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Abstract

Systematic, genome-wide RNA interference (RNAi) analysis is a powerful approach to identify gene functions that support or
modulate selected biological processes. An emerging challenge shared with some other genome-wide approaches is that
independent RNAi studies often show limited agreement in their lists of implicated genes. To better understand this, we
analyzed four genome-wide RNAi studies that identified host genes involved in influenza virus replication. These studies
collectively identified and validated the roles of 614 cell genes, but pair-wise overlap among the four gene lists was only 3%
to 15% (average 6.7%). However, a number of functional categories were overrepresented in multiple studies. The pair-wise
overlap of these enriched-category lists was high, ,19%, implying more agreement among studies than apparent at the
gene level. Probing this further, we found that the gene lists implicated by independent studies were highly connected in
interacting networks by independent functional measures such as protein-protein interactions, at rates significantly higher
than predicted by chance. We also developed a general, model-based approach to gauge the effects of false-positive and
false-negative factors and to estimate, from a limited number of studies, the total number of genes involved in a process.
For influenza virus replication, this novel statistical approach estimates the total number of cell genes involved to be
,2,800. This and multiple other aspects of our experimental and computational results imply that, when following good
quality control practices, the low overlap between studies is primarily due to false negatives rather than false-positive gene
identifications. These results and methods have implications for and applications to multiple forms of genome-wide
analysis.
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Introduction

RNA interference (RNAi) is a gene-specific silencing process

directed by short double stranded RNAs or small interfering

RNAs (siRNAs) that can ‘‘knock down’’ expression of a selected

gene by inducing messenger RNA (mRNA) degradation in a

sequence-specific manner [1]. RNAi has been widely used as a

molecular tool to selectively inhibit the expression of a chosen

gene. By expanding this technique to use large-scale RNAi

libraries, high-throughput RNAi analysis has become a powerful

approach to screen essentially all genes of an organism, to identify

gene functions that support or modulate any biological process of

interest.

Genome-wide RNAi analyses have been used to study many

important biological processes and have provided novel, key

insights. One important application of genome-wide RNAi

screening has been to identify host genes that are required for

the replication of a particular virus [2–4]. In several cases, two or

more independent RNAi screens have been performed to identify

host factors required by the same viruses [5–11]. An emerging

challenge shared with some other genome-wide approaches is that

such independent genome-wide RNAi studies often exhibit limited

overlap in the lists of genes implicated. For example, there is only

3–6% overlap of gene lists identified from three genome wide

RNAi studies for host factors of HIV [6,7,12,13].

Lack of overlap between studies must be due to some

combination of false-positive and false-negative factors. If the

dissimilarity between the sets of identified host factors is

predominantly from false-positive factors, the majority of the

genes identified from a genome wide RNAi study would be false
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positives. In this case, the number of genes involved in a biological

process such as virus infection would be low relative to the number

implicated. On the other hand, a high false-negative rate could

also induce low agreement, since in this case each study would

confirm just a small subset of involved genes, and many more

genes than one study could identify might be implicated in the

process.

A critical step to reduce false discoveries is good quality control,

which is essential due to the limited number of repeats possible for

genome-wide analyses, frequently high assay noise, the potential

for systematic errors, and other effects. Relevant quality control

practices include adequately designed positive and negative

controls, proper patterning of samples and controls on microtiter

assay plates, data display approaches suitable for revealing

systematic errors, etc. Nevertheless, even good quality control

cannot eliminate error, so that quality control is an essential but

not sufficient basis for effective RNAi analysis. Appropriate data

analysis, such as false discovery rate (FDR) controlling procedures,

should also help to minimize false discoveries [14]. However, the

FDR is controlled within each study, and is not designed to control

false-positive error rates caused by sources of variation between

studies. Moreover, an inherent problem for large-scale dataset

processing is that a strict cut-off to limit false-positive results

increases the number of false negative results, and vice versa [1].

Depending on the goal of a study, the tolerance for false positives

or false negatives might be adjusted accordingly to generate the

final results.

Of course, data analysis is not the sole source or solution for

false-positive and-negative results. Both technical and biological

sources also contribute to false discoveries and non-discoveries in

genome-wide RNAi studies. An siRNA may silence one or more

genes besides the targeted one [15], owing to incomplete

sensitivity and specificity of siRNAs [16–19]. Beyond these off-

target effects, another false-positive factor is measurement error

intrinsic to the complex phenotypic readouts typically used.

Similarly, many experimental issues contribute to false negatives.

For example, the organism under study may have genetic

redundancies that limit the accessibility of certain functions to

phenotypic manipulation by knocking down a single gene

[20,21]. Furthermore, genes with undetectable expression or

whose knock down results in cytotoxicity are usually excluded

from such RNAi analyses, further reducing the number of genes

that are accessed in such ‘‘genome-wide’’ studies [22]. Besides the

above issues, false negatives also can be generated by systematic

errors such as plate position effects [23], by failure to control for

variation in local cell environments [24,25], by inefficiencies in

knocking down targeted genes [26], and by other effects. For

these and other reasons noted above, use of well-chosen quality

control as well as analytic methods are critical for producing high

quality screening results [23,27].

To better understand RNAi screening and the relative

contributions of false positives and false negatives, we performed

a meta-analysis of four recent studies to identify host genes

involved in the replication of influenza virus, an important human

pathogen [8–11,28]. Despite differences in the RNAi libraries and

cell lines used, these studies, including one from our laboratory [9],

employed similar two-step approaches. All studies began with a

high-throughput primary screen with an RNAi library targeting

the whole genome. Candidate genes from this primary screen then

were re-tested for function in virus replication in repeated

secondary validation assays with individual siRNAs. Similar to

prior HIV results, the pair-wise overlaps among the confirmed

gene lists were only 3–15% (Figure 1).

Using a multi-faceted meta-analysis, we found that the

independent gene lists are strongly interlinked by functional

pathways and protein-protein interactions, and that their low

overlap is due primarily to false negative rather than false-positive

factors. First, there is substantially higher agreement between

studies from the perspective of functional categories rather than

gene lists. Second, the combined list of genes confirmed by all

studies embodies a much richer network of molecular interactions

than expected by chance. Thus, genes identified in independent

RNAi studies are physically as well as functionally connected.

Finally, we developed a new statistical model that incorporates the

main experimental features of RNAi screening and that, upon

fitting to the data via likelihood and Bayesian techniques, estimates

the major intrinsic parameters governing false positives and false

negatives. This model well duplicates the statistical patterns in the

multi-study gene level data, and indicates that low overlap arises

primarily from false negative factors. Thus, our bioinformatic and

statistical analyses show that current genome-wide RNAi screens

each reveal a highly useful but partial glimpse of a larger whole.

Methods

Data collection and preliminary analysis
Gene-level results from primary and secondary screens were

collected from four genome-wide RNAi screens to identify host

factors crucial for influenza virus replication [8–11]. All human

genes were mapped to Entrez IDs (NCBI, http://www.ncbi.nlm.

nih.gov/); human orthologs for Drosophila genes were extracted

from www.ensembl.org. Table S1 lists for each study the Entrez

IDs of all confirmed genes, followed by unconfirmed primary

candidates. Study-specific lists of confirmed genes were compared

using a mean overlap fraction (MOF). On average over all pairings

of lists, MOF is the mean value of the proportion of one list that

overlaps with another.

Gene-set analysis
Gene-set analysis was performed using confirmed genes from

each of the four studies and functional-category information from

Author Summary

Genome-wide RNA interference assays of gene functions
offer the potential for systematic, global analysis of
biological processes. A pressing challenge is to develop
meta-analysis methods that effectively combine informa-
tion from multiple studies. One puzzle is that implicated
gene lists from independent studies of the same process
often show relatively low overlap. This disagreement
might arise from false-positive factors, such as imperfect
gene targeting (off-target effects), or from false negatives
if separate studies access different components of large,
complex systems. We present new methods to examine
the relations between individual genome-wide RNAi
studies, using studies of host genes in influenza virus
replication as a test case. We find that cross-study
agreement is greater than suggested by overlap of
reported gene lists. This better agreement is evidenced
by the strong relation of independent gene lists in
functional pathways and protein interaction networks,
and by a statistical model that relates multi-study, gene-
level findings to factors driving correct, false-negative, and
false-positive gene identification. Our analysis of multiple
genome-wide studies predicts that there are many
undetected host genes important for influenza virus
infection, and that false negatives are the major concerns
for genome-wide studies.

