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Abstract

Raman spectroscopy provides label-free, specific analysis of biomolecular structure

and interactions. It could have a greater impactwith improved characterization of com-

plex fingerprint vibrations. Many Raman peaks have been assigned to cholesterol, for

example, but the molecular vibrations associated with those peaks are not known. In

this report, time-dependent density functional theory calculations of the Raman spec-

trum of cholesterol are compared to measurements on microcrystalline powder to

identify 23 peaks in the Raman spectrum. Among them, a band of six peaks is found

to be sensitive to the conformational structure of cholesterol’s iso-octyl chain. Calcu-

lations on 10 conformers in this spectral band are fit to experimental spectra to probe

the cholesterol chain structure in purified powder and in phospholipid vesicles. In vesi-

cles, the chain is found to bend perpendicular to the steroid rings, supporting the case

that the chain is a dynamic structure that contributes to lipid condensation and other

effects of cholesterol in biomembranes.

Statement of Significance: Herewe use density functional theory to identify a band of six

peaks in cholesterol’s Raman spectrum that is sensitive to the conformational struc-

ture of cholesterol’s chain. Raman spectra were analyzed to show that in fluid-phase

lipidmembranes, about half of the cholesterol chains point perpendicular to the steroid

rings. This new method of label-free structural analysis could make significant contri-

butions to our understanding of cholesterol’s critical role in biomembrane structure

and function. More broadly, the results show that computational quantum chemistry

Raman spectroscopy can make significant new contributions to molecular structure

when spectra are interpreted with computational quantum chemistry.

1 INTRODUCTION

Raman spectroscopy detects the molecular vibrations of substances

from simple laser light scatteringmeasurements.1 It is a label-free ana-

lytical method that requires essentially no sample preparation while

it provides molecular specificity associated with molecular vibrations.

As Raman instrumentation has become more accessible, interest has

grown in many fields, such as pharmaceuticals, mineralogy, astrobiol-
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ogy, archaeology and food science, to name only a few.2–9 Biomedical

applications are particularly promising due to the potential for label-

free diagnostics and real-time intraoperative detection.10–14 Lipids are

a common target of Raman analysis due to their high concentration in

biological samples, their variations with disease states and the unique

molecular vibrations of their fatty acid chains.15–17 For example, the

purity and heterogeneity of exosomes have been studied by Raman

spectroscopy, as well as the lipid components of bone marrow.11,18–20
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Ramanmicroscopy has tracked reservoirs of lipidswithin cells to reveal

