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An investigation of causal relationships between
prediabetes and vascular complications
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Prediabetes is a state of glycaemic dysregulation below the diagnostic threshold of type 2

diabetes (T2D). Globally, ~352 million people have prediabetes, of which 35–50% develop

full-blown diabetes within five years. T2D and its complications are costly to treat, causing

considerable morbidity and early mortality. Whether prediabetes is causally related to dia-

betes complications is unclear. Here we report a causal inference analysis investigating the

effects of prediabetes in coronary artery disease, stroke and chronic kidney disease, com-

plemented by a systematic review of relevant observational studies. Although the observa-

tional studies suggest that prediabetes is broadly associated with diabetes complications, the

causal inference analysis revealed that prediabetes is only causally related with coronary

artery disease, with no evidence of causal effects on other diabetes complications. In con-

clusion, prediabetes likely causes coronary artery disease and its prevention is likely to be

most effective if initiated prior to the onset of diabetes.
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Prediabetes is an impaired state of glucose metabolism
defined by elevated but not yet diabetic levels of fasting or
2-h glucose, or HbA1c. The specific cutoffs used to define

prediabetes vary but the widely adopted American Diabetes
Association (ADA) definitions are: impaired fasting glucose
(IFG)= fasting glucose 5.6–6.9 mmol L−1; impaired glucose tol-
erance (IGT)= 2-h glucose 7.8–11.0 mmol L−1; HbA1c= 39–46
mmol L−1 (or 5.7–6.4%). The cooccurrence of IFG and IGT is
termed “impaired glucose regulation”.

Whilst the global prevalence of prediabetes in adults is about
7.3% (n= 352 million people), in Europe and the US, roughly
4.6% (n= 36 million people) and 33.9% (n= 84.1 million people)
of the adult populations, respectively, are estimated to have
prediabetes1. In the short term, a relatively small proportion
(5–10% annually) of those with prediabetes will progress to full-
blown diabetes; however, after 5 years, about half will have
developed the disease2.

As diabetes progresses, it becomes increasingly difficult to treat,
as the capacity to endogenously produce insulin diminishes and
life-threatening complications arise. About five million people
died from diabetes-related complications in 2015, of which more
than 50% of the deaths were cardiovascular in nature, with costs
attributable to diabetes amounting to about one trillion USD
globally as of 20171.

Many observational studies have shown that prediabetes is a risk
factor for cardiovascular disease (CVD), suggesting that the
pathogenic effects of dysregulated glucose metabolism have already
begun even before diabetes is manifest3. However, these observa-
tions cannot be directly interpreted as causal effects owing to the
limitations of observational epidemiology. Nevertheless, if pre-
diabetic blood glucose variation was known to cause micro- and/or
macro-vascular disease, this could profoundly impact clinical
guidelines for the prevention of micro- and macro-vascular disease.

Following a cohort of participants who remain in the pre-
diabetic state for many years would help determine if blood
glucose variations within the prediabetic range are associated with
CVD; however, such a study is probably unfeasible and would
(owing to its observational nature) be prone to confounding and
reverse causality. In theory, one could design a clinical trial in
which people with prediabetes are randomized to interventions
that either (i) maintain blood glucose at the prediabetic level (e.g.,
by clamping blood glucose and insulin concentrations), or (ii)
cause blood glucose control to deteriorate through diabetes and
thereafter assess the impact of these interventions on the devel-
opment of complications. However, for ethical and other prag-
matic reasons, such trials are unlikely to be conducted.

Mendelian randomization (MR) is a recently popularized
adjunct to randomized controlled trials (RCTs) that makes use of
epidemiological data for causal inference. The approach leverages
the strengths (stability and random assortment of alleles) of
germline DNA variation to generate so-called “instrumental
variables” that serve as proxies for environmental exposures4.
Whilst not without limitations5, MR is less prone to confounding
and reverse causality than observational epidemiology and has
been used extensively to validate causal relationships indicated by
observational studies.

