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Abstract

The diagnostic criteria for schizophrenia comprise a diverse range of heterogeneous

symptoms. As a result, individuals each present a distinct set of symptoms despite

having the same overall diagnosis. Whilst previous machine learning studies have pri-

marily focused on dichotomous patient-control classification, we predict the severity

of each individual symptom on a continuum. We applied machine learning regression

within a multi-modal fusion framework to fMRI and behavioural data acquired during

an auditory oddball task in 80 schizophrenia patients. Brain activity was highly predic-

tive of some, but not all symptoms, namely hallucinations, avolition, anhedonia and

attention. Critically, each of these symptoms was associated with specific functional

alterations across different brain regions. We also found that modelling symptoms as

an ensemble of subscales was more accurate, specific and informative than models

which predict compound scores directly. In principle, this approach is transferrable to

any psychiatric condition or multi-dimensional diagnosis.
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1 | INTRODUCTION

Schizophrenia diagnoses comprise a diverse range of heterogeneous

symptoms which collectively manifest in widespread neuroanatomical

and functional differences. Over the past decade, machine learning

has been widely used in the field of neuroimaging for mapping symp-

tomatic manifestations onto brain substrates. These methods are gen-

erally considered a potential gateway to precision psychiatry as they

provide predictions at the individual level, hence going beyond classi-

cal univariate methods which can only tell us about overall group

effects within a given population. The vast majority of psychiatric

machine learning studies are primarily concerned with group member-

ship, in particular the binary classification between patients and con-

trols, patient subgroups, or prognoses (Arbabshirani, Plis, Sui, &

Calhoun, 2017; Janssen, Mour~ao-Miranda, & Schnack, 2018; Walter

et al., 2019). However, given the wide array of symptoms which
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characterise schizophrenia, individuals each present with their own

distinct set of symptoms despite having the same categorical diagno-

sis. In an effort to parse these symptomatic differences, there has

recently been a shift away from dichotomous labels towards a dimen-

sional approach (Bzdok & Meyer-Lindenberg, 2018; Cuthbert &

Insel, 2013).

As defined by the Diagnostic and Statistical Manual of Mental

Disorders (DSM; Regier, Kuhl, & Kupfer, 2013), symptoms are cat-

egorised as positive or negative. Positive symptoms are typically absent

in the general population, such as hallucinations and delusions,

whereas negative symptoms present more often, including affective

flattening and poverty of speech. In clinical practice, standardised psy-

chometric tools are widely used to assess the severity of symptoms,

in particular the Scale for Assessment of Positive Symptoms (SAPS;

Andreasen, 1984), the Scale for Assessment of Negative Symptoms

(SANS; Andreasen, 1983) and the Positive and Negative Symptom

Scale (PANSS; Kay, Fiszbein, & Opler, 1987). Individual symptoms or

subscales are assigned numeric scores relative to their severity, rang-

ing from absent to severe. The composite score is the sum of all symp-

tom subscales, providing an overall summary of the given category.

The limited prior work on predicting schizophrenia symptoms via

machine learning has thus far only been performed on the basis of

composite symptoms (Tognin et al., 2014; Tolmeijer, Kumari, Peters,

Williams, & Mason, 2018), general functioning (Sui et al., 2018; Taylor,

Matthews, Michie, Rosa, & Garrido, 2017) and polygenic risk scores

for schizophrenia (Ranlund et al., 2018). Other neuroimaging studies

have also reported univariate correlates (Vanes et al., 2019; Zhao

et al., 2018), or lack thereof (Carrà et al., 2019; Erickson et al., 2017),

with symptom severity on the basis of composite summary scores

rather than those of the underlying symptoms, an approach which sig-

nificantly comprises aetiological specificity (Tibber et al., 2018). For

example, if we were to compare two patients, one with disorganised

thought processes which render them unable to bathe themselves to

another with severe alogia who is unable to communicate, these are

vastly different symptoms which in turn are likely to be caused by dif-

ferent sources of dysfunction in different neural networks. By com-

bining the breadth of symptoms under the hypernyms of

schizophrenia, positive or negative symptoms, the superposition of

features pertaining to each specific symptom may appear more het-

erogeneous en masse than if these symptoms were addressed sepa-

rately. Furthermore, a pair of individuals may be assigned the same

composite score, and yet have vastly different symptomatology

(e.g., a large number of mild symptoms or a smaller subset of high

severity symptoms). Given the pervasive issues associated with the

heterogeneity of schizophrenia, we suggest the distinction between

individual symptoms may be pertinent.