Meta-Analysis of Genome-Wide RNAi Studies
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the Gene Ontology (GO) project, as accessed using the R and

Bioconductor systems (www.bioconductor.org). We applied the

recently-developed multi-function analyzer (MFA) [29,30] to

process each gene list (four study-specific gene lists and one

combined list). Briefly, MFA provides a model-based analysis of a

gene list. A gene’s presence on the list is explained by latent binary

activities of GO terms which annotate it; through model-based

computations MFA determines the posterior activity probabilities

over all terms in the collection. It refines model-based gene set

analysis (MGSA) [31] by encoding natural constraints on the

function-level activities in order to improve statistical efficiency.

Like MGSA, MFA addresses deficiencies of simpler gene-set

methods (e.g., in handling set overlaps) by the simultaneous

analysis of all sets in a collection. Gene-permutation was used to

calibrate the between-study agreement of MFA-derived set lists.

Specifically, data were organized in an incidence matrix with rows

for genes and columns for studies, and containing indicators of

confirmation. Permutation proceeded by shuffling row labels (gene

IDs) and retaining the numbers of genes co-confirmed in two,

three, and four studies, and expressed the null assumption of no

functional association between studies. We computed Monte

Carlo p-values using the MFA results from the observed data and

from 999 permuted versions. Computations used GO.db version

2.8.0; and org.Hs.eg.db version 2.8.0 (September, 2012). In total

2472 GO terms were used; these are all terms that have non-

empty intersection with the combined list of influenza-related

genes and that are moderate in size (between 5 and 50 human

genes). The size constraint improved computational efficiency

without much loss in functional information.

Network analysis
Analysis of molecular interactions among the confirmed genes

was performed in order to further assess the relatedness of the

genes, both within studies and across studies. We assembled

interaction graphs; these are data structures in which the vertices

correspond to genes and the edges correspond to protein-protein

interactions. The set of interactions used consisted of 47,647

human, protein-protein interactions from the BioGRID database

[9].

A connected component is a maximal subgraph in which any two

genes in the subgraph are connected by one or more paths. To

assess the extent of inter-relatedness within a list of confirmed

genes, we considered several properties of the subgraph that results

from selecting only the confirmed genes and their impinging

interactions. First, we measured the number of edges in the

resulting connected components and the size (in terms of genes) of

the largest connected component. Second, we measured the average

degree of the vertices in the confirmed-gene subgraph. The degree

of a vertex in a graph is the number of other vertices to which it

has edges. Thus we measured, on average, the number of other

confirmed genes with which each confirmed gene has known

interactions.

Figure 1. Distribution across four RNAi studies of genes implicated in influenza virus replication. A) Distribution of genes confirmed by
the four RNAi studies designated as DL1, U2OS, A549US and A549DE searching for host factors of influenza virus. The bars show the counts of genes
confirmed in any 1, 2, 3 or 4 studies (indicated by + in table below the graph). Note that most genes were only confirmed in one study. B) Pairwise
overlap of confirmed genes in the four RNAi studies. The table shows the number of genes confirmed by each study (main diagonal) and the pairwise
overlap between any two indicated studies (flanking cells), as both the absolute number of genes and as a percentage (in parentheses) of the total
genes confirmed in the study of the relevant column. Fisher exact p-values are less than 10‘(210) for all pair-wise comparisons.
doi:10.1371/journal.pcbi.1003235.g001

Meta-Analysis of Genome-Wide RNAi Studies
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To determine if any of these measures is surprisingly large, we

employed a Monte Carlo test in which the null hypothesis is that

the measure can be accounted for by a randomly selected set of

pseudo ‘‘confirmed’’ lists. Given a set of n actual confirmed genes,

this test involved repeated random selection of gene sets of size n.

We selected these random gene sets such that the degree of

connectivity of the selected genes, with respect to the entire

interaction graph, was the same as the degree of connectivity of

the given list of confirmed genes. That is, if there are three genes in

the confirmed list that each has eight known interactions with

other genes in the genome, then our randomly selected gene sets

would also include exactly three genes with eight interactions each.

Note that the degree of connectivity we consider when doing this

selection process refers to the connectivity of a given gene to all

genes in the genome, as opposed to its connectivity to other

confirmed genes. For the results reported here, our Monte Carlo

p-values involved 9,999 iterations.

To determine if there were more relationships between pairs of

genes confirmed in different studies than would be expected by

chance, we pooled the confirmed genes from the four independent

studies and determined the connected components that resulted

from this set of pooled genes. As before, we counted the number of

edges in connected components, determined the size of the largest

connected component, determined the average degree for

confirmed genes, and assessed the statistical significance of each

measure using a Monte Carlo methodology. Additionally, to assess

the extent to which the genes confirmed in separate studies were

related, we counted the number of spanning edges in the connected

components. A spanning edge is one that represents an interaction

between two genes that were confirmed in different studies. We

used a Monte Carlo test to measure the statistical significance of

the number of spanning edges we observed. Each iteration of the

Monte Carlo test involved randomly selecting, for each study in

the pool, a set of pseudo ‘‘confirmed’’ genes which have the same

degree of connectivity as the actual confirmed genes in that study.

Given these randomly chosen sets, we counted the number of

spanning edges in each as we did with the actual data. Again, our

Monte Carlo p-values used 9,999 iterations.

Model-based statistical analysis
To provide reasoned inferences about factors affecting among-

study gene-level agreement, we developed a statistical model for

genome-wide RNAi studies and corresponding likelihood-based

analysis methods. The model formulates relationships among:

system-level parameters that affect sensitivity and various error

rates, gene-level and study-level latent variables that transduce

information about the system to information at the gene-level, and

gene-level, multi-study data on both detection and confirmation by

RNAi screening. In its generative form, the model specifies the

probability of observing any particular multi-study data set. In its

inferential form, it indicates the likelihood assigned to any

particular parameter setting in light of observed data [32].

Multinomial backbone. For each study s in the set of four

studies, and each gene g in the human genome, we introduce Dg,s

to indicate whether or not (1 or 0) gene g was detected in the

primary screen of study s, and similarly Cg,s to indicate whether or

not g was confirmed in the corresponding secondary screen. Multi-

study genome-wide data are thereby reduced to a tabular form, in

which we count the number Np of genes having pattern p in

detection/confirmation across the four studies (see table with

multi-study data in count format below). For example, exactly

Np~4 genes were detected and confirmed in study DL1, detected

but not confirmed in U2OS, and not detected in the other two

studies. Overall, there are 81 possible multi-study detection and

confirmation patterns across the four studies, as summarized

below in a table with the associated counts for each pattern. In our

model, the data vector Npf g is considered to have a multinomial

distribution in which pattern probabilities Ppf g are determined by

parameters governing the system, as induced through the

following probability model.

Involvement. Whether or not a gene g is truly involved in

influenza-virus replication is unknown a priori, and this fact is

expressed by the latent binary variable Ig. In some cell type, an

error-free measurement of a true knockdown, in the absence of off-

target effects, would show a phenotype if and only if Ig~1. The

parameter h~P Ig~1
� �

is the genome-wide rate (i.e., probability)

of true involvement. Fixing the genome size at G, the number of

truly involved genes is N~
PG

g~1 Ig, which has expected value

Gh. The distribution of gene-level data depends on Ig through

additional factors expressing sources of variation that affect

knockdown and phenotype, as discussed in the following sections.

Accessibility. A variety of factors could block either the

knockdown of a gene or the phenotype of a knocked-down gene.

The gene may not be expressed in the particular cell line used, the

RNAi library used may lack siRNAs for that gene, the relevant

siRNA may induce cytotoxicity, or by functional redundancy,

other gene products in these cells might abrogate the requirement

that the target gene be expressed. We introduce latent, binary

accessibility variables Ag,s to accommodate this general effect, where

Ag,s~1 means that gene g was accessible in study s, and hence, if

involved and fully knocked down, would show a phenotypic effect.

In the absence of more specific knowledge we treat the Ag,s’s as

independent Bernoulli-distributed variables. Analysis supports

allowing the accessibility rate cs~P Ag,s~1
� �

to vary among

studies, and we allow this flexibility to better accommodate study-

study heterogeneity.

Off targets. The pool of siRNAs that target gene g in study s
may not be fully specific, and thus may inadvertently knock down

some number Tg,s of influenza-involved off targets. These off

targets are a subset of the involved off-targets associated with all

siRNAs used for gene g across all studies, not accounting for

inaccessible genes in any given study. By modeling Tg,s as a subset

of a total, Tg, we allow potential dependencies between studies

attributable to use of the same siRNA in different studies. The

number Tg counts involved off-targets from all siRNAs for a given

gene: we consider it to have mean value Khn, where K measures

the (average) number of distinct siRNAs used per gene across all

four studies, h is the involvement rate, and n is the mean number

of off-targets per siRNA. Experimental data indicates that rates of

phenotypic response increase with Tg, but there remain little data

on the distribution of Tg beyond computational predictions based

on sequence homology [33]. From first principles, we treat Tg as

Poisson distributed, though we investigate over-dispersed alterna-

tives in model diagnostics. In study s, four (typically) siRNAs are

used and these carry a subset of Tg,s involved and accessible off-

targets, having a Binomial distribution on t trials with success

probability 4cs=K given that Tg~t. (An involved off-target that is

not accessible in a given study cannot affect the phenotype in that

study, even though it could do so in some other cells, for example.)