For the purpose of the current analysis, we have designed an
instrumental variable that isolates the exposure of prediabetes
from diabetes by selecting single nucleotide polymorphisms
(SNPs) with robust signals for variation in nondiabetic glycaemic
traits only, with no signal for risk of type 2 diabetes (T2D). We
use these instrumental variables to test whether nondiabetic
variations in fasting blood glucose (FG) and glycated hemoglobin
(HbA1c) are causally related with the most common micro- and
macro-vascular complications of diabetes: heart disease, occlusive
and hemorrhagic stroke, and renal disease.

Results
Observational and MR results. Thirty-seven articles were
included in the meta-analysis of observational studies. The pooled
sample size was 1,326,915 participants, with mean (±SD) age
53.2 ± 10.2 years and follow-up duration of 9.6 ± 4.8 years.

In the observational data meta-analysis, prediabetes was
associated with a 16% elevated risk of coronary artery disease
(CAD) (RR= 1.16; 95% CI: 1.09, 1.23; Q= 52.5, PQstat= 0.058;
I2= 27.7%; Fig. 1). In the MR analysis, nondiabetic fasting
glucose variation was also significantly associated with CAD, such
that 1 mmol L−1 higher fasting glucose conveyed an OR of 1.26
(95% CI: 1.16, 1.38) for CAD, with no evidence of directional
horizontal pleiotropy (Egger intercept= 1, P= 0.76) (Table 1 and
Fig. 2). Sensitivity analyses (MR-Egger and weighted median
regression) yielded consistent results. Hba1c yielded eight SNPs,
which were not classifiable as erythrocytic or glycemic. The
association between HbA1c and risk of CAD was not statistically
significant (OR= 1.03; 95% CI: 0.64, 1.64) and there was evidence
of directional horizontal pleiotropy (Egger intercept= 1.03, P=
0.01; Table 1).

In observational analyses, prediabetes conveyed a RR of 1.11
(95% CI: 1.03, 1.18; Q= 28.5, PQstat= 0.23; I2= 16%) for stroke
(Fig. 3), these remained virtually unchanged in the subgroup
analysis (Supplementary Data 2); however, in the MR analysis,
prediabetes was not causally associated with overall stroke (any
stroke (AS), OR= 0.88, 95% CI: 0.69, 1.13) or any of the subtypes
of stroke (Table 1). Prediabetes was not associated with chronic
kidney disease (CKD) in the observational analysis (RR= 1.05;
95% CI: 0.98, 1.12; Q= 27.2, PQstat= 0.002; I2= 63.3%), Fig. 4, or
in the MR analyses (OR= 1.04; 95% CI: 0.87, 1.25), see below. In
the latter, there was no evidence of horizontal pleiotropy.

Sensitivity analyses. In further sensitvity and validation analyses
of the prediabetes-only instrument, as defined in our study,
prediabetes-only SNPs were not significantly associated with T2D
risk across all MR methods used, P > 0.05 (Table 2). However,
when using all FG SNPs that were genome-wide significant (P <
5 × 10−8) regardless of whether or not they were nominally
associated with T2D, there was a strong causal relationship
between FG and T2D, P < 0.01 across all methods. There was,
however, a high degree of horizontal pleiotropy, PEgger intercept <
0.01, which underscores the complex nature of T2D (Table 3). All
observational pooled estimates remained virtually unchanged in
the sensitivity analysis (Supplementary Figs. 1–3).