The aim of this study was to predict the severity of schizophrenia

symptoms on a continuum using a dimensional diagnosis approach,

based on individual neural and behavioural responses to an auditory

oddball task performed during a fMRI scan. We applied machine learn-

ing regression techniques within a multi-modal fusion framework to

predict each individual symptom whilst determining the set of neural

and behavioural features which inform each model. In addition, we

sought to predict global symptom severity as an ensemble of these

subscales and compare this to models which predict the composite

scores directly. Finally, we provide maps of the brain regions which

contributed towards predictions of specific symptoms.

2 | METHODS

2.1 | Dataset

The data used in this study was provided by the Mental Illness and Neu-

roscience Discovery Institute Clinical Imaging Consortium (MCIC; Gollub

et al., 2013) via the Collaborative Informatics Neuroimaging Suite

(COINS; Scott et al., 2011) online data repository. Anonymised medica-

tion data was also obtained directly from the curators of the dataset.

These data were originally collected across multiple sites—the University

of NewMexico, Massachusetts General Hospital and University of Iowa.

2.2 | Participants and cognitive characterisation

From an initial sample of 118 schizophrenia patients obtained from

the COINS database, participants were excluded on the basis of miss-

ing data and/or poor task performance (mean − 3SD). The final sample

consisted of 80 schizophrenia patients (58 male, 22 female) with ages

ranging from 18 to 60 years (mean ± SD, 32.55 ± 11.39 years). Diag-

noses were confirmed using the Structured Clinical Interview from

DSM-IV or Comprehensive Assessment of Symptoms and History

(Andreasen, Flaum, & Arndt, 1992) with severity of symptoms

assessed using the SAPS and SANS. For a summary of participant

symptom scores, refer to Figure S1. Both SAPS and SANS use a five

point scale for each subscale (0 = absent, 1 = questionable, 2 = mild,

3 = moderate, 4 = marked, 5 = severe) with the summary score the

sum of all subscales.

2.3 | Stimulus paradigm

The auditory oddball task used in this study examines the interplay

between the involuntary orientation of bottom-up attention towards

salient novel stimuli and sustaining voluntary top-down attention

towards target stimuli (Kiehl & Liddle, 2001). fMRI data were acquired

whilst participants listened to streams of predictable standard tones

(1 kHz, p = .82), interspersed with infrequent target (1.2 kHz, p = .09)

and novel tones (complex, computer-generated tones, p = .09). Partici-

pants were instructed to respond to target stimuli via button press

whilst ignoring standard and novel tones. All stimuli had a duration of

200 ms, presented at inter-stimulus intervals ranging from 550 to

2,050 ms (mean 1,200 ms). The total experiment consisted of four

blocks with 120 stimuli per block, resulting in a total 480 trials

(396 standard, 42 target and 42 novel). The presentation of stimuli

and recording of associated reaction times was performed using

E-Prime (version 1.1; Pittsburg, Pennsylvania).
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2.4 | MRI data acquisition

Images were acquired at one site using a 1.5 T Siemens Sonata MRI

scanner, whilst the remaining two sites both used 3 T Siemens Trio.

All sites shared closely matched acquisition sequences (repetition

time, 2 s; echo time, 30 ms for 3 T, 40 ms for 1.5 T; flip angle, 90�;

field-of-view 22 cm; in-plane resolution 3.4 mm), with resulting

volumes (27 slices, 4 mm thickness, 1 mm inter-slice gap) providing

whole brain coverage. For more information on the standardisation,

calibration and quality assurance procedures used to minimise

variability across sites, refer to Gollub et al. (2013).

