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The self-interstitial atoms (SIAs) mediate the evolution of micro-structures which is crucial in
understanding the instabilities of hexagonal close packed (HCP) structures. Taking zirconium as a
prototype, we investigate the pressure effect on the stabilities of SIAs using first-principles calculations
based on density-functional theory. We found that the pressure greatly affects the stability of the SIAs. The
SIAs in basal planes are more stable under pressure. The SIA configuration of the lowest formation energy
changes from basal octahedral (BO) to octahedral (O) at a pressure of 21 GPa. The lowest formation
enthalpy configuration switches from BO to S (split-dumbbell) at the pressure of 30 GPa. The formation
volumes of SIAs decrease monotonically in response to an increase in pressure. Our results reveal that it is
important to take pressure effects into account when predicting the micro-structural evolution of HCP
structures.

R
adiation profoundly affects the life on our planet. For protection, it is important to understand the radiation
damage as well as the radiation resistance of materials. The self-interstitial atoms (SIAs) of a crystal play a
significant role in the evolution of micro-structures at the nanoscale, which ultimately determines the

instabilities of the materials. With the creation of a SIA, the local stresses and strains around the SIA are several
orders of magnitude larger than the global stresses and strains. In addition, thermal gradient induced stresses,
namely thermal stresses, are very common in micro-structures, especially around a collision cascade. Thus the
pressure is an important factor in determining the stability of SIAs. For example, it was found that the hydrostatic
pressure greatly influences the SIAs’ formation, migration1, and aggregation2,3 in silicon. However, to the authors’
best knowledge, no quantitative study of the pressure effect on the stabilities of self-interstitials in hexagonal close
packed (HCP) structures has been reported.

We take zirconium as the prototype HCP structures due to its importance in nuclear materials4–6. When one
extra atom sits inside an HCP structure, there are eight symmetrical positions in which it can rest. For a thorough
study of SIA behaviors, we have studied all eight SIAs. Here we use the conventional notations for these eight
configurations7, as octahedral (O), split , 0001 . dumbbell (S), crowdion (C), tetrahedral (T), basal octahedral
(BO), basal split (BS), basal crowdion (BC), and basal tetrahedral (BT), as shown in Fig. 1. More specifically, site O
is at the center of an octahedral formed by six neighbor atoms. Site S is a split dumbbell along , 0001 .. Site C is
the middle point between two nearest-neighbor atoms out of the basal plane. Site T is the center of a tetrahedron
formed by four neighboring atoms, of which three are on the basal plane forming an equilateral triangle and the
fourth is on top of the center of the triangle. The first four configurations are ‘‘off-plane’’ configurations as their
positions are out of the basal plane. The remaining four are ‘‘in-plane’’ configurations, which are the projections
of off-plane counterparts onto the basal plane. The stabilities of these eight SIAs were reported in our previous
work, in which we concluded that the BO is the most stable configuration8, as confirmed by other first-principles
calculations9,10. A further study on the axial ratio (c/a) dependence of the stability of SIAs in HCP structures shows
that the axial ratio dominates the relative stability of SIAs over volumetric strains11. Below the ideal value of c/a 5

1.633, the basal octahedral configuration is the most stable. Above the ideal value, the off-plane SIAs are more
stable than in-plane ones.

At ambient conditions, pure zirconium crystallizes in HCP structure as a phase. Experiments12,13 found that
there is a phase transition from HCP structure to another hexagonal structure (space group P6/mmm, #191),
named v phase, at pressure of 2–7 GPa and it will further transform to the body-centered-cubic structure as b
phase at the pressure of 30–35 GPa. The phase transitions of a R v and v R b at zero temperature have been
calculated to be 23.7 GPa and 32.4 GPa, respectively6.
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The thermodynamically relevant quantity which determines the
stability under pressure is the formation enthalpy. The calculation of
formation enthalpy is non-trivial, since it needs the knowledge of the
formation volume and the formation energy a priori. Density func-
tional theory (DFT) is well established and it can provide unique
information about the structure of nanoscale defects. Involving no
experimental input parameters, DFT models appear to be as quanti-
tatively accurate and informative as the most advanced experimental
techniques developed for the observation of radiation damage phe-
nomena14,15. Here we will employ DFT calculations to unveil the
pressure effect on the stabilities of these eight SIA configurations
as part of a series of DFT studies toward the understanding of radi-
ation damage of zirconium. To that end, we developed a general
method to calculate the formation enthalpy from ab initio DFT
calculations though the equations of state. This method could bridge
the atomic scale DFT calculations to the continuum description of
the materials in terms of thermo-dynamical properties.