insights that are lost when samples are homogenized.21–24 Biophys-

ical studies of model membranes also benefit from Raman imaging,

where molecular details can be seen without the need for probes

that likely perturb the membrane structure.25–28 Among lipids tar-

gets for Raman analysis, cholesterol is of particular interest given

its prevalence in membranes and its fundamental role in membrane

structure and cell biology.29–33 Intracellular monitoring of cholesterol

biosynthesis by Raman imaging can evaluate chemotherapy response

in bladder cancer, as well as monitor lipid levels in liver disease and

atherosclerosis.14,21,34–36 In addition to living matter, cholesteroids

are studied as molecular fossils in paleobiology that provide clues to

dietary relationships in past ecosystems.37

Imprecise identification of the molecular vibrations associated with

Raman peaks lessens the impact the spectra may have on deciphering

molecular structure and interactions. Spectra of molecular analogues

and isotopes help identify vibrations, but these methods are not effec-

tive beyond a certainmolecular size and complexity. Density functional

theory (DFT) calculations can fill this gap.38 Amolecule’s normal mode

vibrations can be calculated from the energy gradients of a DFT-

optimized molecular structure. A subsequent calculation of changes in

themolecular polarizability with each normal mode’s motion produces

the Raman spectrum. With well-chosen exchange-correlation poten-

tials, basis sets and sufficient numerical precision, accurate spectra can

be calculated for medium to large molecules (up to ∼100 atoms).39

The accuracy strongly depends on the molecular size and electronic

properties, possible effects of resonance and surface enhancement and

the details of the DFT calculation methodology.40–44 For example, it

has been shown that the calculation of time-dependent polarizabilities

by time-dependent DFT (TDDFT) improved the accuracy of calculated

Ramanmode intensities for diatomic molecules.45

We have recently reported TDDFT calculated Raman spectra for

anthraquinones and flavonoids and found good agreement with mea-

sured spectra since these fused-ring structures are not subject to

significant conformational variation.46,47 These studies also showed

distinct signatures of hydrogen bonding in specific bands of the spec-

trum. Here we investigate cholesterol through comparisons of TDDFT

calculated Raman spectra to measurements on microcrystalline pow-

der and solution phase lipid vesicles. In addition to identifying Raman

active vibrations, spectral markers for the molecular conformation of

the iso-octyl chain are characterized.

2 MATERIALS AND METHODS

2.1 Lipid sample preparation

Powdered cholesterol (> 99% purity) was purchased from Sigma.

1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) (> 99% purity) was

purchased from Avanti Polar Lipids dissolved in chloroform. Both

phospholipid-cholesterol (with a 3:1 molar ratio of phospholipids to

cholesterol) and pure phospholipid solutions were prepared. The lipids

were mixed in chloroform then the solution was dried under gentle

argon flow for ∼45 min and placed in a vacuum chamber for ∼2 h

until the pressure dropped below 1 × 10−5 Torr. The dried lipids were

hydrated with deionized water to obtain a 10 mg/mL phospholipid

concentration. The aqueous solutions were mixed and sonicated for

∼20min. First, mixing removed the lipids from the glass container wall

forming a milky white multilamellar vesicle (MLV) solution. Secondly,

sonication transformed the MLVs into small unilamellar vesicles turn-

ing the solution optically clear with a bluish tint. Vesicle solutions were

stored in a refrigerator and used for measurements within 2 days.

2.2 Raman spectroscopy

Raman spectrawere recordedwith a custommicro-Raman spectrome-

ter. Excitation was provided by an Ondax RO-785 785 nm, 80mW sta-

bilized CWdiode laser with beam power set by a Thorlabs NDL-25C-2

continuously variable neutral density filter. A Semrock LPD02-785RU-

25 × 34 × 1.1 dichroic mirror directed the beam to an LCPLN100XIR

near-infrared corrected 100x/0.85 NA microscope objective which

then focused it onto the sample. Back-scattered light passed back

through the objective, dichroic mirror and a Chroma RE792Ip block-

ing filter. An Olympus LMPLN5XIR 5x/0.1 NA near-infrared corrected

objective focused the filtered light onto the entrance slit of a Prince-

ton Instruments IsoPlan SCT320 spectrograph. Spectrawere recorded

on a Princeton Instruments Pixis 256E thermoelectrically cooled,

open-electrode CCD camera at a resolution of 6 cm−1.

The cholesterol powder spectrum was obtained by applying a few

mg to a support using double-sided carbon tape. Four images were

obtained for four spectral regions centred at 810, 840, 870 and900nm

using 20 min integrations and 20 mW laser power. The image pixel

counts were summed vertically to obtain an intensity spectrum.

For the vesicle solution spectra, an LCPLN20XIR near-infrared cor-

rected 20x/0.45 NA microscope objective was focused in a 1 × 1 mm

borosilicate capillary tube (0.2 mm wall width). A custom-built sys-

tem pumped the solution through the capillary to ensure the solution

remained homogeneous throughout the measurement. The incident

power was increased to 60 mW. Three images with 20 min integration

time were averaged for the 840, 870 and 900 nm spectral regions. To

reduce noise in the spectrum, the number of images was increased to

15 for the 810 nm spectral region. Finally, the phospholipid solution

spectrum was subtracted from the phospholipid-cholesterol solution

spectrum to obtain a vesicle Raman spectrum for cholesterol. Choles-

terol alters the structure of phospholipid membranes, so it may also

alter the phospholipid Raman spectrum, making it an inaccurate refer-

ence for subtraction. Fortunately, phospholipids have no strong Raman

peaks in the region of interest (520–650 cm−1).