2.5 | MRI pre-processing

Image analysis was performed using SPM12 (Wellcome Trust

for Neuroimaging, University College London, London) for

MATLAB (version 2016a; The MathWorks, Inc., Natick, Massachu-

setts). Following slice timing correction and spatial realignment,

fMRI images were co-registered to skull stripped T1-weighted

images with origins set to the anterior commissure, normalised

to MNI space with voxel size 2 × 2 × 2 mm, then smoothed using

an 8 × 8 × 8 mm full width at half-maximum Gaussian kernel.

First level analyses were performed by modelling target and novel

stimuli as events with standards as an implicit baseline, button

presses and movement parameters as nuisance regressors. For each

participant, we obtained contrast images for the target and novel

conditions.

2.6 | Features

Four distinct feature sets were defined categorically as neural

responses to target and novel conditions, behavioural measures, and

other potential confounds.

For the target and novel conditions, voxel-wise activity was

extracted from a set of 15 regions-of-interest within the fMRI con-

trast images. Informed by a meta-analysis by Kim (2014), these

regions were assumed a priori to be those where task-relevant and

irrelevant oddball effects would be most robust. The complete set of

regions is shown in Figure 1 with atlas references available in

Table S1.

The behavioural measures comprised the sensitivity, specificity,

precision and mean reaction time of responses to target stimuli, as

well as the ex-Gaussian parameters μ, σ and τ (Lacouture &

Cousineau, 2008) summarising the distribution of reaction times over

F IGURE 1 Regions-of-interest and systemic categorisations applied to the fMRI contrasts, defined a priori according to a meta-analysis of
auditory oddball processing tasks by Kim (2014). For Harvard-Oxford cortical and subcortical atlas identifiers, refer to Table S1
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the course of the experiment obtained via the exgauss toolbox for

MATLAB (version 1.3; Bram, 2014).

The set of potential confounds comprised age and education,

both of which have also been associated with auditory prediction

error signals on a univariate basis (Erickson et al., 2017), scanner field

strength, which varies between sites, and cumulative antipsychotic

drug exposure (Andreasen, Pressler, Nopoulos, Miller, & Ho, 2010;

Gollub et al., 2013), which is thought to alter neuroanatomy.

2.7 | Framework

Using these four distinct feature sets as a basis, we employed a

machine learning framework which encompasses an ensemble of

domain experts (Hastie, Friedman, & Tibshirani, 2001). Each expert is

trained on a single feature set, which are then integrated using a

multi-stage fusion tree as shown in Figure 2.

In Stage 1, a set of experts (denoted f ) were each independently

trained on data extracted from a single region-of-interest (ROI), such

that each voxel was a feature and each region was a set of features

(X) with one expert per region. This process was repeated for both tar-

get and novel contrasts. Collectively, this set of experts provides a set

of region-based predictions (y1–30a and y1–30b) for both the target and

novel conditions (subscripts a and b, respectively).

In Stage 2, these regional predictions were taken as inputs to a pair

of secondary fusion models (fa and fb) which return a single conditional

prediction (ya and yb) and a set of weights assigned to each region (w1–30a

and w1–30b). Experts based on the behavioural and confound feature sets

(fc and fd) are also introduced, again assigning weights to each feature.

In Stage 3, the conditional, behavioural and confound predictions

(ya–d) are fused to form a final prediction (yo) and output weights were

assigned to each of the categorical feature sets (wa–d).

This framework was used to train a set of models to predict each

of the symptom subscales and summary scores outlined in Table 1. A

late fusion approach was then applied to the subscale predictions by

creating summary score ensemble models, taking the predictions from

each of the constituent subscale models and fusing them to obtain

overall predictions of the SAPS and SANS.