In the present work, we studied the pressure effect on the stabilities
of SIAs by examining the eight conventional SIA configurations
using ab initio DFT calculations. We found that the pressure greatly
affects the stability of the SIAs. We also obtained the equations of
state, formation volume, and formation enthalpy under pressure.
This could provide insights into the SIAs’ diffusion paths where
the most stable configurations are considered. Our study could also
be useful in engineering designs of cladding materials and structural
materials that are used in the high pressure environments.

Methods
Formula for formation energy, volume, and enthalpy. To study the pressure effect
on the stabilities of SIAs in HCP structures, we introduce a general method to
calculate the formation volume and formation enthalpy of defects through the
equations of state (EOS) using ab initio DFT calculations. This general method is for
macroscopic constitutive descriptions from lower level quantum mechanical
calculations. This EOS method was previously used in face-centered cubic (FCC)
structures, differing in the forms of EOS16–18. Here we extended the method to HCP
structures with the justification of the applicable range.

For plane-wave based ab initio DFT codes, such as VASP19,20, it is convenient to use
constant volume boundary conditions, which ensure the same plane wave basis
during a single calculation for reliable results. However, it is more reasonable to have
constant pressure in experiments. This mismatch of boundary conditions makes it
hard to validate the computational values with experiments. This barrier can be
overcome by using the EOS, which makes it convenient to switch between the
boundary conditions of constant volume and constant pressure for the computation
of related quantities, including SIA formation energy, formation volume, and
formation enthalpy, as discussed in the following sections.

Many analytic and semi-empirical relations have been proposed to describe the
EOS for various classes of solids21–23. It is generally believed that for strains less than
30%, most EOS are similar in accuracy24,25. Here we use the Murnaghan EOS21. The
pressure-volume relationship is expressed by the Murnaghan EOS as21
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where V0 is the volume at equilibrium at zero temperature and zero pressure, B is the
bulk modulus, and B9 is the pressure derivative of bulk modulus. Equivalently, the
volume as a function of pressure is
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If DFT computations are used to calculate the total energy of the system (E) as a
function of the volume (V), then the parameters in the EOS (equations Eq. 1 and 2)
can be obtained by fitting with the following equation21
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where E0 is a constant, marking the total energy of the system at the reference state of
P 5 0 or equivalently, V 5 V0.

The total energy of the system at any state of volume can be obtained, by the least-
square fitting process26 of E(V). With the values of V0, B, and B9 from the fitting,
theoretical values of the thermodynamic state quantities are known. Considering two
systems, with and without SIA, we have two sets of EOS and the total energies for the
two systems at all states. Thus, the formation energy, formation volume, and
formation enthalpy of SIAs can be predicted. Corresponding to the boundary con-
dition of constant pressure, the formation energy at pressure P is defined as1,17,18,27

Ef Pð Þ~E Nz1; Pð Þ{ Nz1
N

E N; Pð Þ, ð4Þ

where E(N 1 1; P) and E(N; P) are the total energies of the SIA system and the ideal
system (without defects), respectively, which are calculated from Eq. 2. The SIA
formation volume Vf (P) is defined as

Vf Pð ÞzV Nz1; Pð Þ{ Nz1
N

V N; Pð Þ, ð5Þ

where V (N 1 1; P) and V (N; P) are the volumes of the SIA system and the ideal
system (without defects), respectively, at constant pressure P. V (N 1 1; P) and V (N;
P) are calculated from Eq. 1. With the formation energy Ef (P) and formation volume
Vf (P), the formation enthalpy of SIAs can be calculated as:

Hf Pð Þ~Ef Pð ÞzPVf Pð Þ, ð6Þ

where PVf (P) is the external work to the formation volume due to the pressure P. At
zero pressure, Hf (0) 5 Ef (0).