2.3 Time-dependent density functional theory

TDDFT calculations were carried out with the Amsterdam Density

Functional program from Software for Chemistry & Materials (ADF

2019.306, SCM, Theoretical Chemistry; Vrije Universiteit).38,48
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Conformers were generated by the RDKit algorithm and then opti-

mized by DFT. The calculation was performed with the following

parameters: a Becke-Perdew exchange−correlation potential under

the generalized gradient approximation with a third-order dispersion

correction and Becke-Johnson damping (GGA/BP86-D3(BJ)), a quad

zeta basis set with four polarization functions, no frozen core, no

relativistic correction and good numerical quality.49–52 Once the struc-

ture has been optimized, calculations of the second derivatives of the

energy with respect to nuclear displacements yield the normal mode

frequencies of each conformer. Finally, a Raman range calculation of

time-dependent polarizabilities produced a theoretical Raman spec-

trum at an excitation frequency of 1.58 eV (785 nm) and a two-point

numerical differentiation of the polarizability tensor.45,50,53–57 The

atomic coordinates and vibration amplitudeswere imported intoMAT-

LAB software to create illustrations of the conformer structure and

the molecular vibration maps. Mathematical details of the vibration

map illustrations were described previously.46

2.4 Spectral fitting

The experimental spectra were fit to a linear combination of the four

spectral types by linear regression using MATLAB’s Statistics and

Machine Learning toolbox. The spectrum for each type was calculated

as a thermally weighted average of the spectra of two or three con-

formers of that type. The experimental spectra were normalized and

offset to have a minimum of zero in the spectral band. A 1.5% scale

factor was applied to the frequencies of the calculated bands. The fit

had only four coefficients (one for each spectral type) and no other free

parameters. If unconstrained, the solution had a negative coefficient

for type D2b. We therefore applied the constraint that all coefficients

be positive, which gave the results in Table 2 and caused the coef-

ficient for D2b to be zero. To find the confidence intervals, the fit

was run unconstrained but without D2b, which resulted in the same

coefficients. The coefficients and confidence intervals in Table 2 were

normalized for convenient comparisons.

3 RESULTS AND DISCUSSION

3.1 Identifying Raman modes in purified
cholesterol

The earliest Raman investigations on cholesterol studied its impact on

phospholipid acyl chain structure in lipidmembranes. Spectral bands at

1672 and 600 cm−1 were assigned to cholesterol and used to estimate

its relative concentration inmembranes.58,59 Faiman first reported the

Raman spectrum of purified crystalline cholesterol.60 Approximately

50 peaks were assigned to cholesterol, but most were deemed too

complex to pursue. The methylene deformations between 1400 and

1500 cm−1 andC─Hmodes between 2700 and 3100 cm−1 were found

to depend on its chain packing as they do for phospholipids. Continued

investigations over the years have identified these and other vibrations

F IGURE 1 The cholesterol structure with relevant atom numbers
and ring labels.

of cholesterol.9,16 The peak at 1672 cm−1 is the C═C stretch in the

ring structure, and peaks at 1087, 1130 and 1178 cm−1 are C─C and

C─H vibrations. There are many vibrations below 1000 cm−1 whose

molecular motions are ambiguous. Among these, peaks at 701, 604,

548 and 424 cm−1 are the strongest and are often associated with

cholesterol.16,61–64

For accurate TDDFT spectral calculations, the molecular confor-

mation must be considered since it affects molecular vibrations. We

have found that conformational variation has a greater effect on the

Raman spectra of flexible alkane chains than fused rings.46,65 However,

even for fused ring molecules like hydroxyanthraquinones, the orien-

tation of individual hydroxyl groups affects the Raman peaks. For this

study, cholesterol conformers were generated with RDKit software,

which applies dihedral angles to rotatable bonds based on statistics

from structural databases, and then carries out low-level energy calcu-

lations and structural refinement.66 DFT refinement was then applied,

which caused some conformers to converge to the same structure.