2.8 | Implementation

The machine learning framework, as illustrated in Figure 2, was

implemented using the Scikit-learn (version 0.20.2; Pedregosa

et al., 2011) and NumPy (version 1.15.4) libraries for the Python pro-

gramming language (version 3.6.5; Python Software Foundation). All

experts and fusion models were trained using the lasso algorithm

(Tibshirani, 1996), which constrains the size of the model coefficients

through regularisation and setting a subset of feature coefficients to

zero. The result is a sparse formulation with implicit dimensionality

reduction and a high level of model interpretability.

Each target score (y) was rescaled to a zero to one range, as per

the maximum possible score on the given scale. All neuroimaging fea-

tures were standardised to their respective z-scores, rescaling across

F IGURE 2 Schematic of machine learning framework. In Stage 1, a set of experts (blue) are independently trained on a subset of fMRI data
extracted from one of 30 regions and one of two experimental conditions; target, (a), and novel, (b). In Stage 2, the region-based predictions,
y1–30a and y1–30b, are then fused to obtain conditional predictions, ya and yb (green). Experts are also trained on the behavioural (orange) and
confound (purple) feature sets. In Stage 3, the conditional, behavioural and confound predictions, ya–d, are fused to form a final output prediction,
yo (red). Each fusion model assigns a set of weights, w, to each feature set which is used to intuit the relative feature importance in making
predictions
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participants to zero mean and unit variance. Dimensionality reduction

was performed using principal components analysis, projecting the

data onto a subset of components which explained 90% of the total

variance, such that the number of features was much less than the

number of samples (M � N). Non-neuroimaging features were also

standardised to the z-scores, however, did not require further dimen-

sionality reduction given M � N.

To make predictions for each individual subject, we employed a

10-fold cross-validation scheme with 10 repetitions, stratified by site

with the regularisation hyper-parameter α optimised using a nested

nine-fold cross-validation scheme. Predictions for the summary score

ensemble models were obtained by averaging across those from each

of the constituent subscale models.

Model performance was evaluated by comparison of true and

predicted scores using the mean-squared error (MSE) and Pearson's

correlation coefficient (R). The statistical significance of each model

was tested by 1,000 permutations of the target variables, with p < .05

for both metrics indicating that the model has truly learned some pat-

tern within the data, subject to correction for multiple comparisons.

3 | RESULTS

3.1 | Predicting individual symptom subscales

These data were found to be predictive of some, but not all symptom

subscales, as shown in Table 1. The negative symptoms of avolition,

anhedonia and attention all had statistically significant correlations

between targets and predictions ranging from 0.52 to 0.60 (p < .013,

Bonferroni corrected), whilst the positive symptom of hallucination

had the highest correlation of 0.72 (p < .013, Bonferroni corrected).

All models had a comparable mean-squared error, ranging from

0.047 to 0.054, which translates to approximately 23% error on the

original scale. Although the delusions and formal thought disorder

models had seemingly significant correlations of 0.35 and 0.40,

inspection of the prediction plots shown in Figure 3 indicates that

these models were constrained in their predictions, suggesting a pos-

sible bias towards the sample means (0.53 and 0.15, respectively).

3.2 | Predicting symptom summary scores

We applied two different approaches in predicting the SAPS and

SANS summary scores.

In the first case, a single model was trained directly on the sum-

mary scores using the same framework as depicted in Figure 2. As

shown in Table 1 and Figure 4, the composite positive symptom model

was not statistically significant and the negative symptoms only yield a

modest correlation. However, when considering each of the individual

subscale models as an expert on a particular symptom within an ensem-

ble which collectively predicts the summary score, we found a marked

improvement in performance. Both of these ensemble models proved

statistically significant (p < 0.013, Bonferroni corrected), with positive

symptoms demonstrating a two-fold increase in correlation (0.24 to

0.51) and a decrease in mean-square error (0.062 to 0.018). On aver-

age, this translates to an approximate 13.4% error margin.