This method is general for solid materials due to the universal EOS applied. In this
work, the volume is changed by applied volumetric strains, which are equal in all
directions. The applicable range of the strains is within the 630% volumetric
strains24,25, as shown later in this study. This EOS method is expected to be applicable
for systems with other kinds of defects, including vacancy, vacancy clusters, SIA
clusters, and dislocations. The advantages of this general method include the fol-
lowing points. First, it provides a reliable way to predict the formation energy,
formation volume, and formation enthalpy of defects at a lower computational cost.
Second, conversions between pressures and volumes are simple, due to the analytical
formula (Eq. 1 and Eq. 2). Third, through the equations of state, it provides a new
approach to study these quantities. Finally, it provides a direct comparison between

Figure 1 | Conventional eight configurations (namely O, S, C, T, BO, BS, BC, BT) of SIA (green ball) in HCP structures.
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experiments and numerical simulations. Therefore, this method could be a useful tool
to study the micro-structures.

Density functional theory calculations. The simulation box contains 5 3 3 3 3 unit
cells. Each unit cell has four Zr atoms with dimensions of a,

ffiffiffi
3
p

a, c and the four atoms
are positioned at (0, 0, 0), (1/2, 1/2, 0), (0, 1/3, 1/2), and (1/2, 5/6, 1/2) in the reduced
coordinates, where a and c are lattice constants of HCP-Zr. For the ideal structure
without any defects, the simulation box is 16.19 3 16.83 3 15.55 Å3 with 180 atoms.
Such a selection of the simulation box is to ensure that the minimum distance between
the defects and their images due to the periodic boundary conditions are greater than
15.55 Å, which makes the interactions between defects as well as the elastic dipole
interactions10 negligible8.

The first-principles calculations were carried out using the Vienna Ab-initio
Simulation Package (VASP)19,20 which is based on the Kohn-Sham Density
Functional Theory (KS-DFT)28 with the generalized gradient approximations as
parameterized by Perdew, Burke, and Ernzerhof (PBE) for exchange-correlation
functions29. The pseudo-potential in this study has twelve electrons (4s24p65s24d2)
explicitly included as valence electrons. The core electrons are replaced by the pro-
jector augmented wave (PAW) approach30.

The cutoff energy for the kinetic energy of wave-functions was carefully selected to
be 400 eV after convergence tests. A gamma-centered k-mesh is required to sample
the irreducible Brillouin Zone in HCP structures to preserve the HCP symmetry.
Thus we used 3 3 3 3 3 C-centered k-mesh in this study after convergence tests. The
integration over eigenvalues is performed by the smearing technique using the
Methfessel-Paxton function of order 1 and a smearing width of 0.05 eV31, which
results in a convergence of total energy of 2.0 meV/cell for the largest system in this
study.

With the initial atomic positions schematically shown in Fig. 1, the SIA structures
are optimized using the conjugate gradient method. The criterion to stop the
relaxation of the electronic degrees of freedom is that the convergence of total energy
is 1025 eV. The optimized atomic geometry was achieved through minimizing
Hellmann-Feynman forces acting on each atom until the maximum forces on the
atoms were smaller than 0.03 eV/Å. The pressures of the systems after relaxation are
small, less than 0.1 GPa. All the parameters selected in this study will ensure the
convergence of formation energies within 0.05 eV/cell.

Results
Lattice constants and elastic properties. The lattice constants were
obtained by relaxing the primitive unit cell with a cutoff energy of
1300 eV for wave functions and a cutoff energy of 2000 eV for
augmentation charges for high accuracy. The elastic tensor was
determined by performing six finite distortions (dE~0:015) of the
HCP lattice and deriving the elastic constants from the strain-stress
relationship, where stresses were calculated ab initio by properly
applied strains after a convergence test of dE32. All internal
relaxations were performed. The bulk modulus B was calculated
using33

B~
C33 C11zC12ð Þ{2C2

13

C11zC12z2C33{4C13
, ð7Þ

with C12 5 C13 5 C11 2 2C66.
The results of lattice constant a, c/a ratio, bulk modules B, elastic

constants in HCP C11, C33, C44, C66 obtained from ab initio calcula-
tions are summarized and compared with previous studies and
experiments in Table I. They are in good agreement with both experi-
ments and previous ab initio calculations.