Here spectral calculations of 10 unique conformers found by this pro-

cess are reported. Vibrations and dihedral angles are defined following

the standard atom numbers and ring labels shown in Figure 1.

Figure 2 displays calculated and experimental Raman spectra of

cholesterol in two spectral windows. The calculated spectrum is suffi-

ciently accurate that 23 peaks were identified based on their spacing

and relative intensities. The low-frequency band in Figure 2A con-

tains fingerprint vibrations of the fused ring structure. The higher band

in Figure 2B contains well-known functional group peaks. The peaks

between these bands (plotted in the Supporting Information) are too

dense to make definitive assignments. Note that the calculated peak

frequencies in Figure 2 have not been scaled.67,68 Although they are

off by approximately 1.5%, the spacing and amplitudes of the peaks are

sufficiently accurate that assignments can be made without precisely

matched peak positions.

At the lowest frequencies (peaks 1-9) the vibrations are distributed

throughout the molecular structure. Moving to higher frequencies,

peaks 10-18 are somewhat more localized skeletal vibrations of the

chain, rings,methyl groups andhydroxyl group. Peaks19-22aremethyl

and methylene vibrations and peak 23 is the C═C stretch. As a way to

visualize these complex vibrations with a static image, the structures

are drawn with a bond width that represents its stretch amplitude and
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F IGURE 2 The Raman spectrum of cholesterol. The calculated (black) and experimental (green) spectra with labelled peaksmatch based on
spacing and relative amplitude for low-frequency (A) and high-frequency (B) vibrations. Vibrationmaps are displayed for three of the peaks (C).
The calculated spectra displayed are for conformer #1 in Table 1.

a red/blue colour to represent the relative phase.46 Three such vibra-

tionmaps are displayed in Figure 2C that illustrate a localized vibration

(peak 23), a distributed vibration (peak 4) and the vibration for peak 16

that is most often used as a marker for cholesterol. The vibration maps

for all 23 peaks can be found in the Supporting Material. The maps

are useful for finding vibrations common to a molecular family, and

for comparing modes of different conformers. Note that these maps

only illustrate bond stretching, so they do not contain all vibrational

information. The methyl and methylene vibrations of peaks 19–22, for

example, are not well represented by such illustrations. Also, the maps

do not indicate how much each stretching motion contributes to the

Raman intensity for that mode.

3.2 Raman spectra of different conformers of
cholesterol

A comprehensive study of dozens of membrane sterol crystal struc-

tures by Duax et al. provides insight into the observed conformations

of cholesterol.69 Among the structures, the tetracyclic rings show lit-

tle variation apart from some twisting around the five-membered ring.

The iso-octyl chain conformation is determined by six dihedral angles

defined by Duax et al. as:

𝜔1 = C13 − C17 − C20 − C22

𝜔2 = C17 − C20 − C22 − C23

𝜔3 = C20 − C22 − C23 − C24

𝜔4 = C22 − C23 − C24 − C25

𝜔5 = C23 − C24 − C25 − C26

𝜔6 = C23 − C24 − C25 − C27

where terminal methyls C26 and C27 are distinguished by viewing

along the H2-C25 bond and following the clockwise sequence C24,

C26, C27. Two additional dihedral angles will be defined here. The

hydroxyl orientation is described by ω0 (C2 – C3 – O—H1), and for an

alternative description of the iso-octyl terminus, we consider ω7 (C23

–C24 –C25 –H2).While rotations around these bonds could generate

hundreds of conformers, Duax et al. found that the crystal structures

TABLE 1 Torsion angles and relative total bonding energy of 10
cholesterol conformers, arranged by conformer type.