3.3 | Subscale model explanations

Given that we are able to predict a number of symptoms from the

available data, we are also able to intuit the main factors which

TABLE 1 Summary of model performance. Avolition, anhedonia, attention and hallucinations yielded best performance for individual
symptoms, whilst the ensemble of subscales outperformed singular summary score models. All p-values were computed via 1,000 permutations
with Bonferroni correction for multiple comparisons

R

p-value

MSE

p-value

Uncorrected Bonferroni Uncorrected Bonferroni

Individual

dimensions

Negative

symptoms

Affective flattening 0.03 .374 1.000 0.071 .030 .390

Alogia −0.15 .893 1.000 0.049 .504 1.000

Avolition 0.59 .001 .013 0.049 .001 .013

Anhedonia 0.52 .001 .013 0.050 .001 .013

Attention 0.60 .001 .013 0.047 .001 .013

Positive

symptoms

Delusions 0.35 .002 .026 0.060 .002 .026

Hallucinations 0.72 .001 .013 0.054 .001 .013

Bizarre behaviour −0.10 .808 1.000 0.043 .724 1.000

Formal thought

disorder

0.40 .002 .026 0.046 .001 .013

Summary scores Single model SAPS 0.24 .021 .273 0.062 .004 .052

SANS 0.39 .001 .013 0.019 .001 .013

Ensemble model SAPS 0.51 .001 .013 0.018 .001 .013

SANS 0.49 .001 .013 0.017 .001 .013
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underpin model performance by examining the contributions of each

feature set in a post hoc manner. This is achieved by examining the

fusion weights assigned to each feature set in Stage 3 and individual

features in Stage 2.

Firstly, we wish to establish whether neuroimaging is indeed use-

ful, given the added time and monetary investment necessary to

acquire these data. The target and novel feature sets were highly

weighted in the Stage 3 output fusion (between 72 and 100%) in

comparison with the behavioural and confound feature sets (0 to 17%

and 0 to 11%, respectively) in each of our statistically significant

models. This indicates that the neuroimaging data was the main driver

behind the predictions, above and beyond the behavioural data

obtained via the task itself. However, excluding those for the anhedonia

model, the behavioural and confound coefficients were not set to zero,

therefore these features still had some, albeit negligible contribution to

the final predictions (Table S2).

F IGURE 3 Plots of model predictions and true scores for individual subscales within the SAPS and SANS. Predictions for each subject are
shown as grey dots. All scores are rescaled to a zero to one scale. p-values are Bonferroni corrected for multiple comparisons
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To better understand the contribution of individual neuroanatomical

features within these neuroimaging feature sets, the output weights from

Stage 3 were applied to the categorical fusion weights from Stage 2. For

each score, we are then able to obtain a regional weight map, as illus-

trated in the main 4 × 15 matrices of Figure 5a. Here, each element rep-

resents a single feature with colour indicating which features were

identified by the algorithm as important, and conversely, which were

non-informative. In the top panel, each row represents a region-of-inter-

est, with columns indicating the hemisphere (denoted L and R) and

experimental stimulus (target and novel). Furthermore, by adding these

elements together, we can collapse across subsets of features to summa-

rise the broader system-wide differences between each brain system

(4 × 5 matrix), hemisphere (4 × 1 vector) and experimental condition

(bottom 2 × 1 vector). For visualisation purposes, Figure 5b shows the

regional weight maps projected onto a three-dimensional representation

of the original regions-of-interest, collapsed across conditions.

In the avolition model, predictions were mainly driven by the target

response, namely the right anterior middle frontal gyrus (aMFG) and

other cortical activity in the left hemisphere. For anhedonia, predictions

were primarily informed by the anterior cingulate cortex (ACC) target

response and left superior temporal gyrus (STG) novel response. Atten-

tion predictions were equally driven by both target and novel stimuli, in

particular the left aMFG response to target stimuli and subcortical activ-

ity in the novel condition. Hallucinations were informed by the left

hemispheric target response, principally the ventral attention network

and temporal parietal junction (TPJ). Critically, pairwise similarity mea-

sures between weight vectors indicated that each symptom had its own

distinct pattern of activity across different sets of regions (Figure S2).