Dependence structure. Latent factors Ig, Ag,s and Tg,s

affect the distribution of observable detections Dg,s and confirma-

tions Cg,s. The directed acyclic graph in Figure 2 expresses the

proposed model’s dependence structure. For example, the

probability that a gene is detected in a given study depends on

whether it is truly involved in influenza virus replication, whether

it is accessible in the cells used, and the number of involved and

accessible off-targets (3 arrows impinging on Dg,s.) For conve-

Meta-Analysis of Genome-Wide RNAi Studies
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Figure 2. Plate diagram for statistical model. A) Illustrated are the conditional independence relationships of observable, reported data and
latent variables in the statistical model of multiple, genome-wide RNAi studies. The white planes represent variation over studies s = 1, 2, 3, …, with
each plane representing a different study. The blue planes represent variation over genes g = 1, 2, 3, …, with each plane representing a different
gene. The observables for each study are Dg,s and Cg,s , which respectively indicate whether in study s, gene g was detected in primary screening or
confirmed in validation testing. The arrows indicate that the model treats Dg,s and Cg,s as dependent on the latent values of gene-specific variables Ig

and Tg , and gene- and study-specific variables Ag,s and Tg,s. Ig denotes whether gene g is functionally involved in influenza virus replication. Ag,s

specifies the accessibility of gene g in study s, i.e., the probability that, if gene g were involved in influenza virus replication, knocking down gene g
would produce a scorable phenotype. Tg,s represents the number of influenza virus-involved, off-target genes that are inhibited by the siRNA(s)
targeted in that study against gene g. Tg,s comprises a subset of Tg , the number of influenza virus-involved off-target genes associated with all

Meta-Analysis of Genome-Wide RNAi Studies
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nience, we assume that Cg,s exists independently of detection, and

is latent unless Dg,s~1. We derive results from one particular

model specification, described below, and test how sensitive our

conclusions are to changes in aspects of this specification.

Knockdown. With respect to relating phenotypic effects to

siRNA action, our model is as simple as possible while allowing

three basic features. First, the larger the number of either on-target

or off-target events for an siRNA or siRNA pool, the higher the

probability of a phenotypic effect. Second, if there are multiple off-

target events from a pool of siRNAs, then distinct off-targeted

genes are affected. Third, we suppose that multiple on-target hits

(i.e., from multiple siRNAs targeting the same gene) deliver a

higher probability of phenotypic effect than do the same number

of off-target hits dispersed to various genes. A mathematical device

to achieve this structure imagines that every targeting or off-

targeting event (i.e. every potential knock down of an involved

gene) is associated with a uniform (0,1) random variable

representing the fraction of mRNA remaining after knock down

by that event. An error-free measurement then would show a

phenotypic effect if any of the involved, accessible genes had

mRNA levels reduced below a threshold, parameterized by v in

(0,1). By assumption, off-target effects work in parallel on different

genes. If Tg,s~t, the probability that any of the off-targeted genes

has mRNA knocked down below v is 1{(1{v)t. The

assumptions similarly form the on-target model as a series circuit:

the probability that the targeted mRNA is knocked down below v
after hits from a pool of, say four, siRNAs becomes

1{G4 {log(v)½ �, where G4 is the cumulative distribution function

of a gamma distribution with shape 4 (Text S1).

Measurement error. Our meta-analysis analyzes summary

gene-level data from four two-stage genome-wide studies. Whether

or not a gene is detected or confirmed in any study depends on

details of the quantitative assays used to assess the phenotypic

effect, as well as on all the intrinsic factors indicated above. These

assays are subject to various sources of measurement error that

may create both false-negative and false-positive recordings. We

allow both types, and have found improved model fits by allowing

the false negative rate to be study specific. Parameters are a for

type I (false positives) and bsf g for type II (false negatives).

Detection model. Figure 3A presents a probability model for

detection Dg,s conditional upon accessibility, involvement, and off-

target count. Each edge in the circuit has a probability, and the

fate of cells considered prior to experimentation (left) is a path

through the circuit to some end state (right). For example, a

phenotypic effect (scored as 1) is possible if either (1) there is a

successful knockdown of some involved gene (either on or off

target) and there is no (type II) measurement error, or (2) there is

neither on- nor off-target knockdown and there is a (type I)

measurement error. Probabilities, which are assembled by

multiplying along paths in this circuit, take a concise final form:

P Dg,s~1 Ig~i,Ag,s~a,Tg,s~t
��� �

~1{bsz azbs{1ð Þ

G4 {log vð Þ½ �ai
1{vð Þt

The model allows heterogeneity across genes and studies.

Targeted genes that are involved (i~1) need to be accessible

(a~1), otherwise they are detected at the lower rate of

non-involved genes. The constant 4 enters here because we have

modeled a typical study that targets a gene by pooling four

different siRNAs (with each additional siRNA improving the

detection rate).

Confirmation model. We model secondary screen confir-

mations Cg,s similarly to detections, but we consider a typical study

in which the four individual siRNAs that had been pooled in the

primary screen were applied separately in four assays. Confirma-

tion on assay k is indicated by Cg,s,k, and we have Cg,s~1 if and

only if Cg,s,1zCg,s,2zCg,s,3zCg,s,4§2; that is, if at least two of

the single siRNA assays also yielded a positive phenotype (exactly

as in study U2OS). Figure 3B breaks down contributions to the

conditional distribution of Cg,s,k; in summary, the conditional

confirmation rate is:

P Cg,s,k~1 Ig~i,Ag,s~a,Tg,s~t
��� �

~1{bsz azbs{1ð Þ

1{vð Þai
1{v=4ð Þt

The knock-down formula is different from detections because

each separate assay uses a single siRNA. See Supplementary Text

S1 for further discussion. In summary, the probability distributions

adopted to model the joint distribution of all the data and latent

variables are recorded in Figure 2B.

Likelihood-based inference. The multinomial log-likeli-

hood function is
P

p Np log Pp, and the stated assumptions

allowed us to compute pattern probabilities Pp for all 81 multi-

study data patterns p in terms of the involvement rate h, the

accessibility rates csf g, the off-target rate n, the knockdown

threshold v, and the error rates a and bsf g. Somewhat

surprisingly, the suite of latent variables (relating to involvement,

accessibility, and off-targets) can be marginalized analytically (i.e.,

their effects summed out of the likelihood function). The resulting

pattern probabilities Pp are readily computable although they are

cumbersome to develop and display (see Supplementary Text S1).

Numerical optimization routines (especially nlminb in R) enabled

model fitting and the computation of maximum likelihood

parameter estimates. Markov chain Monte Carlo (MCMC) was

developed to sample from the posterior distribution of all

parameters under a flat prior, in order to infer likely ranges for

the underlying values. Results from both approaches were similar,

and since the MCMC output more readily yields confidence

statements, we focus on results from that computation. See

Supplementary Text S2 for further details.

Results

Four genome wide RNAi screens identified 614 host
genes important for influenza virus replication

Four nearly genome wide RNAi studies have been published to

identify host genes that affect influenza virus replication (summa-

rized in Table 1 and 2). These four studies differed in the cell lines

and RNAi libraries used, but each invoked a two-stage screening

strategy in which candidate genes detected in a primary, genome-

wide screen (Table 1) were subjected to more thorough testing in a

second, validation phase (Table 2). In such validation testing, the

candidate genes were knocked down using an alternate dsRNA or

siRNAs used for gene g across all studies. B) Assumed distributions of the variables in the statistical model. Ig is 1 when gene g is involved in influenza
virus replication, and 0 otherwise. Ag,s is 1 when gene g is accessible in study s. Tg is the number of involved off-targets for gene g, relative to a pool
of siRNAs that might be used to target gene g. Tg,s is the size of the accessible subset of Tg . Vg,s,k is the size of the accessible subset of Tg,s in assay k
of the secondary screening in study s.
doi:10.1371/journal.pcbi.1003235.g002
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Figure 3. Circuit diagram representing the probability of various outcomes in two-stage RNAi screening. A) Detection Screen: The
diagram expresses ways in which treated cells (left) can progress through the experiment to a scored detection Dg,s, conditional upon the state of
latent variables (accessibility Ag,s, involvement Ig, and off target count Tg,s). In the case shown, cells are treated with a pool of 4 siRNAs against a single
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multiple single siRNAs to confirm that the effects on influenza

virus were not due to off-target effects on unintended genes.