We further tested for pleiotropy and presence of outliers using
the Mendelian Randomization Pleiotropy RESidual Sum and
Outlier (MRPRESSO) method for outcomes where outliers were
detected—coronary artery disease (CAD), AS and any ischemic
stroke (AIS). This method detects horizontal pleiotropy, corrects
for it, and also tests the distortion between the corrected and
uncorrected causal estimates6. The outlier-corrected results did
not differ with the inverse-variance weighted (IVW) results for
these outcomes (Table 4). In addition, we conducted leave-one-
out sensitivity analyses of the relationship between prediabetes
and CAD, one using the original 28 SNPs and another using
SNPs corrected for outliers using MRPRESSO, to assess whether
this association was being driven by one or more influential SNPs.
Our results show that the relationship between prediabetes and
CAD is not driven by a single (or more) influential genetic variant
(s) (Fig. 5). When we used 2-h glucose levels as an instrumental
variable for prediabetes, only two SNPs remained after routine
quality control (QC) and use of all genome-wide significant SNPs
(n= 7 after QC) did not return significant results in association
with CAD (Supplementary Note 2 and Supplementary Table 1).
Further sensitivity assessments of the relationship between our
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Fig. 1 Meta-analysis of the association between prediabetes and CAD. The square and diamond shapes represent effect size (relative risk estimates),
while the horizontal bars represent the 95% confidence intervals. A total of 21 studies are included. All P values are two-sided. Source data are provided as
Source Data file.
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prediabetes instruments and other cardiovascular risk factors
(Total, LDL, and HDL cholesterol levels; tryglyceride levels; and
body mass index) did not show any significant association
(Supplementary Note 2 and Supplemetary Tables 2–6).

Discussion
It is unclear if prediabetes is pathogenic or merely a prelude to the
disease state of diabetes. We sought to address this important
question using MR to estimate the causal effect of nondiabetic
variations in FG on the major complications of diabetes. We
compared these findings with those obtained through meta-
analysis of published observational data from 1,326,915 partici-
pants. In the observational analysis, prediabetes was modestly
associated with CAD and stroke, but not with CKD. In the MR
analyses however, only prediabetic blood glucose was associated
with CAD, with a 26% higher odds of CAD per mmol L−1

increase in fasting glucose. Elevation in genetically determined
HbA1c did not confer a statistically significant increase in the odds
of CAD or any other outcomes, though the number of instru-
ments was less (n= 8) and the instruments were unclassifiable.

To date, there has been no medicinal products approved for the
treatment of prediabetes in the EU or US. While lifestyle mea-
sures are clearly recommended as first-line intervention to
improve glycaemia in people at high risk of developing diabetes, it
is widely acknowledged that additional drug therapy may be
beneficial in people with prediabetes, if their risk of diabetes is
elevated for other reasons.

Current regulatory requirements for supportive evidence
include showing that delay in disease progression is accompanied
by other indicators of clinical benefit7. To provide this evidence,
large, long-term clinical trials are needed, the high cost of which
inhibits the development of prediabetic medicinal products.
Moreover, there are reimbursement challenges of treating very

Table 1 Causal relationship between genetically determined prediabetes and vascular outcomes.

Trait associated with FG IVWrobust (OR (95% CI)) MR-Egger (OR (95% CI)) Egger intercept
P value

Weighted median (OR (95% CI))

CAD 1.26 (1.14, 1.38) 1.30 (1.09, 1.567) 0.76 1.29 (1.13, 1.47)
Any stroke 0.88 (0.68, 1.13 0.71 (0.47, 1.08) 0.34 0.82 (0.64, 1.07)
AIS 0.92 (0.73, 1.16) 0.70 (0.48, 1.02) 0.16 0.88 (0.67, 1.15)
LAS 0.83 (0.49, 1.40) 0.66 (0.33, 1.35) 0.48 0.79 (0.43, 1.46)
CES 1.10 (0.75, 1.63) 0.79 (0.39, 1.58) 0.21 1.04 (0.63, 1.73)
SVS 0.78 (0.46, 1.31) 0.49 (0.19, 1.22) 0.23 0.61 (0.33, 1.11)
CKD 1.04 (0.87, 1.25) 0.83 (0.56, 1.22) 0.32 0.93 (0.75, 1.16)
HbA1c-CADa 1.03 (0.64, 1.64) 0.17 (0.04, 0.79) 0.01 0.83 (0.53, 1.31)

