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Simple Summary: Immunotherapy in glioblastoma has so far failed to yield a survival benefit. This
failure can be attributed to a paucity of immune cells at the tumor site which can be reinvigorated
to kill tumor cells. Therefore, driving effector immune cells such as cytotoxic T lymphocytes to the
tumor is a necessary pre-requisite of any effective immunotherapy approach. In this review, we will
discuss therapeutic approaches possible for trafficking T cells from the periphery to travel through
the blood–brain barrier and tissue of the brain to reach the tumor.

Abstract: Glioblastoma is an immunologically ‘cold’ tumor, which are characterized by absent or
minimal numbers of tumor-infiltrating lymphocytes (TILs). For those tumors that have been invaded
by lymphocytes, they are profoundly exhausted and ineffective. While many immunotherapy
approaches seek to reinvigorate immune cells at the tumor, this requires TILs to be present. Therefore,
to unleash the full potential of immunotherapy in glioblastoma, the trafficking of lymphocytes to
the tumor is highly desirable. However, the process of T cell recruitment into the central nervous
system (CNS) is tightly regulated. Naïve T cells may undergo an initial licensing process to enter the
migratory phenotype necessary to enter the CNS. T cells then must express appropriate integrins
and selectin ligands to interact with transmembrane proteins at the blood–brain barrier (BBB).
Finally, they must interact with antigen-presenting cells and undergo further licensing to enter
the parenchyma. These T cells must then navigate the tumor microenvironment, which is rich in
immunosuppressive factors. Altered tumoral metabolism also interferes with T cell motility. In
this review, we will describe these processes and their mediators, along with potential therapeutic
approaches to enhance trafficking. We also discuss safety considerations for such approaches as well
as potential counteragents.

Keywords: immunotherapy; glioblastoma; blood–brain barrier; central nervous system; T cells;
T lymphocytes

1. Introduction

Immune surveillance of the central nervous system (CNS) is essential for environ-
mental homeostasis and pathogen clearance. Without immune surveillance, opportunistic
infections in the CNS commonly develop [1]. However, the entry of immune cells into the
CNS is tightly controlled by the blood–brain barrier (BBB) and the blood–cerebrospinal
fluid (BCSF) barrier. These formidable barriers lack fenestrations, exhibit a low degree of
pinocytosis, and are sealed together by a network of intracellular junctions [2,3]. While
this close control is desirable in health to avoid runaway immune responses in the CNS,
restricted immune cell entry severely hampers the effectiveness of immunotherapy in
glioblastoma [4]. This is further complicated by the immunosuppressive tumor microenvi-
ronment (TME), which consists of endothelial cells, pericytes, fibroblasts, and regulatory
immune cells [5]. The TME drives effector immune cell exhaustion, thereby shielding solid
malignancies from immune attack [6]. While immune checkpoint inhibition (ICI) seeks to
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reverse this exhausted state and ‘release the brakes’ on regional T cells, it is notable that the
evaluation of resected stage IV gliomas are either devoid or demonstrate limited numbers
of tumor-infiltrating lymphocytes (TILs) [7,8]. This would suggest that ICI will struggle
owing to the lack of targets to reinvigorate. Indeed, initial trials of ICI in glioblastoma
have failed [9]. However, when ICI is combined with increased numbers of functional TILs
in pre-clinical models, long-term survival can be achieved [10,11]. Therefore, we require
therapeutic strategies that can both recruit effector cells to the tumor site and ensure they
remain functional.

While the CNS does host several immune cell classes, including T cells, these immune
cells are clustered away from the tumor-bearing parenchyma in regions such as the choroid
plexus, the meninges (containing the subarachnoid and perivascular spaces), and the
CSF [12–17]. The clinical implications of this clustering were recognized as long ago as
1923, where Murphy and Sturm confirmed Shirai’s initial finding that foreign tumors in
the parenchyma could grow, but tumors implanted close to the ventricles (and thus the
immune interfaces) were rejected [18]. Fortunately, immune responses in the CNS can be
bolstered by an adaptive response originating from the periphery. Medawar demonstrated
in 1948 that tumors implanted into brain tissue can be rejected following exposure to tumor
antigens outside of the CNS [19]. Recruitment of peripheral T cells into the parenchyma
also occurs in multiple sclerosis (MS) and its animal analogue experimental autoimmune
encephalitis (EAE) [20].