3.4 | Summary model explanations

The difference between the two approaches in predicting summary

scores is most apparent when comparing the respective weight maps.

For the single positive symptoms model (Figure 6), we can observe

that of all the possible combinations of features, the optimal solution

computed by the algorithm comprises a single feature—the response

to target stimuli in the left precentral gyrus. Given the low perfor-

mance of this model, this can be attributed to a classic case of under-

fitting. Conversely, the ensemble model weight map includes the

specific contributions towards each of the individual subscales,

resulting in a widespread distribution of features across the whole

brain. Notably, we observe that the precentral gyrus is not a member

of the ensemble weight map, nor any of the constituent subscales.

Similarly, the negative symptom models demonstrate the same pat-

tern, with the single model reduced to the left inferior frontal junction

(IFJ) and right Heschl's gyrus (HG) responses to the target condition,

both of which are down-weighted in the equivalent ensemble model.

F IGURE 4 Plots of model predictions and true scores for the SAPS (left) and SANS (right) summary scores. Top row shows the predictions for
a single model trained to predict the summary scores directly. Bottom row shows predictions for an ensemble model, where each expert is trained

to predict one of the individual subscales. Predictions for each subject are shown as grey dots. All scores are rescaled to a zero to one scale.
p-values are Bonferroni corrected for multiple comparisons
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These comparisons demonstrate that the ensemble of subscales

clearly outperforms the single model approach, not only in terms of

predictive accuracy, but also in terms of identifying plausible func-

tional neuroanatomical maps—the composite negative and positive

F IGURE 5 Feature importance for individual subscale models. Colours denote the contribution of each feature towards predictions as a
percentage, with black indicating an entire feature set has been marked as irrelevant by the lasso algorithm. (a) Regional weight maps (top panel)
show the relevance of each region (rows) in both left (L) and right (R) hemispheres under target and novel conditions (columns). Categorical
weight maps (bottom panel) show the net contribution of each system, hemisphere and condition towards model predictions. Categorical groups
of regions are based on Kim (2014). (b) Regional weight maps projected onto three-dimensional brain structures
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symptoms arise from widespread brain networks, whereas individual

symptoms pertain to more nuanced sub-networks.

4 | DISCUSSION

In this study, we used multivariate machine learning regression tech-

niques to predict the severity of schizophrenia symptoms on a contin-

uum based on the neural and behavioural responses to an auditory

oddball task. By training a set of models to predict each symptom sub-

scale independently, these data were found to be highly predictive of

hallucinations, attention, avolition and anhedonia. We also found that

by modelling the composite SAPS and SANS summary scores as

ensembles of these subscales, the accuracy of predictions significantly

increased, whereas single models trained to predict summary scores

directly demonstrably underfit to irrelevant features.

4.1 | Interpreting functional anatomy of psychotic
symptoms

Anhedonia is described as a reduced capacity to experience pleasant

emotions (Marder & Galderisi, 2017). We found that anhedonia pre-

dictions were mainly driven by responses to the novel stimulus in the

left hemisphere, in particular the putamen and STG, as well as the tar-

get response in the ACC. The ACC is known to play a key role in

F IGURE 6 Feature importance for SAPS and SANS summary score models. Ensemble models are shown in warm colour map and single
models shown in greyscale. Regional weight maps (top panel) show the relevance of each region (rows) in both left (L) and right (R) hemispheres
under target and novel conditions (columns). Categorical weight maps (bottom panel) show the net contribution of each system, hemisphere and
condition towards model predictions. Categorical groups of regions are based on Kim (2014). Colours denote the contribution of each feature

towards predictions as a percentage, with black indicating an entire feature set has been marked as irrelevant by the lasso algorithm
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reward processing (Heshmati & Russo, 2015) and has previously been

linked to anticipation of pleasant events (Choi, Lee, Ku, Yoon, &

Kim, 2014) and self-referencing (Lee et al., 2016) in schizophrenia.