Data are presented as odds ratios and 95% CI for three methods of the Mendelian randomization analysis. Source data are provided as Source Data file.
IVW inverse-variance weighted, CAD coronary artery disease, AIS any ischemic stroke, LAS large artery stroke, CES cardioembolic stroke, SVS small vessel stroke, CKD chronic kidney disease.
aTwo-sample MR results of the association between genetically determined HbA1c levels and CAD using robust IVW.
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Fig. 3 Meta-analysis of the association between prediabetes and stroke. The square and diamond shapes represent effect size (relative risk estimates),
while the horizontal bars represent the 95% confidence intervals. A total of 14 studies are included. All P values are two-sided. Source data are provided as
Source Data file.
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large numbers of people with prediabetes. Determination of the
health implications and risk assessment of prediabetes would,
therefore, aid design of smaller, shorter, and potentially less
expensive, clinical trials by providing alternative health benefits. It
would also help address the value of treating large populations
over longer periods, by showing cost effectiveness.

MR is often considered an analogue of RCTs. In the latter,
treatment allocation is randomized to help ensure that any
potential confounding factors that exist within the cohort prior
to treatment assignment are distributed evenly between treat-
ment arms, thus neutralizing their impact. In MR analyses,
germline DNA variants are used as proxies (instrumental vari-
ables) for the exposure of interest (in this case, prediabetes). The
random assortment of alleles during meiosis and the stability of
DNA variants across the lifespan reduce to a bare minimum the
possibility that the observed effect of the instrumental variable
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Fig. 4 Meta-analysis of the association between prediabetes and CKD. The square and diamond shapes represent effect size (relative risk estimates),
while the horizontal bars represent the 95% confidence intervals. In total, eight studies are included. All P values are two-sided. Source data are provided as
Source Data file.

Table 2 Causal association between prediabetes only and
risk of T2D.

Method OR Lower 95% CI Upper 95% CI P value

Weighted median 0.98 0.82 1.14 0.79
IVW 1.02 0.90 1.16 0.76
Robust IVW 1.02 0.90 1.15 0.77
MR-Egger 0.91 0.73 1.14 0.42
InterceptMR-Egger 1.00 1.00 1.01 0.23
Robust MR-Egger 0.91 0.77 1.07 0.25
InterceptRobust MR-

Egger

1.00 1.00 1.01 0.15

n= 28 SNPs. Results are from two-sample Mendelian randomization analyses and P values are
two-sided. Results are unadjusted for multiple comparisons. Source data are provided as Source
Data file.
IVW inverse-variance weighted, OR odds ratio.
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on the outcome is confounded or attributable to reverse
causality4.

Here, we specifically sought to isolate the causal effects of
prediabetes from those of diabetes by selecting variants that are
robustly associated with fasting glucose and HbA1c variation but
not with diabetes. It is hard to envisage a clinical trial where this
could be recapitulated, as participants would need to be exposed
to prediabetes without progressing to diabetes long enough for
complications to occur. Consider, too, that the method used to
maintain the prediabetic state would need to function without
directly affecting the trial’s outcomes, excluding virtually all
known blood glucose therapeutics. Thus, for this specific research
question, MR is an especially powerful method for causal
inference.

One of few naturally occurring examples where blood glucose
can remain in the prediabetic state for long periods is a rare form
of monogenic diabetes (MODY2), caused by mutations in the
glucokinase gene (GCK). In MODY2, the blood glucose set-point
is elevated, but is generally not linked with progressively dete-
riorating glycemic control. Moreover, most MODY2 patients do
not develop macro- and micro-vascular complications8. As
intriguing as this is, the physiological idiosyncrasies of the disease
limit inferences about vascular risk in prediabetes. For example,
unlike many people with prediabetes, MODY2 patients have
normal post-prandial glycemic responses, virtually no insulin
resistance and cardioprotective lipid profiles9.