The majority of genes detected and confirmed in these four

genome-wide screens are genes that promote influenza virus

replication, i.e., knock-down of these genes by RNAi decreased

virus replication (Table 2). Two screens using human A549 cells

identified, respectively, 219 and 168 genes that promoted

influenza virus replication, without reporting any host genes that

restrict influenza virus - i.e., genes whose knockdown increased

viral replication. One screen in human U2OS cells found 129

genes that promoted influenza virus replication, and 4 genes that

restricted replication. A screen in Drosophila DL1 cells identified

104 genes that promoted virus replication and 11 genes that

restricted virus replication. Of the 104 Drosophila genes that

promoted influenza virus replication, 96 have a total of 154

human homologs according to the Ensembl database, while 10 out

of the 11 Drosophila genes that restrict influenza virus have 14

human homologs. As these studies identified very few genes that

restricted virus replication when knocked down, our analysis

focused on the genes that promoted virus replication. From 984

unique human genes identified in the primary screens of these four

studies, 614 unique genes were confirmed that promoted influenza

gene g. The top branch involves a phenotypically effective knockdown event that blocks influenza virus infection, due to an on-target effect (upper
sub-branch) or off-target event (lower sub-branch) or both. The alternate bottom branch involves the absence of siRNA-mediated interference with
influenza virus replication. In either case, as shown, negative measurement error (type II) or positive measurement error (type I) could affect the final
scored phenotype. Depending on these combined effects, the gene g in influenza virus replication is scored as detected (1) or not detected (0).
Shaded boxes record the probability of the indicated event, where variables a and i are both either 0 or 1, and count t is a natural number.
Accordingly, phenotype probabilities are computed by adding probabilities over all paths from the left to the specific outcome, where a path
probability is computed by multiplying over the traversed events. The open box at the bottom provides a concise summary form for the conditional
detection probability. B) Schematic similar to (A) regarding the possible outcomes and associated probabilities for secondary confirmation testing of
a given gene g implicated by detection screening in study s. Cells are treated in four separate assays with each of the four distinct siRNAs targeting
gene g, and can then traverse one of the two main indicated outcome branches, similar to panel (A). As noted, confirmation requires a positive result
with at least two of the individual siRNAs against gene g.
doi:10.1371/journal.pcbi.1003235.g003

Table 1. Summary of primary screens.

Screens DL1 U2OS A549DE A549US

Reference Hao et al (2008) Brass et al (2009) Karlas et al (2010) Konig et al (2010)

Cell line Drosophila cell line Human osteosarcoma
cell line

Human lung adenocarcinoma
epithelial cell line

Human lung adenocarcinoma
epithelial cell line

Library Ambion Dharmacon siARRAY
siRNA library

Qiagen Hu_genome 1.0 and
Human druggable genome
siRNA set V2.0

Qiagen whole genome library,
Invitrogen kinome library, and IDT
kinome library

siRNA 13071 Drosophila genes with 1
dsRNA against 1 gene

17,877 human genes with
4 siRNAs against each gene

22,843 human genes with 4
siRNAs against each druggable
gene, and 2 siRNAs against
each predicted gene.

19,628 human genes with 6 siRNAs
against each gene

pooled siRNA NA Each well with 4 siRNAs Each well with 1 siRNA 47560 wells with 2 siRNA, 3617 wells
with 1 siRNA

Assay RNAi 48 hours, infect with WSN
based reporter containing FVG-R,
24 hpi, assay for luciferase

siRNA 72 hours, infect
with PR8, 12 hpi, stain
for HA,

siRNA 48 hours, infect with
WSN, 24 hpi, stain for NP,
supernatant infect 293T
reporter, 16 hpi, assay for
luciferase

siRNA 48 hours, infect with reporter
containing WSN-Ren, 12, 24, 36 hpi,
assay for luciferase

Steps in influenza
virus life cycle
involved

Uncoating, vRNP trafficking
and nuclear import/export,
genome transcription/replication,
viral mRNA translation and
protein trafficking

Binding, entry and fusion,
uncoating, vRNP trafficking
and nuclear import/export,
genome transcription/
replication, viral mRNA
translation and protein
trafficking

Binding, entry and fusion,
uncoating, vRNP trafficking
and nuclear import/export,
genome transcription/
replication, viral mRNA
translation and protein
trafficking, virion assembly
and release

Binding, entry and fusion, uncoating,
vRNP trafficking and nuclear import/
export, genome transcription/
replication, viral mRNA translation
and protein trafficking

Repeats 2 3 3 2

Primary hits 176 Drosophila genes of
which 143 correspond to
237 human orthologs

312 287 294

data
normalization
method

plate mean plate mean B-score* [48] plate median

hit calling Z score #22.5 ,55% of plate mean RSA** hits with robust z-score& ,22 RSA**, p,0.4

*B-score: Like Z-scores, B scores normalize the raw data by assay variability, but also adjust the raw values for positional effects within a plate and for possible assay drift
across plates within a run [48].
**RSA: Redundant siRNA activity analysis, which ranks each gene by combined analysis of the data from all siRNAs targeting that gene [49].
&Robust z-score is calculated by substituting median and median absolute deviation for mean and standard deviation in the z-score calculation [50].
doi:10.1371/journal.pcbi.1003235.t001
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virus replication. The symbols and Entrez ID numbers of all 984

genes are listed in Supplemental Table S1, with unconfirmed

genes at the bottom of the table in shaded rows. Thus, on average,

each such study detects approximately 1% of the genes in the

genome as potentially involved in the influenza virus replication,

and confirms approximately half of these candidate genes.

Studies agree substantially more at the level of functional
categories than genes

Although all four studies aimed to perform a general

identification of host genes affecting influenza virus replication,

their gene lists exhibited relatively little overlap. Only one gene

(COPG, or coatomer protein complex, subunit gamma) was detected and

confirmed by all four studies; nine genes were confirmed by three

of four studies, and 35 by two studies (Figure 1A). Pairwise overlap

between studies ranged from 3% to 15%, with a mean pairwise

overlap of 6.7% (Figure 1B).

To complement comparisons at the gene level, we examined the

relationship of the four confirmed-gene lists at the level of

functional categories recorded by the Gene Ontology (GO)

project. Within-study lists of over-represented GO terms exhibited

relatively strong agreement (Figure 4), with a mean overlap

fraction of 19% (compared to 6.7% for gene lists). This agreement

is substantially more than would be expected in the absence of

functional associations between the studies (Monte Carlo p-

value = 0.001). The finding is based on an advanced gene-set

analysis tool which accommodates term-size and term-overlap

issues (MFA; see Methods); the same conclusion was found with

simpler gene-set enrichment methods of GO-term lists suggests

that the four studies were probing common functional signals in

influenza virus dependence on host genes.

The functional categories over-represented in the combined list

of 614 confirmed genes from all four studies represent a wide

variety of functions. The top 29 categories are illustrated in

Figure 5, including with categories associated with mRNA

translation (ribosomal small subunit, eIF3 initiation complex,

ribosome binding), vesicular transport (Golgi to ER, vacuolar

ATPse) RNA metabolism (RNA splicing, transport, poly(A)

regulation), regulated protein degradation (proteasome, ubiquiti-

nation factors), and other functions. Cellular functions like

regulation of type I interferon production and nucleo-cytoplasmic

transport are known to play important roles in influenza virus

replication, while other functions like NADP binding and vitamin

Table 2. Summary of confirmation screens.

Screen designation DL1 U2OS A549DE A549US

Primary hits tested
in confirmation
screening

176 Drosophila genes, of
which 143 correspond to
237 known human orthologs

312 287 294

siRNA coverage 1 new dsRNA against
each gene

4 individual siRNAs
per gene

4 individual siRNAs
per gene

At least 2 different siRNAs per
gene

Confirmation assay Rescreen as in the primary
screen

Rescreen as in the
primary screen

siRNA 48 hours, infect with
WSN or Hamberg at moi
0.001, 48 hpi assay for titre

siRNA 48 hours, infect with WSN
at moi 0.01, 36 hpi HA assay for
titre

Confirmed by $2 siRNA 104 confirmed Drosophila
genes, of which 96 correspond
to 154 human orthologs

129 168 219

Only 1 siRNA confirmed Not applicable 121 No data provided 59

doi:10.1371/journal.pcbi.1003235.t002

Figure 4. Studies agree substantially at the level of functional categories. When each study’s confirmed gene list is processed for enriched
functional categories from GO (Gene Ontology), substantially more categories are identified in multiple studies than one would expect by chance,
suggesting a positive association in functional signals underlying the study-specific gene lists. Shown is the distribution of an agreement statistic
(mean overlap fraction) generated by gene-permutation, where the multi-functional analyzer (MFA) approach is applied to every gene list to produce
a list of over-represented GO terms. The actual agreement between studies (red) is strikingly higher than expected by chance (blue) and also much
higher than the 6.7% gene-list agreement (purple).
doi:10.1371/journal.pcbi.1003235.g004
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transporter activities are novel findings identified through our

analysis. Figure 5 also shows that, for many categories, two or

more studies isolated distinct sets of genes in the same functional

category, so that the same cellular functions were independently

but repeatedly identified to promote influenza virus replication.