Deep brain stimulation of the ACC has also been shown to modulate

anhedonia-like symptoms (Schlaepfer et al., 2008). To the best of our

knowledge, the putamen and STG have not been linked to anhedonia

in schizophrenia specifically, however have been previously reported

in depression, which has high comorbidity with anhedonia (Marder &

Galderisi, 2017). The putamen is connected to the motor cortices and

is thought to encode associations between stimuli, actions and

rewards (Balleine, Delgado, & Hikosaka, 2007). Notably, major depres-

sive disorder patients (MDD) with anhedonia have a two-fold age-

related putamen volume decrease in comparison with healthy controls

(Sacchet, Camacho, Livermore, Thomas, & Gotlib, 2017). Additionally,

the STG, primarily involved in auditory and language processing, has a

reduced response in first-episode MDD patients with anhedonia

when comparing probable vs. improbable rewards (Yang et al., 2016).

STG volume reduction has also been widely reported in schizophrenia

patients (Javitt & Sweet, 2015). Collectively, these findings may imply

that anhedonia leads to a lower anticipation for rewards upon per-

forming the required action, as reflected in changes within the puta-

men, STG and ACC.

Predictions of avolition, that is, a lower pursuit and persistence of

goal-directed activities (Marder & Galderisi, 2017), were predomi-

nantly informed by the target response in the right aMFG. This region

has been previously associated with processing of conflicting informa-

tion (Marini, Demeter, Roberts, Chelazzi, & Woldorff, 2016) and is

reported to have reduced activity under working memory load in

those at ultra-high risk for psychosis (Fusar-Poli et al., 2010). Target

responses in the left precentral and postcentral gyri also contributed

to the prediction, albeit to a lesser degree. Alterations in activity

within these sensorimotor regions may suggest that those with avo-

lition are required to make an increased effort in response to stimuli

which demand a physical action.

Predictions of attention scores were largely informed by the tar-

get response in the left aMFG, a region engaged in tasks requiring

divided attention (Salo, Salmela, Salmi, Numminen, & Alho, 2017). In

schizophrenia, activity in the left MFG during sustained attention

has been previously been shown to correlate with compound nega-

tive symptoms on the PANSS scale (Curtin et al., 2019). Patients

with brain tumours in the left MFG also show significant reductions

in flexible attention and cognition (De Baene et al., 2019). Volitional

or self-initiated shifts in attention in the absence of instructional

cues have been associated with both left and right MFG activity

(Bengson, Kelley, & Mangun, 2015; Gmeindl et al., 2016). Interest-

ingly, the thalamic response to the novel condition was also highly

weighted, which is known to filter distracting or conflicting informa-

tion (Pinault, 2011; Wolff & Vann, 2019). Given that participants

were instructed to ignore novel stimuli, the thalamus involvement

here may be inhibiting these distractors and allowing for increased

selective attention.

Our model for hallucinations was primarily driven by the target

response within the ventral attention network and the left TPJ, a

known critical node in the speech perception network implicated in

hallucinations (Chahine, Richter, Wolter, Goya-Maldonado, &

Gruber, 2017; Vercammen, Knegtering, den Boer, Liemburg, &

Aleman, 2010). The left TPJ has previously been used as a target area

for transcranial direct-current stimulation (tDCS), leading to a reduc-

tion in hallucinations in schizophrenia patients (Brunelin et al., 2012).

In turn, hallucinations following tDCS have been shown to correlate

with the functional connectivity between the left TPJ and left AI

(Mondino et al., 2016). This is consistent with our findings, which

identify both of these regions as highly predictive of hallucination

severity.