Although this is the first study to our knowledge to undertake a
comprehensive systematic literature review coupled with a
detailed MR analysis to specifically examine the causal effects of
prediabetic blood glucose variation in micro- and macro-vascular
disease, previous studies have examined the cardiogenic effects of
diabetic and nondiabetic blood glucose variations. In general, the
findings from these studies support the clinical consensus that
T2D causes heart disease10.

At least one previous MR study examined fasting glucose
variation (inclusive of diabetes) in ischemic stroke and found no
statistically robust evidence of effect11. However, a published MR
analysis that, like our study, harnessed genetic variants associated
with glucose but not diabetes12, also reported evidence of causal
associations with CAD. Another measure of glycemia, HbA1c,
which reflects average glucose levels over the preceding 3 months,
was shown in a recent study to be causally associated with car-
diovascular complications13. However, as shown here, these
results may not be independent of the effects of fasting glucose
in CVD.

MR is not without limitations. Canalization is a widely described
caveat of MR analyses; the phenomenon occurs when genetic
perturbations are offset by coexisting and compensatory mechan-
isms, effectively short-circuiting the exposure-outcome relationships
that MR analyses seek to assess4. There are no established methods
to detect canalization in MR analyses. Canalization could invalidate
MR findings by altering the effect of the genetic instrument on the
outcome of interest without affecting the association between gen-
otype and exposure of interest4. There are other established
methodological limitations of MR, such as horizontal pleiotropy
and population stratification, which were overcome in the current
analysis using established statistical solutions. A further important
consideration is that the exposures characterized in MR experi-
ments should be viewed as having lifelong effects, whereas the
timeframe for prediabetes exposure will be confined to a much
shorter duration. Thus, the estimated effect of prediabetes in CAD
derived from our MR analysis may be greater in magnitude than
one would observe in the real world. However, the results from our
observational meta-analysis are largely consistent with our MR
estimates.

A major limitation of observational studies is the potential that
participants progress to diabetes. Therefore, we went to great
lengths to identify and stratify those studies which excluded
individuals with diabetes in the analysis. Those which we deemed
having the most likelihood of enrolling diabetics (i.e., those
recruiting participants only with HbA1c or fasting glucose) were
further stratified into a specific subgroup for re-analysis; results
remained virtually unchanged (see Supplementary Material 2,
Table 1, subgroup analysis). By no means do we claim that the
observational evidence is definitive; on the contrary, this moti-
vated us to contest these observational data and explore causality
through the MR approach.

In conclusion, we report the synthesis of a very large body of
epidemiological evidence linking prediabetes with the life-
threatening complications caused by diabetes and validate these
findings using MR. We found that prediabetes is likely to be
causal in CAD, whereas it is not likely to cause kidney disease or
stroke. The major implication of this finding is that interventions
for the prevention of diabetes-related CAD may be more effective

Table 3 Causal association between fasting glucose (all GWA significant) and risk of T2D.

Method OR Lower 95% CI Upper 95% CI P value

Weighted median 1.55 1.23 1.94 1.67 × 10−4

IVW 2.26 1.37 3.74 1.43 × 10−3

Robust IVW 2.35 1.50 3.67 1.75 × 10−4

MR-Egger 0.46 0.19 1.12 0.09
InterceptMR-Egger 1.05 1.03 1.08 5.05 × 10−5

Robust MR-Egger 0.96 0.45 2.03 0.91
InterceptRobust MR-Egger 1.03 1.01 1.04 5.54 × 10−3

n= 74. Results are from two-sample Mendelian randomization analyses and P values are two-sided. Results are unadjusted for multiple comparisons. Source data are provided as Source Data file.
IVW inverse-variance weighted, OR odds ratio.

Table 4 MRPRESSO analysis of relationship between
prediabetes and outcomes with detected outliers.