Confirmed genes exhibit more physical interactions than
expected by chance, both within and between studies

As noted above, if many of the genes confirmed in the genome-

wide influenza screens were false positives, then we would expect

these genes to be distributed across unrelated pathways and

functional complexes. That is, we would expect relatively few

direct interactions among the genes confirmed in one study or in

different studies. Given the confirmed genes from the four

influenza screens, we used known physical interactions among

the genes’ products, as cataloged in the BioGRID protein-protein

interaction database [9], to test two specific hypotheses: First, that

the genes confirmed within each individual study are more inter-

related by protein interactions than would be expected by chance.

Second, that there are more such relationships between genes

confirmed in different studies than would be expected by chance.

To assess the relatedness of a set of confirmed genes, we first

determined the number of connected components in the

interaction subgraph consisting of the proteins encoded by the

confirmed genes. We considered two properties of these connected

components: the number of edges in the connected components

and the number of genes in the largest connected component. We

further measure relatedness by determining the average degree for

vertices in the subgraph of confirmed genes. We also investigated

augmenting our interaction data with metabolic-pathway and

transcription-factor relationships, and found that the results of our

analysis were qualitatively similar when we include these

additional interaction sets.

To test our first hypothesis, we independently measured the

above mentioned properties for the four interaction subgraphs

Figure 5. Dominant Gene Ontology terms identified in analysis of combined gene list. The multi-functional analyzer (MFA) applied to the
combined list of 614 influenza-involved genes produced 91 GO terms in the maximum a posteriori (MAP) estimate of activated terms. The dominant
terms are shown here, with color bars to indicate the study responsible for identifying the gene. The MFA-identified category having highest overlap
with the 614-gene list is GO:0022627 (top row), the overlap being 18 genes (horizontal axis). These genes and this category are removed from the
system, and then the category having the highest overlap with the remainder is identified (GO:0005852), and so on until the overlap is less than four
genes. Shading in the sub-diagonal indicates genes also annotated to previously named categories.
doi:10.1371/journal.pcbi.1003235.g005
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constructed using the confirmed genes from each individual study.

To determine if any of the measures was surprisingly large, we

employed a Monte Carlo test with the null hypothesis that these

measures could be accounted for by a randomly selected set of

pseudo ‘‘confirmed’’ genes. Given a list of n actual confirmed

genes, our Monte Carlo test involved repeated random selection of

gene sets of size n. We selected these random gene sets such that

the degree of connectivity of the selected genes, with respect to the

entire interaction graph, was the same as the degree of

connectivity of the given list of confirmed genes. The rationale

for controlling the degree of connectivity in our Monte Carlo tests

is that we want to rule out the possibility that a confirmed list has a

high degree of connectivity with other confirmed genes simply

because its genes have many known interactions.

Figure 6A illustrates the two connected-component measures

and the average degree measure, and shows the counts and p-

values calculated using the graphs for each individual study. For

three of the four studies, the number of interactions in connected

components and the average degree exceeded those of the null

hypothesis by a statistically significant margin (p,0.05), and for

two of the studies, the number of confirmed genes in the largest

connected component is statistically significant. These results

generally support our first hypothesis that the confirmed genes

have a higher degree of relatedness than expected by chance.

To test our second hypothesis, we pooled the confirmed genes

from the four independent studies and determined the connected

components and the average degree in the interaction subgraph

for this set of pooled genes. Figure 6A (bottom row) shows the

resulting number of edges in the connected components, the size of

the largest connected component, and the average degree for

vertices in the pooled subgraph. The number of protein

interactions in the pooled study subgraph (214) is much larger

than the sum of interactions in the individual-study graphs (121),

and was highly statistically significant at p,0.0001. The average

degree of proteins in the pooled subgraph is larger than the

average degree of any of the single-study subgraphs, and this

degree was highly statistically significant (p,0.0001). Thus, these

results strongly support our second hypothesis that there are more

interactions between pairs of genes confirmed in different studies

than expected by chance. Likewise, the size of the largest

connected component in the pooled graph (108 genes) is much

larger than the sum of the largest connected components in the

individual-study graphs (34 genes) and was statistically significant

at p,0.05. Figure 7 illustrates the 108-gene largest connected

component from the pooled-study graph. As this figure indicates,

the genes confirmed by each individual study tend not to be

topologically clustered, but instead generally have interactions

with genes confirmed by other studies.

To further probe our second hypothesis, we counted the number

of spanning edges in the connected components of the pooled-study

graph. A spanning edge is one that represents an interaction

between two genes that were confirmed in different studies

(Figure 6B). As before, we measured the statistical significance of

the observed number of spanning edges by iterative Monte Carlo

tests that involved randomly selecting, for each study in the pool, a

set of pseudo ‘‘confirmed’’ genes with the same degree of

connectivity as the actual confirmed genes in that study. The

results show that, of the 214 total protein-protein interactions of the

pooled study subgraph (Figure 6A), 175 (82%) were spanning

interactions between gene products confirmed in different studies

(Figure 6B). This result was statistically significant at p,0.05.

We also considered the possibility that our measures of

interactivity might be inflated by the fact that some of the genes

confirmed in the DL1 study mapped to multiple human orthologs.

To control for this effect, we repeated all of our analyses using a

smaller set of DL1 genes in which each of the 96 confirmed

Drosophila genes was mapped to exactly one human gene. In

particular, we mapped each Drosophila gene to the human ortholog

with the fewest known interactors. The differences in p-values

between the original analysis and this ‘‘conservative ortholog

mapping’’ re-analysis were all small. Specifically, none of the p-

values changed from statistically significant (p,0.05) to not

significant.

Overall, then, the results show that the independent RNAi

studies identified distinct but physically interacting sets of genes,

and that these confirmed gene products exhibit significantly more

interactions both within and between studies than expected by

chance.

Statistical modeling of genome-wide RNAi studies
Multiple independent analyses above show that the outputs of

the four separate screens are not randomly divergent, but are

highly interlinked both physically and functionally. To more

thoroughly examine the biological and experimental factors that

affect agreement among such screens, we generated a statistical

model of RNAi screening that incorporates known biological and

experimental features to better analyze and understand the

expected relationships between the outputs of independent

screens. The assessment of agreements and disagreements among

studies has long been a focus of model-based statistical analysis,

from seminal work by R.A. Fisher and colleagues on species

abundance estimation in ecology [34], through more recent and

relevant precursors [35–37] to our own calculations. The rationale

for this general approach is that the specific findings of any study

are affected by numerous factors, some of which are systematic

and shared in some predictable way among studies, and some of

which are idiosyncratic.

To capture the systematic effects we treat them as parameters in

a stochastic process presumed to have generated the observed

data, and we infer the parameter values by calculating the

probability of observed data (the likelihood). The structure of

RNAi experiments forces us to go beyond previously described

probability models and propose a specification for multi-study,

two-stage (detection/confirmation), genome-wide RNAi data. As

described more fully in the Methods and Text S1, the model

considers that a fraction h in (0, 1) of all G genes is involved in the

phenotype in the sense that error-free measurements in some cell

type would detect and confirm this involvement. However, both

primary detections and secondary confirmations are subject to

additional sources of variation. On average over the full set of

siRNAs, there is a knockdown threshold parameter v in the range

(0, 1) indicating the frequency with which a single siRNA would

reduce expression and function of a targeted gene sufficiently to

cause detection or confirmation if the gene were involved and if

knockdown and phenotypic readout were free of errors and other

interfering effects (see next paragraph). Since siRNA pools show

greater phenotypic penetration than an individual siRNA [38], the

model further specifies how detection/confirmation rates increase

as we apply more siRNAs targeting the same gene (see Methods).

Figure 2A illustrates the conditional independence relationships of

observable, reported data and latent variables in this statistical

model, while Figure 2B shows the nature of the distributions that

were assumed for each variable.