Equations of state. Nine systems were studied including eight SIAs
and the ideal system (without SIA). For each system, we calculated

the total energies corresponding to seven volumes. The results of
E(V) as a function of V are plotted in Fig. 2.

The total energies as a function of volume were fitted to Eq. 3, and
we obtained the fitting parameters V0, B, and B9. The fitting para-
meters of the eight SIAs and the ideal system are summarized in
Table II, as well as the errors introduced by the fittings. Our EOS
parameters agree with experiments34,35, where B is measured as 92–
102 GPa and B9 is 3.1–4.0.

Using these fitting parameters V0, B, and B9, the equations of state
of Eq. 1 can be obtained. The pressure as a function of volumetric
strain (EOS) for the ideal system using a 180-atom unit cell and eight
SIAs (O, S, C, T, BO, BS, BC, BT) using scaled 181-atom unit cells
were plotted in Fig. 3, where pressures of SIAs have 10.0 GPa incre-
ment each to avoid overlapping for better view. We observed that the
EOS of ideal and SIA systems are very similar in a large range of the
volumetric strain. We only show the P-e within the volumetric strain
range of 20.3 to 0.3.

We used the pressure range of 210 GPa to 40 GPa for the study of
the SIA formation energy under constant pressure Ef (P), formation
volume, and formation enthalpy in the following subsections. The
pressure of 40 GPa corresponds to the volumetric strain of 20.227
which is 7.56% compressive strain in each direction. The pressure of
210 GPa corresponds to the volumetric strain of 0.136, which is
4.53% tensile strain in each direction.

Although there are experimentally reported phase transitions
under high pressures12,13, the pressure-induced phase transition
was not observed in our calculations. The possible reasons are two-
fold. First, the simulation boxes are small, which exclude the long
wavelength phonon modes that corresponds to the soft-mode for the
phase transitions. Second, the zero temperature in our model pre-
cludes the dynamical instabilities, resulting in meta-stable configura-
tions under high pressures. Even though, our calculations are still
useful in studying the mechanical instabilities of defects under vari-
ous pressures since it provide an upper boundary of these instabil-
ities. The pressure-induced phase transition can be theoretically
obtained from comparison of the enthalpy of different possible
atomic structures6,36,37. However, it is outside the aim of present work.

It is worth pointing out that the large pressures (from 210 to
40 GPa) in this theoretical study are much larger than that in real
applications, for example, 0.016 GPa in pressurized water reactors
(PWR). In practice, zirconium alloys cannot sustain such high pres-

Table I | Lattice constant (a), the c/a ratio, the bulk modulus, and
elastic constants (C11, C33, C44, C66) of bulk HCP Zirconium from
ab initio DFT calculations, compared with experiment47 and pre-
vious calculations39,48

a (Å) c/a
B

(GPa)
C11

(GPa)
C33

(GPa)
C44

(GPa)
C66

(GPa)

Present 3.238 1.600 93.6 143.5 168.5 25.5 38.8
Experiment[47] 3.23 1.593 97 144.0 166.0 33.0 35.0
Calculation[39] 3.23 1.600 94 146 156 28 42
Calculation[48] 3.24 1.598 93.4 141.1 166.9 25.8 36.8

Figure 2 | The total energy as a function of volume for ideal system (red
line) in a 180-atom unit cell and eight SIAs (O, S, C, T, BO, BS, BC, BT) in
scaled 181-atom unit cells. The plots for SIAs systems have 1.0 eV