The ultimate goal of most machine learning studies is to devise a

computational model which is practicable, such as a screening or diag-

nostic tool which could augment the role of the clinician and possibly

detect precursor mechanistic dysfunction in the prodromal stage of

the disease trajectory. Whilst these early results may be promising,

the performance for all individual subscale models require further

optimisation and our findings need to be replicated in larger, more

diverse cohorts. In the interim, further studies investigating symptom-

specific circuitries may open new possibilities for informing the devel-

opment of future personalised treatments. In future, if we were to

obtain a robust brain mapping for each symptom based on consistent

replications of these findings, brain stimulation or pharmacological

interventions could be tailored for an individual based on their symp-

tom profile with dosages relative to the level of severity. This could

also provide opportunities for reverse translation into an array of

symptom-based animal models of schizophrenia.

4.2 | Methodological considerations

We employed a multi-modal fusion approach which has previously

been applied to neuroimaging data for combining different types of

structural and functional images (Calhoun & Adali, 2009; Calhoun &

Sui, 2016; Lahat, Adali, & Jutten, 2015). When building an integrative

model from a dataset comprising multiple distinct feature sets, there

are two general approaches for fusing these features to form a single

prediction. In an early fusion approach, features from each modality

can be merged prior to the learning process with the joint representa-

tion input to a single model providing a multimodal prediction (Snoek,

Worring, & Smeulders, 2005). Alternatively, in a late fusion approach,

a set of models can be trained on each feature set independently and

the unimodal predictions from each are combined to form an overall

multimodal prediction, typically through averaging or a secondary lin-

ear model. The key methodological advance presented in this study is

that we perform fusion not only on the basis of the data structure,

but also on the target variables. The psychometric tools used in clinical

practice, such as the SAPS and SANS, are by definition

multidimensional—they comprise a set of symptom subscales which

are assessed independently, then combined to obtain a composite

summary score. Our results suggest that within a machine learning

context, a late fusion of subscale predictions as per the original diag-

nostic framework provides greater specificity and accuracy than the
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early fusion equivalent of predicting the summary scores directly.

Together with the drawn region-based weight maps, this finding also

suggests that each symptom has a distinct functional anatomic pat-

tern, whereas models trained to predict positive and negative com-

posite scores directly were unable to capture this nuanced

information. In principle, we envisage that our approach of modelling

the symptom subscales as an ensemble could also be applied to the

diagnostic criteria for any other psychiatric disorder, given the requi-

site training data.

In a typical neuroimaging context, the number of available features

vastly outweighs the number of samples, a phenomenon known as the

curse of dimensionality (Bellman, 1961). This often leads to an over-

fitting of model parameters, which in turn may not generalise to new

samples (Arbabshirani et al., 2017). To address this issue, we chose to

adopt a multi-tier fusion tree which is conceptually similar to a well-

established approach known as stacked regression (Breiman, 1996).

This enabled us to iteratively reduce the dimensionality of the data

from the original voxel space whilst also improving model interpretabil-

ity by expressing the relevant features in more general terms of brain

regions and networks. As such, the functional anatomy which informs

model predictions is more interpretable by those familiar with the

pathology of the disease and relatable to other univariate studies.

Note that whilst some neuroimaging features may have a greater

contribution than others, all features with non-zero weights contribute

to the model predictions. Although a highly weighted feature is unlikely

to be a false positive given adequate signal-to-noise ratio (Schrouff &

Mour~ao-Miranda, 2018), the contribution of any one single feature

should be interpreted with caution. For example, although left TPJ

activity in the target condition may be of greatest importance in our

hallucinations model, this feature alone only contributes approximately

24% towards predictions. Given that the optimal solution for this model

also includes 17 other regions, the accuracy would likely decrease with-

out these additional features. By collapsing across conditions, hemi-

spheres or networks, we are able to summarise the contributions of

subsets of these features, but cannot fully comprehend the interactions

between them within the context of the whole feature set.

5 | CONCLUSION

In conclusion, we suggest that a shift from dichotomous labels

towards a multi-dimensional diagnostic approach which delineates the

severity of each individual symptom in a piecewise manner may be

more useful for parsing the underlying neurobiological causes. In turn,

this framework may help improve our understanding of how specific

symptoms relate to functional differences within the brain, in schizo-

phrenia or indeed any other psychiatric disorder.
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