Outcome MR analysis OR (95% CI) P value

Coronary artery
disease

Raw 1.27 (1.09, 1.47) 4.9 × 10−3

Outlier-corrected 1.24 (1.12, 1.38) 5.8 × 10−4

Any stroke Raw 0.92 (0.73, 1.17) 0.51
Outlier-corrected 0.90 (0.72, 1.11) 0.32

Any
ischemic stroke

Raw 0.95 (0.75, 1.22) 0.71
Outlier-corrected 0.90 (0.74, 1.09) 0.28

All P values are two-sided. “Raw” refers to original FG SNPs (n= 28). Source data are provided
as Source Data file.
OR odds ratio, CI confidence interval.
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if initiated prior to diabetes onset. This may also help explain why
CAD prevention in people with established diabetes has proven
extremely challenging14.

Methods
Observational data meta-analysis. We first performed a systematic literature
review of published epidemiological studies focusing on “prediabetes and diabetic
complications” and extracted summary statistics that we, thereafter, combined
through meta-analysis. We then tested the hypothesis that these observational
associations were of a causal nature using MR and compared effect estimates
derived from the observational meta-analysis and the MR analyses.

A combined medical subject headings term and text search strategy was
formulated restricted to “humans” and English language articles (Supplementary
Data 1 shows the search strategy in detail). A search of the electronic database
PubMed was carried out for all cohort studies published through November 30th,
2017, according to the following criteria: prediabetes defined by IGT, IFG per
WHO15 or ADA criteria, and glycated hemoglobin (HbA1c) per ADA criterion16.
Studies were included if participants were drawn from the general population,
glycaemia was measured at baseline, and the subsequent outcomes at follow-up
were CAD, CKD, or stroke, and were compared with the group of normoglycaemic
participants. Studies with individuals known to be diagnosed with diabetes or with
diabetic values at baseline or follow-up were excluded from the analysis. Figure 6
shows the study selection procedure.

Data extraction: two authors (H.P-.M. and P.M.M.) independently identified,
screened, and reviewed for eligibility the papers identified using the approach
defined above. We systematically abstracted data relating to: author(s), year

published, country or region, prediabetes definition, prevalence (%), sample size,
gender ratio of the study population (%), participants’ age, duration of follow-up,
glycaemic status at baseline, outcome definition and ascertainment, covariates and
approach used to control for confounding, risk estimates and 95% confidence
intervals, in a standard form (Supplementary Data 2 shows the studies’
characteristics). Discrepancies in study identification were adjudicated by a third
researcher (G.N.G.). Quality of the studies and bias assessment was determined
using the Newcastle–Ottawa scale15 (Supplementary Data 2). Reported findings by
subgroups (i.e., sex or ethnicity) were included separately by strata for statistical
analysis. Effect estimates (relative risk, hazard ratio, and odds ratio, converted to
RR) were logarithmically transformed and standard errors calculated16. A priori,
we assumed there would be heterogeneity across the cohorts given the differences
in population characteristics, follow-up duration, research methods, and outcome
definitions. Therefore, the DerSimonian and Laird random-effects model for meta-
analysis was used, which is considered more conservative than fixed-effect
models16. Heterogeneity between and within studies was explored through
subgroup analysis (Supplementary Data 2).

Publication bias was assessed using funnel plots and the Begg’s and Egger’s test.
Sensitivity analysis was carried out by omitting one study at a time. All statistical
meta-analyses were undertaken with the software Stata 13.0 (Stata Corp LP, College
Station, TX).

MR analyses. MR is a method that employs instrumental variables to assess the
causal association between a given exposure and an outcome4. For an instrument
to be valid, it must mediate its effect on the outcome only through the exposure
and not via other pathways. Further, it should only be associated with the exposure
and not be associated with cofounders of the exposure-outcome association17. To
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Fig. 5 Leave-one-out analysis plots of causal relationship between fasting glucose and CAD. Data are presented as odds (OR) ratio and 95% confidence
interval (95% CI) of the exposure-outcome relationship for each SNP. Center points represent the causal effect estimate and the horizontal bars represent
the respective 95% CI. Left panel represents data from all SNPs that passed QC (n= 28) while right panel represents SNPs retained after correcting for
outliers using MRPRESSO, n= 25 SNPs. Source data are provided as Source Data file.
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reduce potential bias due to population stratification, we restricted MR analyses to
participants of European descent.