increment each for better view.
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sures as 40 GPa. Because there are defects including dislocations,
grain boundaries, and voids during manufacture in addition to the
thermal point defects. The stresses are highly and locally concen-
trated during mechanical loading, thermal straining, and irradiation
around these defects. As a result, the pressures around the micro
structures of defects are very high. For example, a shock compression
of 7.56% of a unit cell (22.7% volume shrinkage) during collision
cascade could cause a local pressure as high as 40 GPa. However, it is
difficult to experimentally measure these localized high pressures
due to following reasons. First, the pressures on those hot spots are
quickly reduced with respect to the increment of distance between
the defect and the measuring point, as well as the surface area of the
measurement due to averagement. Second, the pressures on those
hot spots are instantaneous and promptly dissipated, in order of
10212 s (picoseconds). Therefore, our theoretical studies at the
nanoscale and high pressures are valuable since it provides the sights
of mechanical behaviors which are difficult to capture in experi-
mental approach since they are instantaneous and highly localized.
In addition, it also provides insights into the stabilities as well as the

phase transition path which consists of the configurations of lowest
formation enthalpy.

The direct DFT calculations of the ideal system’s pressure with
respect to the volume are also plotted as red dots in the bottom panel
of Fig. 3. It verifies that the EOS from Eq. 1 fits the DFT results well
and thus it is reliable for use in calculation of SIA formation energy,
formation volume, and formation enthalpy, as discussed in the fol-
lowing subsections.

Formation energy. The formation energy is the energy cost of
generating a defect configuration, which is used to quantify the
stability of a SIA configuration as compared with the ideal system
without any defects. The difference in formation energy between two
SIAs is a measure of the relative stability between them. The
formation energies of SIAs at constant pressure Ef (P) as a function
of pressure P are plotted in Fig. 4 with the parameters in Table II.
Under positive pressures, where the system is in the compression
mode, the distances between atoms are reduced. As a result, the
strength of the bonds is enhanced. It requires more work to insert
the SIA atoms to the system, thus the formation energy increases.
Under negative pressures, where the system is in the expansion
mode, the distance between atoms increases. As a consequence, the
bonds are weakened. The insertion of the SIA increases the strength
of bonds, and thus increase the formation energy.

The formation energies at zero pressure Ef (P 5 0) are summarized
in Table II. The formation energy at constant pressure Ef (P 5 0) is
identical to the Ef (e 5 0), formation energy at constant volume,

Table II | Equilibrium volume V0, bulk modulus B, its pressure derivative B9, and formation energy under constant zero pressure Ef (P 5 0)
of bulk HCP Zirconium and eight SIA configurations (O, S, C, T, BO, BS, BC, BT) from EOS fitting of ab initio DFT calculations. The errors
introduced by the least square fittings are shown in the parenthesis next to each parameter. For comparison, we listed the formation
energies under constant zero pressure Ef (e 5 0) which were reported previously8,49

V0 (Å3) B (GPa) B9 Ef
~0 [8] (eV) Ef (P 5 0) (eV) Ef

~0 [49] (eV)

ideal 4235.51 (0.12) 94.64 (0.040) 3.505 (0.026) 0 0 0
O 4262.91 (0.13) 93.83 (0.042) 3.492 (0.027) 2.98 2.98 2.88
S 4261.63 (0.14) 93.52 (0.043) 3.429 (0.028) 3.17 3.18 -
C 4262.58 (0.13) 93.50 (0.042) 3.442 (0.027) 3.37 3.37 -
T 4261.63 (0.14) 93.52 (0.043) 3.429 (0.028) 3.17 3.18 -
BO 4261.98 (0.20) 94.01 (0.065) 3.426 (0.042) 2.82 2.82 2.90
BS 4262.55 (0.11) 93.77 (0.036) 3.443 (0.024) 2.96 2.96 -
BC 4261.98 (0.20) 94.01 (0.065) 3.426 (0.042) 2.82 2.82 2.91
BT 4261.98 (0.20) 94.01 (0.065) 3.426 (0.042) 2.82 2.82 -

Figure 3 | The pressure as a function of volumetric strain (EOS) for ideal
system (red line) in a 180-atom unit cell and eight SIAs (O, S, C, T, BO,
BS, BC, BT) in scaled 181-atom unit cells. The pressures of SIAs have

10.0 GPa increment each to avoid overlapping for better view.

Figure 4 | Formation energy of eight SIAs (O, S, C, T, BO, BS, BC, BT) at
constant pressure Ef (P) as function of pressure P.

www.nature.com/scientificreports
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calculated from the rescaled constant volume method18,38,39. This is
also a direct validation of the rescaled constant volume method used
in our previous works8,11. The crossovers of Ef (P) curves for different
SIAs only occur at pressure P . 8 GPa. The lowest-conformation-
energy configuration changes from BO to O at pressures P 5 21 GPa
with an increase of pressure. This is consistent with our observations
of the behaviors of Ef (e).