Even though adaptive immune clearance of tumors is possible, glioblastoma possesses
several mechanisms that suppress the recruitment and functioning of T cells. Glioblastoma
expresses decreased levels of lymphangiogenesis-promoting factors such as VEGF-C, reduc-
ing potential routes for T cell ingress, while the highly immunosuppressive tumor microen-
vironment (TME) blunts the response of any lymphocytes that reach the tumor [21–23].
Therefore, in this review we will discuss the physiological processes that drive T cell
trafficking from the periphery, tumoral infiltration, and potential therapeutic options for
their enhancement. We will also discuss safety considerations, given the potential for T cell
infiltration to drive inflammation and neurodegeneration in the CNS [24,25].

2. T Cell Trafficking from the Periphery to the Blood–Brain Barrier

The mechanism by which T cells leave the circulation and enter inflamed tissues is well
characterized and has been reviewed in detail elsewhere [26–28]. In brief, the expression of
selectins on endothelial cells results in the slowing and rolling of leukocytes. The leukocyte
crawls along the endothelial layer, where stimulating chemokines trigger the activation of
integrins, which ultimately result in the leukocyte being firmly captured [29–31]. Engage-
ment of endothelial adhesion molecules by integrins results in immune cells being drawn
to endothelial junctions, permitting their diapedesis (crossing) into the tissue [32]. T cell
trafficking across the BBB involves a similar process of rolling, capture, and diapedesis [33].
However, certain aspects of this process differ from the periphery. In the resting state, the
constitutive expression of selectin is largely absent in the CNS, with the exception of blood
vessels in the sub arachnoid space [34,35]. T cell rolling on the BBB is instead driven by
the cell surface integrin LFA-1, which binds to intercellular adhesion molecule-1 (ICAM-1)
on the endothelium. These T cells are captured and cross via G protein-coupled receptor
(GPCR) signaling [36].

In the pathological state, the release of inflammatory cytokines induces the expression
of chemokines and adhesion molecules that recruit effector T cells to the CNS [37,38]. Tran-
scription and expression of E- or P-selectins on the BBB adheres to P-selectin glycoprotein
ligand-1 on CD8+ T cells, inducing their slowing on the endothelial surface [39]. Binding is
again mediated by GPCR signaling, which activates the integrins LFA-1 and VLA-4 on the
T cells that bind to ICAM-1 and VCAM-1, respectively [40]. Other factors at the BBB also
interact with VLA-4, including transmembrane proteins described as junctional adhesional
molecules (JAM). So far, JAM-B and JAML have been implicated in CD8 chemotaxis—
blockade of JAM-B results in the reduced CNS infiltration of CD8+ T cells [41,42]. Atypical
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chemokine receptor-1 (ACKR1) also mediates trafficking in the inflammatory state, trans-
porting pro-infiltrative chemokines to the luminal aspect of the BBB [43]. Interleukin (IL)-1
signaling in BBB endothelial cells is associated with upregulated expression of VCAM-1,
ICAM-1, and ACKR1 and therefore may offer a potential strategy for enhancing T cell
capture if delivered intra-tumorally [44]. Frewert et al. reported that intra-tumoral infusion
of IL-1β or interferon-γ via convection enhanced delivery enhanced the number of CD4+

and CD8+ TILs in a rat glioma model [45]. This may therefore be a rational combinatorial
approach alongside ICI.

It should be noted that the expression of these adhesion molecules is also influenced
by perivascular stromal cells such as regional pericytes [46,47]. In health, these cells co-
ordinate with endothelial cells to control both the development and permeability of the
vasculature [48]. Pericytes also inhibit endocytosis by endothelial cells, limiting transcel-
lular routes of migration [49,50]. Indeed, mice deficient in pericytes display significantly
increased expression of VCAM-1 and ICAM-1 on the BBB endothelium, resulting in a
mass influx of leukocytes [51]. In the tumor setting, overgrowth of pericytes derived from
glioma stem cells (GSCs) results in the blockage of the entrance of therapeutic drugs such
as temozolomide (TMZ) [52]. Pericyte coverage is inversely correlated with survival in
patients with glioblastoma following chemotherapy [53]. Interestingly, selective targeting
of these cells using ibrutinib was shown to enhance delivery of TMZ in orthotopic models
of glioma by disrupting the blood–tumor barrier [53]. This may also have a double effect
of interrupting the pericyte secretion of CCL5, which acts on CCR5 on glioblastoma cells,
inducing resistance to TMZ by promoting DNA damage repair mechanisms [54]. However,
pericytes can re-organize themselves to cover areas of deficient coverage and their function
may be compensated for by other local cells such as astrocytes [55].