We defined two sets of instruments that specifically characterized variations in
fasting glucose and HbA1c within the nondiabetic range. We achieved this by
selecting SNPs that are associated with fasting glucose and HbA1c at a genome-wide
level of statistical significance (P < 5 × 10−8) within the most recent MAGIC
database18,19, but which are not associated with type 1 or T2D (P > 0.05) in the most
recent release of the Diabetes Genetics Replication and Meta-analysis database20,21.
The sets of instruments derived from these variants were then examined within
GWAS databases for any respective “diabetic” complications. Specifically, we used
publicly available GWAS meta-analysis summary statistics from various consortia.
Fasting glucose (exposure) data were obtained from the Meta-Analyses of Glucose
and Insulin-related traits Consortium (MAGIC, n= 133,010 for fasting glucose)22.
The MAGIC GWAS meta-analysis includes 32 cohorts, which comprised participants
of European descent adjusted for age and sex. Fasting glucose was expressed in mmol
L−1 and was untransformed in the analyses18.

HbA1c (exposure) data were also obtained from the latest MAGIC transethnic
genome-wide association meta-analysis of genetic variants associated with HbA1c.
This meta-analysis included 159,940 participants from 82 cohorts of different
ancestries (European, South and East Asian, and African). Individuals of European
ancestry were the majority, about 120,962 across 55 cohorts. All participants were
diabetes free and studies reported HbA1c as percentage19.

CAD GWAS summary statistics were obtained from the latest cardiomics meta-
analysis data repository23. This data comprised of 34541 cases of CAD and 26,1984
controls from the UK Biobank and replication was done in 88,192 cases and
162,544 controls from Coronary Artery Disease (C4D) Genetics consortium
(CARDIoGRAMplusC4D)24,25.

Summary statistics for five phenotypes of stroke (AS, AIS, large artery stroke,
cardioembolic stroke, and small vessel stroke) were obtained from the most recent
MEGASTROKE consortium meta-analysis data repository26 in which the analysis
for European only ancestry consisted of 40,585 cases and 406,111 controls27.

Data on renal disease were obtained from the CKDGen GWAS summary data
repository28. GWAS meta-analysis for CKD (defined as eGRFcrea <60 ml per min
per 1.73 m2) was performed on a sample of 745,348 and replicated in a sample of
280,722 giving a combined sample size of more than one million29.

Selection of glucose-associated SNPs from MAGIC30, as outlined above,
resulted in 47 SNPs for fasting glucose and 10 for HbA1c that we considered
reflective of prediabetic glucose variation. To rule out linkage disequilibrium (LD)
between SNPs, we performed LD-clumping restricted to r2 < 0.2, a 1000 kb window
and retained SNPs with the lowest P value resulting in final sets of 28 uncorrelated
fasting glucose SNPs and 8 HbA1c SNPs. For each outcome, these genetic variants
were further validated for use in the final analysis. Specifically, the exposure-
outcome datasets were harmonized to ensure the same number of SNPs in
exposure and outcome sets, similar strand orientation, correct direction of effect
sizes, and correcting for palindromic SNPs31.

Statistical analysis. All MR analyses were conducted with the R statistical soft-
ware v3.6.1 using the MendelianRandomization32 and TwoSampleMR packages33.

We used the robust IVW method for the main analysis and the robust MR-
egger and weighted median methods for sensitivity analyses. IVW is a widely-
accepted approach for MR analyses, which involves regressing the effect sizes of the
SNP-outcome association on the SNP-exposure association with the inverse of the
variance used as weights. In robust regression, extreme values are penalized to
minimize bias.