It is worth mentioning that the formation energy of each SIA
configuration strongly depends on the system size8. The general
trend is that the formation energy decreases as the system size
increases. It is well known that the interactions between the SIAs
and their periodic images, which are caused by the periodic boundary
conditions, are artificial. These artificial interactions are the main
cause of inaccuracy of formation energy appeared as a system size
effect in modeling. These interactions decay quickly with respect to
the distances between the nearest defects. As reported in our previous
study8, the SIA formation energy converges when the number of
atoms of the system N $ 180, where the shortest distance between
defects is no smaller than 15.55 Å.

Formation volume. The SIA formation volume measures the
volume change of the SIA system with respect to the ideal system
at the same condition of N and P. Under the constant pressure P,
since the electrons are delocalized in metals, the system volume
determines the overall binding energy in the system. As a result,
the formation volume contributes to the bonding and thus the
formation energy.

Formation volumes of SIAs at constant pressure Vf (P) as a func-
tion of pressure P are shown in Fig. 5. The unit of Vf (P) is V0 5 V(N;
P 5 0)/N, which is the unit atom volume at zero pressure of the ideal
system for convenience. In this study, we have V0 5 23.52 Å3. The
formation volume at zero pressure Vf (0) is summarized in Table III.
Our values are comparable to the first principles calculations in 96-
atom super-cells10,40 and consistent with experiments. Comparing
with empirical many-body potentials, our results are smaller than
those reported by Ackland et al.41, but larger than those of Pasianot
and Monti42. Note that there are big differences in formation volume
between these DFT results, even a change of sign, which could be due
to the small system size (37 or 97 atoms) used in previous DFT
models.

The general trend is that the Vf (P) decreases with pressure. This
could be understood since the total volume decreases with pressure.
At the higher pressure, the system is ‘‘denser’’ and the SIAs are more
constrained to vibrate and relax.

Formation enthalpy. Naturally, the presence of pressure introduces
the external work of PVf according to the formation volume Vf.
Under pressure P, the thermodynamically relevant quantity which
determines the stability under pressure is the formation enthalpy16–18.
The formation enthalpy of various SIAs (Hf (P)) as a function of
pressure P are plotted in Fig. 6. The general trend is that the Hf (P)
increases with pressure, followed by a drop after reaching a
maximum. In the small pressure regime of P , 10 GPa, the
increase of formation enthalpy Hf (P) is similar to the increase of
formation energy Ef (P), but the rate of increment reduces with
respect to an increasing pressure. This behavior occurs because the
formation energy does not increase sharply enough to compensate
the reduction of formation volume with respect to an increasing
pressure.

For off-plane SIAs, the rate of increase of formation enthalpy with
the pressure is larger than that of the in-plane SIAs, indicating a
larger sensitivity to the pressure. In other words, the in-plane SIAs
are more stable with respect to pressure. From the view of formation
energy, a SIA generated by radiation will become an in-plane SIA
during relaxation due to the energy landscape since BO has the low-
est formation energy11. Thus there is a movement from off-plane to
in-plane. This picture is still valid from the view of formation
enthalpy, where the pressure effect has to be considered. The pres-
sure dependent formation enthalpy could also explain the experi-
mental observation of the alignment of c loops in bands parallel with
the basal planes in neutron-irradiated Zr43. Furthermore, the 2D
diffusion in-plane will transport the SIA along the basal plane.

Figure 5 | Formation volume at constant pressure Vf (P) of eight SIAs (O,
S, C, T, BO, BS, BC, BT) as function of pressure P.