Conf Type ω0 ω1 ω2 ω3 ω4 ω5 ω6 ω7 E (kcal/mol)

1 A 182 180 190 176 176 187 63 −56 0.27

2 A 182 180 192 178 185 −63 173 56 0.30

3 A 57 180 191 176 176 187 63 −56 0.40

4 D1,3 −62 176 62 174 60 182 58 −61 0.06

5 D1,3 57 176 62 175 61 182 58 −61 0.07

6 D1,3 163 174 63 183 −63 −57 179 62 0.18

7 D2a 180 176 61 179 183 −63 174 56 0.00

8 D2a −62 176 61 178 175 187 63 −56 0.14

9 D2b 180 176 61 178 179 63 −63 180 0.62

10 D2b −61 174 61 176 179 63 −63 180 0.72

indicate a set of six principal conformer types that are favoured. Type

A represents a fully extended trans chain while types B, C, D1, D2 and

D3 have specific patterns of trans and gauche conformations for ω2, ω3

and ω4. Within a conformer type, ω5 and ω6, take various trans and

gauche values. In the present work, conformers were randomly gener-

ated, sorted by a low-level energy estimate and then further optimized

byDFT. Raman calculationswere carried out on the10 conformers that

are detailed in Table 1. The conformer types are based on the notation

of Duax et al. but modified for the Raman results reported here.

The Raman spectra for conformers 2 (type A), 5 (type D1,3) and 7

(type D2a) were calculated from 200 to 1000 cm−1 and are plotted in

the SupportingMaterial to show the level of variation in different spec-

tral regions. Here we focus on the spectral band from 520 to 650 cm−1

(Figure 3) for all conformers in Table 1. Each spectrum contains six

clear peaks in this band which represent the same six vibrations of the

steroid rings with some minor contribution from stretching of bonds

in the chain. The six peak positions and amplitudes shift based on the

conformation of the iso-octyl chain. The 10 spectra in Figure 3 fall into

four spectral types which correspond closely, but not exactly, to the

conformer types defined by Duax et al. The spectra of the three type

A all-trans conformers have uniformly spaced peaks. Conformer types
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F IGURE 3 The Raman spectra of 10 conformers for the band
sensitive to chain structure. The spectra are grouped into four spectral
types and the dihedral angles are given in the adjacent table (A). The
molecular structure highlights the bonds of interest. The cholesterol
structures are drawn at two angles to illustrate the position of the
chain relative to the steroid rings (B).

D1 and D3 are gauche for ω2 and ω4 and differ by the positive or nega-

tive gauche value for ω7, but this does not affect the calculated Raman

spectrum so the conformers are grouped and labelled D1,3. Four of the

calculated conformers fall under type D2, but they have two distinct

Raman spectra, so they are labelled D2a and D2b. The structural differ-

ence between them is in the chain terminus withω7 gauche for D2a and

trans for D2b.

The structural significance of these spectral groups is illustrated

with an adjacent table of dihedral angles in Figure3Aand themolecular

structuresdrawn inFigure3B. Thebond rotations that impact the spec-

tral group are at the second and fourth bonds of the chain (ω2 and ω4)

and at the terminal structure (ω7). Type A represents a straight chain

and is the most common conformer found among crystal structures

according to Duax et al. The D1,3 types are gauche at ω2 which directs

the chain transverse to the plane of the rings, but another gauche bond

for ω4 minimizes the deviation. The D2 types, which are gauche at ω2

and trans atω4 show the greatest deviation from the plane of the rings.

3.3 The iso-octyl chain structure

The modulation of cholesterol’s ring vibrations by its chain confor-

mation provides a new opportunity for structural analysis. The peak

10–15 bands of the Raman spectrum recorded from powdered micro-

crystalline cholesterol were fit to a linear combination of the four

F IGURE 4 Fits of the calculated Raman spectra tomeasured
spectra for powdered cholesterol (A) and cholesterol in phospholipid
vesicles (B).