As a separate issue from the frequency of phenotypically

significant knockdown at the mRNA level, we allow that many

factors could block a study from detecting a phenotype associated

with an involved gene. We lump these factors into study-specific

accessibility parameters cs , which accommodate many factors
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Figure 6. Genes implicated in different studies are related by physical interactions. A) Physical interactions among implicated gene
products define graphs that characterize the relatedness of the genes. Each circle represents a gene confirmed in at least one RNAi study and each
edge represents a protein-protein interaction. The variable k represents the number of edges in the subgraph defined by a given set of confirmed
genes, m represents the number of genes in the largest connected component, and r represents the average degree of the confirmed genes in this
subgraph. The values of k, m and r for each RNAi study as well as the values for the interaction subgraph resulting from pooling all four studies are
shown in the table. P-values correspond to the null hypothesis that the k, m, and r values can be accounted for by randomly selected sets of pseudo
‘‘confirmed’’ lists. P-values were calculated based on Monte Carlo tests with 9,999 randomized data sets having the same size and interaction
properties as the RNAi studies being considered. B) Spanning interactions relate genes identified in different studies. Black and white circles represent
genes from two different studies, solid edges indicate protein-protein interactions relating genes identified within the same study, and dashed lines
indicate spanning interactions, which link genes confirmed in different studies. The numbers of spanning interactions between pairs of studies, and
among all four studies pooled, are shown in the table. P-values correspond to the null hypothesis that the counts of spanning interactions can be
accounted for by randomly selected sets of ‘‘confirmed’’ gene lists.
doi:10.1371/journal.pcbi.1003235.g006
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specific to cell types and conditions used in different studies.

Examples of such potentially confounding factors include whether

the range of genes targeted by the siRNA library used; whether the

cells and conditions used for a targeted mRNA is not expressed; if

the mRNA is too abundant to be cleared within the period of

RNAi treatment; if the functional protein product is too long-lived

to be depleted over the measurement time course; if knockdown

induces general cytotoxicity, which is usually taken to disqualify

scoring for specific involvement; or if the phenotypic effect of

knocking down an involved gene is masked by functional

redundancies such as expressed homologs, parallel pathways,

etc.. All other false negative measurement errors are monitored by

type II error parameters bs, which were also made study specific

since this improved model fit. Finally, the model allows false-

positive detections or confirmations to occur either because of off-

target effects (the parameter n is the mean number of off-targets

per siRNA) or by type I measurement error (parameter a).

Numerical and Monte Carlo methods were used to obtain

parameter estimates and approximate confidence intervals using

only a set of modeling assumptions and the multi-study detection/

confirmation records (Methods and Supplementary Text S1).

Model validation by multiple diagnostic checks
We computed three simulation diagnostics to check the internal

validity of the model-based inferences, as detailed in Supplemen-

tary Text S2, Section 2. First we performed a consistency check to

assure the integrity of the modeling calculations and their

implementation in software (Text S2-2.1). Likelihood theory

predicts that maximum likelihood parameter estimates computed

from ever increasing data sets converge to the underlying

parameter settings when the model is identifiable. Thus, we

simulated gene-level data from the model, under various

parameter settings, and demonstrated that as the genome size

increases these settings were recovered.

Second, we performed predictive checks to examine properties

of synthetic data generated from the fitted probability model (Text

S2-2.2). Table S2 in Text S2 demonstrated that simulations of the

estimated generative model recapitulate statistical patterns seen in

the observed data. For example, Figure S2 in Text S2 plots the

number of confirmations against the number of detections, both in

the observed data and in hypothetical repeats. The goodness-of-fit

is compelling in this plot and in several other summaries (Table S2

in Text S2; Figure S3 in Text S2).

Figure 7. Connected component from the physical interaction network illustrates connections of four studies. The largest connected
component from the physical-interaction graph which was derived by pooling genes implicated in the four RNAi studies. This connected component
consists of 108 genes. Each oval represents an implicated gene, and its color (or colors) indicates the study (or studies) in which it was confirmed.
Edges represent protein-protein interactions among gene products. Genes confirmed by each individual study tend not to be topologically clustered,
but instead generally have interactions with genes confirmed by other studies.
doi:10.1371/journal.pcbi.1003235.g007
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For the third check, we did leave-one-study-out diagnostics.

We fitted the model four times, once to each subset of three

studies obtained by leaving out a single study’s results (Supple-

mentary Text S2-2.3). The cross-validation findings indicate

stability of the parameter estimates (Table S3 in Text S2) as well

as accuracy in predictions of the left-out studies (Table S4 in Text

S2).

We plotted and compared the distribution of gene counts across

the 81 possible patterns (Table 3) between simulated and

experimental data, and the simulation results generated from

model fits accurately reflected the experimental data (Figure S7 in

Text S2). Therefore, our model faithfully simulates actual RNAi

studies.

Estimation of parameters governing the output of RNAi
studies

Table 4 reports all parameter estimates in the fitted model. The

threshold parameter v for the frequency of effective knockdown at

the mRNA level was estimated to be 75–99% (95% CI), which

indicates that there is a fairly high chance for an involved gene to

be scored as positive, if the gene is accessible and measured in an

error free system. The largest factor affecting inter-study

agreement was the general accessibility rate cs, which we estimated

separately for each study to improve model fit, and which ranged

from 5–17% (95% CI across all studies). In other words, these

results imply that, in a typical genome-wide RNAi study, most

influenza virus-involved genes are inaccessible because, as noted

above, one or more of many potential confounding factors either

blocks knockdown or interrupts the transfer of this effect into a

measurable phenotype. Biological factors and measurements

consistent with such limited genetic accessibility are considered

in the Discussion.

Another study-specific error causing false negatives is type II

measurement error, which depending on individual study setup

contributes 1–50% false negatives (95% CI across all studies). By

contrast, both parameters dictating the frequency of false positives

were estimated to be low. The type I measurement error a is

estimated at 0.3%, which corresponds to approximately one false-

positive well per 384-well plate. The off-target rate n is further

discussed in the next section.

Off-target effects and experimental confirmation rates
Besides type I measurement error, false positives can also result

from knocking down an unintended gene during RNAi, i.e., the

off-target effect. In our model estimation, the off-target rate n was

lower than initially expected, with an estimated average of up to

0.032 off-target genes per siRNA. We wondered if this finding

might be attributable to our use of a Poisson distribution model for

the number of off-targets per siRNA and performed robustness

checks to test this assumption (Supplementary Text S2-2.4). Little

is known about the details of off-target distributions, although

computational predictions from a Drosophila dsRNA library

suggest a highly non-Poisson structure [33]. In fact, the Poisson

assumption made little difference for parameter estimation, as

evidenced by computations done under a highly over-dispersed

negative-binomial alternative to the Poisson (Supplementary Text

S2-2.4).

The multi-study data prefer a small off-target rate, as shown by

the profile likelihood plot for this parameter in Figure 8A. In this

calculation, we fixed n at various sub-optimal values and computed

maximum likelihood estimates of the remaining parameters using

the multi-study RNAi data. A source for the lack of fit is shown in

Figure 8B: increasing n above its maximum likelihood estimate the

model cannot explain the relatively high observed confirmation

rate among detected candidate genes (mean rate over 50%).

Figure 8C shows the effect on key error rates in fixing n at sub-

optimal values.

False negatives are more prevalent than false positives
False-positive and false-negative rates can be defined in

various ways, depending on the reference set of genes. Using

estimates and uncertainties in the model parameters, we

estimated the false discovery rate (FDR), the false non-discovery

rate (FNDR), the false positive rate (FP) and the false negative

rate (FN), and we obtained posterior distributions for each in

order to get approximate confidence intervals (Figure 9). FDR,

which is widely used in high-throughput studies, is the rate of

false positives among all statistically significant findings. In the

case of the influenza study, the FDR is the probability that a

gene is not involved with influenza given that this gene was

confirmed in a secondary screen to be involved (i.e., the

denominator counts the number of confirmations). Similarly

FNDR is the probability of involvement given the gene is not

confirmed (whether or not it is detected). For design purposes it

is often useful to think of errors relative to the true set of

involved genes (FN) or non-involved genes (FP). By either sets of

measures, the clear indication from Figure 9 is that false-

negative factors dominate false-positive factors in explaining the

limited agreement among studies. Thus, the low overlap among

the confirmed gene lists of the different studies arises principally

due to missed genes.

Estimated total number of virus-involved cellular genes
Since the above results infer that the low gene level overlap

between and among the four documented studies (Figure 1) is

primarily due to false negatives (Figure 9), the total number of

involved genes is expected to be significantly more than the 614

confirmed in these initial studies. Our model estimated the rate

of gene involvement in influenza virus replication (h) at 12% of

the genome. Taking G = 22,000 total genes, this corresponds to

N = 2766 genes, with a 95% posterior confidence interval of

(2306, 3342). Supplementary Text S2-4 and Figure S8 in Text

S2 provide further details on this inference. Figure 10 shows the

predicted progression in additional confirmations beyond the

614 initial genes if further RNAi studies of similar in design

were performed (details in Supplementary Text S2-4). As

illustrated in Figure 10, a total of ,12 studies would be

required to identify the majority of host genes involved in

influenza virus replication.

