
(2012). Identifying major depression using whole-brain functional
connectivity: A multivariate pattern analysis. Brain, 135, 1498–
1507. https://doi.org/10.1093/brain/aws059.

Zheng, H., Xu, L., Xie, F., Guo, X., Zhang, J., Yao, L., &Wu, X. (2015).
The altered triple networks interaction in depression under resting
state based on graph theory. BioMed Research International, 2015,
386326–386328. https://doi.org/10.1155/2015/386326.

Zheng, Y., Chen, X., Li, D., Liu, Y., Tan, X., Liang, Y., Zhang, H., Qiu,
S., & Shen, D. (2019). Treatment-naive first episode depression
classification based on high-order brain functional network.
Journal of Affective Disorders, 256, 33–41. https://doi.org/10.
1016/j.jad.2019.05.067.

Zhong, X., Shi, H. Q., Ming, Q. S., Dong, D. F., Zhang, X. C., Zeng, L.
L., et al. (2017). Whole-brain resting-state functional connectivity
identified major depressive disorder: A multivariate pattern analysis
in two independent samples. Journal of Affective Disorders, 218,
346–352. https://doi.org/10.1016/j.jad.2017.04.040.

Zhu, C. Z., Zang, Y. F., Cao, Q. J., Yan, C. G., He, Y., Jiang, T. Z., Sui,
M. Q., & Wang, Y. F. (2008). Fisher discriminative analysis of
resting-state brain function for attention-deficit/hyperactivity disor-
der. Neuroimage, 40(1), 110–120. https://doi.org/10.1016/j.
neuroimage.2007.11.029.

Zhu, X., Wang, X., Xiao, J., Liao, J., Zhong, M., Wang, W., & Yao, S.
(2012). Evidence of a dissociation pattern in resting-state default
mode network connectivity in first-episode, treatment-naive major
depression patients. Biological Psychiatry, 71(7), 611–617. https://
doi.org/10.1016/j.biopsych.2011.10.035.

Zhu, X., Zhu, Q., Shen, H., Liao,W., & Yuan, F. (2017). Rumination and
default mode network subsystems connectivity in first-episode,
drug-naive young patients with major depressive disorder.
Scientific Reports, 7, 43105. https://doi.org/10.1038/srep43105.

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

1289Brain Imaging and Behavior 11 (2021) 15:1279–1289

https://doi.org/10.1016/j.neubiorev.2015.08.001
https://doi.org/10.1016/j.neuroimage.2013.03.004
https://doi.org/10.1016/j.neuroimage.2013.03.004
https://doi.org/10.1093/brain/aws059
https://doi.org/10.1155/2015/386326
https://doi.org/10.1016/j.jad.2019.05.067
https://doi.org/10.1016/j.jad.2019.05.067
https://doi.org/10.1016/j.jad.2017.04.040
https://doi.org/10.1016/j.neuroimage.2007.11.029
https://doi.org/10.1016/j.neuroimage.2007.11.029
https://doi.org/10.1016/j.biopsych.2011.10.035
https://doi.org/10.1016/j.biopsych.2011.10.035
https://doi.org/10.1038/srep43105

	Cross-network interaction for diagnosis of major depressive disorder based on resting state functional connectivity
	Abstract
	Introduction
	Materials and methods
	Participants
	Measures
	MRI data acquisition
	Image preprocessing
	Anatomical parcellation
	MVPA
	Feature selection

	Support vector machine classification
	Evaluation of the performance of the classifier
	Classification weight definition
	Permutation test of classification performance

	Result
	Discussion
	Conclusion
	References