TABLE 2 The relative fractions of each set of cholesterol chain
conformers for powder and vesicle samples. The brackets show the
95% confidence interval values.

Spectral type Microcrystalline powder Phospholipid vesicles

D2b 0.00* 0.00*

D2a 0.07 [−0.08, 0.22] 0.61 [0.41, 0.82]

D1,3 0.48 [0.36, 0.61] 0.04 [−0.13, 0.20]

A 0.45 [0.32, 0.58] 0.35 [0.18, 0.52]

*The coefficient was held to zero by a constraint.

spectral types in Figure 3. The fit is presented in Figure 4A and the

coefficients for the conformer types are in Table 2. According to the fit,

the main contributions are from conformer types A (the straight trans

chain) and D1,3 (the chain with minimal deviation from the plane of the

steroid rings). These results are consistent with reported crystal struc-

tures of cholesterol which have multiple conformers per unit cell, but

largely in a straight trans structure.70 The iso-octyl chain structure can

also be analyzed for cholesterol in its more natural lipid bilayer state.

Dioleoyl phosphatidylcholine (DOPC) vesicles were preparedwith and

without 30% cholesterol. The vesicle spectra were subtracted to iso-

late the cholesterol contribution. In lipid vesicles, 20 of the 23 peaks

were observed (see Supporting Material). The band of peaks 10–15

was clearly detected, although some peaks were shifted and split com-

pared to the powder spectrum, which is consistent with a different

chain structure. The peak 10-15 band was fit to the four spectral types

as above (Figure 4B) and the conformer distribution is in Table 2. In

lipid vesicles, the chain structure shows a significant shift towards type

D2a at the expense of types A and D1,3, representing an increase in

conformers with chains bent perpendicular to the steroid rings.

The prevalence of cholesterol-conformer type D2a in DOPC vesi-

cles is consistent with cholesterol’s condensing effect on disordered

phospholipid membranes. The condensation effect was first observed

for lipid monolayers at the air-water interface, where the addition of

cholesterol lowered the area per lipid in the monolayer.71 Cholesterol

was later found to have a similar condensing effect on lipid bilayers,

which impacts membrane flexibility and permeability.72,73 Although

the cholesterol condensation effect has been widely studied, the pre-

cise molecular mechanism is not yet known and several proposed

models are still under investigation.74 The effect is usually associated
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with van derWaals interactions between phospholipid acyl chains and

cholesterol’s steroid rings, but recent nuclear magnetic resonance and

molecular dynamics studies suggest that cholesterol’s iso-octyl chain

also plays an equally important role.75,76 Vogel et al. found evidence

that the chain dihedral angles take new values in lipids as compared

to crystal structures.77 Based on these angles, they conclude that the

chain tends tomove perpendicular to the plane of the rings in phospho-

lipid membranes. Here we draw the same conclusion directly from the

Raman vibrational spectra of the cholesterol molecule. In the DOPC

membrane in which all phospholipid chains have a cis double bond, the

cholesterol chain may reorient to fill free space and allow a tighter

packing of the DOPC lipids. These results will be made more accurate

and comprehensive with future work that will includemore conformer

calculations andmeasurements with different phospholipid species.

4 CONCLUSION

Through a comparison of TDDFT-calculated Raman spectra with mea-

surements on microcrystalline powder and solution phase vesicles,

the detailed molecular motions corresponding to 23 peaks in choles-

terol’s Raman spectrum have been identified. A band of six peaks was

found to have relative positions and intensities that depend on the

conformation of the iso-octyl chain. By fitting the spectra of different

conformers to experimental data, distributions of conformer struc-

tures were found. In phospholipid vesicles, the cholesterol chain was

found to shift perpendicular to the plane of the fused rings, consis-

tent with its role in phospholipid condensation. These results show

that complex vibrations of molecules as large as cholesterol can be

identified by TDDFT and, more importantly, that the vibrations con-

tain useful and decipherable information on molecular structure and

interactions despite the global molecular motions they represent.
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