Discussion

Individual genome-wide RNAi studies each identifies a
subset of relevant genes

Although individual genome-wide RNAi studies typically

implicate from one to several hundred genes in a given

biological process, multiple independent findings in our results

indicate that such studies typically miss most involved genes due

to a high false-negative rate during primary genome-wide

screening. Thus, the results of each study provide a partial

glimpse into a larger, interconnected whole. For the influenza

virus studies examined here, e.g., although the gene level

agreement between RNAi studies is relatively low (mean overlap

fraction 6.7%), much higher levels of agreement between studies

(19%) exist at the level of functional categories (Figure 4).

Further, we found that the gene sets implicated in independent

studies are highly connected by interactions among their protein

products (Figures 6–7). These analyses examined the implicated

Meta-Analysis of Genome-Wide RNAi Studies
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genes from different perspectives, but all indicated that the gene

sets identified in independent studies are significantly related.

We conclude that, in general, functional pathways are better

represented than individual genes in genome-wide RNAi

studies, that independent RNAi studies add value, and that

single RNAi studies can be valuable, particularly if interpreted

in light of these and other insights.

Modeling confirms that false negative errors exceed false
positives

Using the measurements from the four influenza virus studies,

we developed a statistical model to estimate critical parameters

that control the output of genome-wide RNAi studies. The

Table 3. Multi-study data in count format.

DL1 U2OS A549[DE] A549[US] p N[p]

1 1 1 1 1111 21016

1 1 1 2 1112 71

1 1 1 3 1113 179

1 1 2 1 1121 106

1 1 2 2 1122 0

1 1 2 3 1123 6

1 1 3 1 1131 126

1 1 3 2 1132 2

1 1 3 3 1133 18

1 2 1 1 1211 113

1 2 1 2 1212 0

1 2 1 3 1213 1

1 2 2 1 1221 0

1 2 2 2 1222 0

1 2 2 3 1223 0

1 2 3 1 1231 2

1 2 3 2 1232 0

1 2 3 3 1233 0

1 3 1 1 1311 111

1 3 1 2 1312 1

1 3 1 3 1313 3

1 3 2 1 1321 2

1 3 2 2 1322 0

1 3 2 3 1323 0

1 3 3 1 1331 3

1 3 3 2 1332 0

1 3 3 3 1333 3

2 1 1 1 2111 80

2 1 1 2 2112 0

2 1 1 3 2113 2

2 1 2 1 2121 0

2 1 2 2 2122 0

2 1 2 3 2123 0

2 1 3 1 2131 1

2 1 3 2 2132 0

2 1 3 3 2133 0

2 2 1 1 2211 0

2 2 1 2 2212 0

2 2 1 3 2213 0

2 2 2 1 2221 0

2 2 2 2 2222 0

2 2 2 3 2223 0

2 2 3 1 2231 0

2 2 3 2 2232 0

2 2 3 3 2233 0

2 3 1 1 2311 0

2 3 1 2 2312 0

2 3 1 3 2313 0

2 3 2 1 2321 0

Table 3. Cont.

DL1 U2OS A549[DE] A549[US] p N[p]

2 3 2 2 2322 0

2 3 2 3 2323 0

2 3 3 1 2331 0

2 3 3 2 2332 0

2 3 3 3 2333 0

3 1 1 1 3111 127

3 1 1 2 3112 1

3 1 1 3 3113 2

3 1 2 1 3121 4

3 1 2 2 3122 0

3 1 2 3 3123 0

3 1 3 1 3131 6

3 1 3 2 3132 0

3 1 3 3 3133 3

3 2 1 1 3211 4

3 2 1 2 3212 0

3 2 1 3 3213 0

3 2 2 1 3221 0

3 2 2 2 3222 0

3 2 2 3 3223 0

3 2 3 1 3231 1

3 2 3 2 3232 0

3 2 3 3 3233 0

3 3 1 1 3311 2

3 3 1 2 3312 0

3 3 1 3 3313 0

3 3 2 1 3321 0

3 3 2 2 3322 0

3 3 2 3 3323 1

3 3 3 1 3331 2

3 3 3 2 3332 0

3 3 3 3 3333 1

The right-most column shows the number of genes N½p� having the named
pattern p of detections and confirmations. For each study, (1) means not
detected in the primary screen, (2) means detected in the primary screen but
not confirmed in the secondary screen, and (3) means detected in the primary
and also confirmed in the secondary screen. The first row counts genes that
were never detected, and assumes a full genome size G = 22000.
doi:10.1371/journal.pcbi.1003235.t003
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model was designed to reflect the experimental process of RNAi

screening and to utilize the available published information

from such screens. Our model was refined through several

rounds of iteration and fits the experimental data very well

(Table S2 in Text S2, Figure S2, S3 and S7 in Text S2). The

leave-one-out test showed that the range and medians of the

model estimations match the real experimental data well (Table

S3 in Text S2).

In addition to other insights, our statistical modeling confirmed

that an individual genome-wide RNAi study generally will only

identify a small portion of genes implicated in a biological process.

The model further indicates that this partial coverage results

predominantly from false-negative errors in the high-throughput,

genome-wide primary gene detection phase of the analysis, and

that false positives in the more focused, repeated validation phase

of analysis are much rarer. Below we discuss factors related to

these false-positive and false-negative rates.

As noted above, many issues might lead to false discoveries in a

genome-wide high-throughput screen. However, to reduce false

discoveries, all four studies in our meta-analysis incorporated

validation testing of implicated genes with independent siRNAs

and multiple repeats. Stringent statistics were used to control the

false discovery rate, normally to below 5%. Accordingly, such

validated genes, although only confirmed in one study, are unlikely

to be false positives.

A potentially significant issue causing false positives for any

RNAi knockdown study (either single gene or genome-wide) is the

possibility of off-target effects [15,16,33,39,40]. In most genome-

wide RNAi studies, including the four analyzed here, the

potential for off-target effects in the initial screening phase is

addressed by requiring the knock-down phenotype to be

independently confirmed by independent, usually multiple tests

with two or more distinct siRNAs against the target gene. As

siRNAs with distinct sequences are unlikely to affect overlapping

off-target genes, such testing considerably reduces the potential

for off-target induced false positives. Indeed, the estimated off

target rate was low, according to model based calculations

(Table 4). Our further analysis showed that if we forced the off-

target rate to be higher, the model fit the data poorly and did not

explain the observed confirmation rates of .50% of the detected

genes. Increasing the off target rate to ,5 genes/siRNA, e.g.,

shifts the estimated confirmation rate to 5% or less, which

contradicts the data from all four studies (Figure 8B), and

amplifies the estimated gene involvement rate to over 80%, which

appears unlikely from many practical and biological consider-

ations. The actual model-estimated rate of host gene involvement

of 12% (Table 4, h), while higher than predicted from individual

studies, is consistent with the many empirical and a priori

considerations supporting the conclusion that true negatives

should significantly outnumber true positives in such screens for

viral dependency factors.

By comparison, the sheer scale and technical challenges of

genome-wide studies presently make false negatives hard to

control in the initial detection phase of global RNAi studies.

Because of the large number of samples to test (typically tens of

thousands), only limited replicates (typically 2 or 3) can be

performed in the primary, genome-wide screens. Furthermore,

simultaneous processing of hundreds to thousands of samples in

microwell plates makes it impossible to individually optimize

many critical parameters, such as assay timing, for knockdown

analysis of each gene. Moreover, choices made to facilitate such

high-throughput analysis, such as tractable endpoints, assays or

virus genotypes may further affect the ability to detect at least

some phenotypic effects. These and other factors noted below,

including genetic redundancies, can restrict detection sensitivities

and reduce phenotypic impacts, jeopardizing the detection of

potentially positive phenotypes against the background of often

significant experimental noise in such large-scale, high-through-

put measurements.

Indeed, relative to most cell-based screens, screens for effects

on viral replication are subject to additional variability associated

with fluctuations in the efficiencies of initial and later stages of

infection. Notably, substantial portions of such variations in

infection efficiency are correlated with cell density, cell size and

other local population features of the cultured cells, and

appropriate normalization for such factors can significantly

improve the consistency of the assay results [24,25]. In addition

to such within-screen variability, and as noted in part above,

variability between independent screens is increased by differ-

ences in viral genotypes, cells, culture conditions, assay design

(partial or full virus lifecycle, direct or indirect readout, timing,

etc.), and similar experimental issues (Table 1). This combination

of issues, plus additional sources of variable and systematic errors

noted in the Introduction, makes the use of appropriate quality

control practices and analytical methods [27] particularly critical

for virus-oriented screens.