MR-Egger is used to test for directional horizontal pleiotropy, a violation of the
instrumental variable assumption where the effect of the instrumental variable on
the outcome is mediated via another pathway other than the exposure of interest.
MR-Egger tests for violation of IV assumptions and bias in the inverse variance-
weighted (IVW) methods and includes the intercept as part of the regression
(unlike IVW, where the intercept is forced to zero)34. The resulting coefficient,
therefore, provides an asymptotically consistent estimate of the causal effect, even if
all variants are pleiotropic with the outcome35. This holds when the Instrument
Strength Independent of Direct Effect assumption is true, i.e., the instrument
strength is independent of its pleiotropic effect. When this criterion is met, MR-
Egger provides an unbiased assessment of the association between the exposure
and outcome, providing the intercept, which provides the average pleiotropic effect,
does not significantly differ from the null. When the intercept is significantly
different from the null, it represents an estimate of the directional horizontal
pleiotropic effect of the genetic variants35. The median-weighted method provides
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Fig. 6 Outline of study selection procedure. Source data are provided as Source Data file.
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a reliable estimate of the causal association between exposure and outcome when at
least half of the instrumental variables are valid36.

Sensitivity analyses and instrument validation. To rule out false positive asso-
ciations, we conducted sensitivity analyses to further test the veracity of our
instrumental variables. First, we tested the association between the prediabetes
instruments with T2D to demonstrate that our instruments represented pre-
diabetes only and rule out any pleiotropic relationship with T2D. Second, we tested
the association between all fasting glucose SNPs that reached GWA significance
(n= 74 after QC) and the risk of T2D, to cement the above facts. Further, we tested
if there was any causal relationship between fasting glucose and other cardiome-
tabolic risk factors i.e., BMI, cholesterol levels (total, LDL, and HDL), and trigly-
ceride levels. We also additionally used MRPRESSO to test for horizontal
pleiotropy and outliers6.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The GWAS summary statistics data analyzed here are available in the following public
repositories. CAD (Dataset: CAD_META.gz): https://data.mendeley.com/datasets/
gbbsrpx6bs/1#file-67c31537-5906-40bb-9820-8764b1554666 (https://doi.org/10.17632/
gbbsrpx6bs.1)23. CKD (Dataset: CKD overall European ancestry): http://ckdgen.imbi.
uni-freiburg.de/28. T2D (Dataset: T2D GWAS meta-analysis—Unadjusted for BMI20):
https://www.diagram-consortium.org/downloads.html21. Fasting glucose, 2-h glucose,
and HbA1c: https://www.magicinvestigators.org/downloads/22. The fasting and
2-h glucose datasets are filed under Metabochip replication datasets, and the
zipped file contains both datasets (ftp://ftp.sanger.ac.uk/pub/magic/
MAGIC_Metabochip_Public_data_release_25Jan.zip). The HbA1c dataset can be
retrieved at ftp://ftp.sanger.ac.uk/pub/magic/HbA1c_METAL_European.txt.gz. Stroke:
https://megastroke.org/download.html26. The dataset (MEGASTROKE_data.zip) is
accessible after agreeing to terms of use and submitting a brief project description. Lipids:
http://csg.sph.umich.edu/willer/public/lipids2013/37. The datasets are filed under
”RESULT FILES,” subheading “JOINT ANALYSIS OF METABOCHIP AND GWAS
DATA.” The names of the files are LDL Cholesterol, HDL Cholesterol, Triglycerides, and
Total Cholesterol. Body mass index: http://portals.broadinstitute.org/collaboration/giant/
index.php/GIANT_consortium_data_files38. The dataset is filed under “BMI and Height
GIANT and UK BioBank Meta-analysis Summary Statistics.” The name of the file is
“Meta-analysis Wood et al.+UKBiobank 2018 GZIP”. Source data are provided with
this paper.
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