Table III | Formation volume Vf (P 5 0) from ab initio DFT calcula-
tions and comparison with previous studies. Units of volumes are
in V0 5 23.52 Å3

Present Domain [40] Ackland [41] Pasianot [42] Willaimea

O 0.164 0.16 - 0.06 0.17
S 0.110 20.04 0.2 20.30 0.04
C 0.151 0.13 0.27 20.9 0.11
T 0.110 - - - -
BO 0.125 0.14 0.3 20.23 0.12
BS 0.149 - 0.35 - 0.18
BC 0.125 0.1 0.33 20.14 0.14
BT 0.125 - - - 0.12
awith SIESTA and 97-atom cells in Ref. 10.

Figure 6 | Formation enthalpy Hf (P) of eight SIAs (O, S, C, T, BO, BS,
BC, BT) as a function of pressure P.
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This process is repeated until there is a measurable expansion in the a
direction and contraction in the c direction, as observed in the single
crystal Zirconium44. Although dislocation loops, small defect clus-
ters, and dislocation climb processes are responsible for the growth
through complex mechanisms, our results suggest a mechanism of
radiation growth45 caused by 2D diffusion, from the aspect of the
stability of the SIAs under pressure. More importantly, our results fit
in a recent radiation growth model46 in which the radiation growth is
governed by the production of SIA clusters and their migration along
basal planes. Our results indicate that that under pressures below
12 GPa, the migration and diffusion are still two-dimensional and
along basal planes.

In the large pressure regime of P . 15 GPa, the formation enthalpy
Hf (P) decreases with respect to the pressure. However, the formation
energies increase in this regime. Therefore, we can conclude that the
external work term of PVf is dominant under high pressure. For the
variation of formation enthalpy to the high pressure, the formation
enthalpy Hf (P) decreases, with the slowest corresponding to the O
configuration and fastest corresponding to the S configuration.

There are crossovers in these Hf (P) curves: O to BC at P 5 12 GPa,
BS to BC at P 5 20 GPa, O to C at 25 GPa, and BO to BC at 30 GPa.
The crossover of the Hf (P) curves reflects the change of relative
stability among the SIAs. Our result shows that the crossovers of
Hf (P) curves for different SIAs occur at pressures P . 12 GPa and
P 5 210 GPa, which is consistent with the results of Ef (P) and Ef (e).
Since the relative stability of the SIAs affects the diffusion pattern, our
results suggest that the diffusion pattern will change under pressures
beyond 12 GPa.

It is interesting that the lowest formation enthalpy configuration
switches from BO to S at P 5 30 GPa. This pressure is coincidently
the same as the phase transition pressure of 26–35 GPa from v phase
to b phase. In general, the phase transition follows the path consisted
of SIA configurations with low formation enthalpy. Therefore our
results could provide a clue to the phase transition path at those
pressures, in which the role of SIAs requires further study.

Conclusions
We investigated the equations of state and the effect of pressure on
the stability of SIAs in HCP-Zirconium through ab initio DFT cal-
culations. We used a generalized EOS method to study the formation
energy, formation volume, and formation enthalpy of defects in
HCP-Zr. We report that pressure greatly affects the stability and
relative stabilities of SIAs. The diffusion and migration patterns are
still two-dimensional and along basal planes with pressures below
12 GPa. The formation volumes of SIAs monotonically decrease
with an increase in pressure.

In-plane SIAs are more stable with respect to pressures for P ,
10 GPa. Under high pressures (P . 15 GPa), the external work PVf is
dominant compared to the formation energy, leading to the decrease
of formation enthalpy. The lowest-conformation-energy configura-
tion changes from BO to O at pressures P 5 21 GPa with an increase
in pressure. There are crossovers in these Hf (P) curves: O to BC at P
5 12 GPa, BS to BC at P 5 20 GPa, O to C at 25 GPa, and BO to BC
at 30 GPa. The lowest formation enthalpy configuration switches
from BO to S at P 5 30 GPa. The crossovers of the formation
enthalpy reflects the changes of the relative stabilities of the SIA
configurations, which could provide a clue to phase transitions.
Our results indicate that it is important to take the pressure effect
into account in predicting the micro-structural evolution of zir-
conium-based materials under pressure. Our study could be also
useful in engineering design of cladding materials and structural
materials that are used in the high pressure environment.
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