Low gene accessibility is a major obstacle for identifying
implicated genes

Besides the above technical challenges, our statistical infer-

ence indicates that a major contributing issue to false negatives

is low gene accessibility, i.e., the portion of genes for which the

method of a given RNAi study can show a corresponding loss-

Table 4. Parameter estimates.

Parameter MLE Posterior Mean 95% CI

h 0.128 0.126 (0.101,0.158)

a 0.003 0.003 (0.002,0.004)

b DL1 0.112 0.159 (0.011,0.338)

b U2OS 0.360 0.398 (0.267,0.502)

b A549DE 0.333 0.372 (0.246,0.470)

b A549US 0.067 0.122 (0.010,0.264)

c DL1 0.065 0.072 (0.050,0.103)

c U2OS 0.097 0.107 (0.075,0.145)

c A549DE 0.116 0.127 (0.091,0.169)

c A549US 0.086 0.095 (0.069,0.126)

v 0.834 0.900 (0.754,0.996)

n 0.000 0.009 (0.000,0.032)

Derived

N 2821 2766 (2306,3342)

FDR 0.000 0.005 (0.000,0.017)

FNDR 0.122 0.120 (0.095,0.152)

FP 0.000 0.000 (0.000,0.001)

FN 0.945 0.944 (0.927,0.958)

In model of multi-study gene-level influenza data: h is the overall rate of genes
involved with influenza; a represents false positive measurement errors, and b
measures false negative errors, allowing heterogeneity among studies; c
measures the rate at which genes are accessible for knockdown; v measures
how well mRNA knock down is achieved in error free recordings, and n
measures the average number of off-targets per siRNA. Estimates are based on
maximum likelihood (MLE) as well as by Bayesian posterior averaging under a
flat prior. Estimates of derived quantities are shown in the lower rows.
doi:10.1371/journal.pcbi.1003235.t004
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of-function phenotype if the gene is involved. Specifically, our

fitted statistical model estimated from the data of the four

influenza virus studies that only ,10% of tested genes could be

effectively assayed by RNAi knockdown for phenotypes in any

one study (Table 4).

This statistically inferred low gene accessibility is consistent

with and presumably results from multiple aspects of host cell

biology. First, genes not expressed in the specific cell type used

for an RNAi study will not show any phenotype upon attempted

knocked down. In analyses of gene expression in 84 human

tissues and cell lines using high coverage Affymetrix DNA

microarrays, only 37% of total probes were found to have

moderate or higher expression in at least one cell type [41].

These probes mapped to 9214 different genes, and the number

of genes expressed in each cell type ranged from 484 (ovary

tissue) to 6038 (B lymphoblast). In lung tissue, relevant to

influenza virus infection, only 3355 genes, or ,15% of the total

were expressed [41]. Thus, in many cell types, a relatively small

fraction of genes may exhibit sufficiently high expression to

produce measurable phenotypic effects. Moreover, the partic-

ular sets of genes that are functionally expressed vary between

different tissue and cell types in vivo, and between different cells

and cell lines in culture [41]. Accordingly, RNAi screening in

different cell lines will reveal contributions from different genes,

either directly because of differences in the expression of

particular tested genes or indirectly, because the contribution of

a tested gene can be masked by other complementing genes that

are differentially expressed between the cell lines (see also

below).

Second, in genome-wide RNAi studies, genes that cause

cytoxicity when knocked down are generally excluded from

analysis. In the A549DE study [8], e.g., 1520 siRNAs were

Figure 8. Likelihood estimation prefers a small off-target rate. Maximum likelihood estimates (MLEs) are parameter settings that provide the
best explanation for observed multi-study agreement counts, yet the estimate for n, the mean number of off-targets per siRNA, is surprisingly small
(Table 4). Profile likelihood provides additional insight into this effect. At each fixed n on a fine grid we found MLEs of the remaining system
parameters as well as the maximum (log) likelihood (Panel A). The decreasing profile likelihood re-expresses the inference that fit decays if we insist
on moderate to large values for n. One reason for the poor fit is seen in a comparison of (study averaged) detection and confirmation rates computed
at the profile MLEs (Panel B). Although the best fitting detection rate (green) matches the empirical detection rate regardless of n, the best fitting
confirmation rate (red) is much lower than its empirical counterpart. The profile MLE values can also be converted to false discovery rates (FDR) and
false non-discovery rates (FNDR), as shown in Panel C. In the regime preferred by the observed multi-study counts (small n), false negatives dominate,
but the opposite inference follows if n is large.
doi:10.1371/journal.pcbi.1003235.g008
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judged to be cytotoxic and were omitted from further

analysis.

Third, as cells have been selected for functional robustness,

knocking down expression of a single gene may have little

phenotypic effect when additional genes provide similar functions.

Multiple mechanisms for such genetic redundancy have been

recognized [42,43], including homologous genes with overlapping

functions, parallel metabolic or regulatory pathways, and other

processes. Such buffering effects appear to be common since many

genes are members of multi-gene families and many examples are

known where two or more genes must be simultaneously inhibited

to produce a phenotype.

Finally, the phenotypic efficiency of an siRNA depends on

many factors including the level of the targeted mRNA [44] and

the half-life of its encoded protein. Notably, many proteins with

half-lives in days cannot be sufficiently depleted within the time

frame of an RNAi screen [39]. All of the above factors combine to

mask phenotypes and reduce the number of genes that can be

characterized through current RNAi screening.

Implications for further genome-wide RNAi studies
Our results provide useful approaches for conducting and

interpreting genome-wide RNAi studies. Our statistical model

provides a framework to describe a complicated biological assay,

genome-wide RNAi, by modeling factors that can contribute to

the final output. Such factors include general measurement errors

that affect many assays, as well as factors specific to RNAi, such as

off-target effects and gene accessibility. The model structure is not

specific to influenza virus or even to virus infection. Thus we

expect that the approach is applicable to genome wide RNAi

studies of many cellular phenotypes. To test this, we applied the

model-based estimation method to a collection of three genome-

wide RNAi studies for HIV host factors (Supplementary Text S2,

Section 5). The resulting HIV-derived parameter estimates were

comparable to those from influenza virus, although an even lower

overlap among the implicated gene sets led to a higher estimate of

the involvement rate h, at 28% (Supplementary Text S2, Table S6

in Text S2).

As noted above, multiple findings imply that a key contrib-

uting factor to false-negative results is low gene accessibility. In

future studies this could be addressed by performing screens in a

variety of cell lines and possibly by expanding the time points

and assay conditions used. In addition, insightful bioinformatics

analysis with implicated genes could expand interpretation of

host factors involved in virus infection by integrating informa-

tion from other genome-wide or single gene studies. Insights

from such analysis could be used to focus future studies on

selected pathways to further test their involvement. Useful

examples of such bioinformatic extensions include recent studies

analyzing host genes required for HIV replication in the context

of protein-protein interaction and other networking properties

[45–47]. These studies offer experimentally useful insights into

the functional organization of such genes and their interactions

with HIV and, like the results presented here, also explicitly

suggest that many host factors required for HIV replication

remain to be discovered.

Additional information will help to refine the working

probability model and thus provide a more accurate descrip-

tion of genome-wide RNAi studies. Our model was necessarily

based on available published data, which was generally limited

to lists of genes implicated in the primary detection screen and

confirmed in the secondary validation test. To enrich

understanding and modeling such RNAi screens, we strongly

support publishing full genome-wide data from such studies,

including data on genes excluded either for cell toxicity or low

expression.

Figure 9. False negative rate exceeds false positive rate. A) Posterior distributions of false discovery rate (FDR) and false non-discovery rate
(FNDR) estimated by Markov chain Monte Carlo using multi-study influenza RNAi data and the statistical model of multi-study agreement. The false
positive rate FDR is the probability that a gene is not truly involved (Ig = 0) if it is confirmed in one study, not accounting for what may happen in
other studies. Similarly the false negative rate FNDR is the probability that a gene is truly involved (Ig = 1) if it is not confirmed Evidently the false
negative rate is higher than false positive rate according to these posterior distributions. B) Similar to Panel A, though false positive (FP) and false
negative (FN) rates are defined relative to the true gene involvement status rather than to lists of confirmed genes.
doi:10.1371/journal.pcbi.1003235.g009
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Supporting Information

Table S1 Implicated genes identified from the 4 studies
used in the meta-analysis. Genes identified from the 4 RNAi

studies are listed in this table. The whole list contains genes

identified from primary screen for secondary confirmation with

the confirmed genes on top and the un-confirmed genes below in

shade.

(XLSX)

Text S1 Statistical model development and computa-
tional approach.

(PDF)

Text S2 Statistical model validation, inference, and
prediction.
(PDF)
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