The CCL5–CCR5 axis is also associated with enhanced regulatory T cell recruit-
ment [56]. CCR5 antagonists such as maraviroc (licensed for HIV-1) have been found
to deplete regulatory T cells, which express CCR5/CXCR4 ratios differently to T effec-
tor cells [57,58]. Blockade of CCR5 has also been demonstrated to reduce the growth of
orthotopically injected colon cancer cells by limiting cancer-associated fibroblast accumu-
lation. Maraviroc has also been shown to reverse CCL5 resistance to TMZ and is also
BBB penetrable with a favorable safety profile, making this an agent of significant interest
as part of future combinatorial approaches [54,59,60]. CCR5 also binds CCL3 and CCL4
and the interaction between CCR5 and its ligands appears to have location-specific pro
or anti-tumor effects [61]. For example, CCL4 can help to recruit cytolytic CCR5+ T cells
in esophageal squamous cell carcinoma, but the CCL4–CCR5 interaction can enhance the
invasion ability of glioblastoma in vitro [62,63].

To determine how best to drive T cells into the CNS, we need to identify the optimal
pro-infiltrative phenotype of lymphocytes. A high expression of integrins and chemokine
receptors as seen in autoimmune disease is likely beneficial for enhancing T cell chemotaxis
in glioblastoma. When reviewing T cell phenotypes that predominate in autoimmune
diseases, CNS-infiltrative lymphocytes are predictably dominated by effector memory
T cells (CD62LLo and CCR7Lo) [64–69]. While sensitizing T cells in the periphery would be
ideal, the high degree of heterogeneity in glioblastoma makes it impossible to identify a
universal target [70]. A more optimal approach would be trafficking antigen-naïve T cells
that can interact with antigen-presenting cells (APCs) that endogenously present tumor
antigen. This strategy benefits from the fact that T cells do not require target antigen
recognition before they are able to cross the BBB [71]. In glioblastoma, T cells primed in
tumor-draining cervical lymph nodes strongly upregulated VLA-4, leading to preferential
infiltration of the CNS [72]. Therefore, activating tumor-antigen naïve T cells to express
VLA-4 will help to achieve this objective. Administration of IL-12 to mice bearing multiple
tumor types appeared to enhance the induction of LFA-1 and VLA-4 and subsequently T cell
migration, resulting in tumor regression [73]. However, this response differed across tumor
types, with IL-12 resulting in largely CD4 migration in fibrosarcoma but pre-dominantly
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CD8 migration in ovarian cancer, and further work is required to determine its impact
in glioblastoma [73].

While antigen specificity is not a pre-requisite of migration into the CNS, it is interest-
ing to note that adoptively transferred tumor-naïve T cells appear to undergo a period of
residence in the lungs, where their gene expression profile switches to a migratory phe-
notype [74]. Determining mediators of this ‘licensing’ process may therefore yield useful
therapeutic targets of interest. Before entering the lungs, adoptively transferred T cells
predominantly migrate towards homeostatic chemokines CCL19 and CCL21 (expressed in
bronchus-associated lymphoid tissues). After transiting through the lungs, T cell homing
shifts towards chemokine gradients associated with inflammation such as CXCL11 and
CCL5 [74]. CXCL11 binds the chemokine receptor CXCR3 (expressed on effector T cells),
and this binding can promote T cell infiltration into tumors [75]. Conversely, inhibition of
CXCR3 binding results in reduced invasion of effector T cells [76].

CXCR3 binds three ligands: CXCL9, CXCL10, and CXCL11. While CXCL11 binds
CXCR3 with higher affinity, it also can induce receptor internalization and promote a regu-
latory T cell lineage [75]. Instead, CXCL10 may be a more suitable therapeutic approach, as
CXCL10 induces moderate receptor internalization and still enhances T cell infiltration [77].
This was demonstrated in intracranial melanoma models, where the absence of CXCL10
was associated with decreased numbers of CD8+ TILs [78]. Although glioma does express
CXCL10, this is accompanied by the expression of dipeptidylpeptidase (DPP)-4, which
cleaves CXCL10 [79]. DPP-4 blockade has been shown to increase the numbers of TILs, but
when considering therapeutic blockade, it must be noted that DPP-4 also inhibits glioma
proliferation independently of its enzymatic activity [80,81]. An alternative approach to in-
ducing expression of CXCL10 is the use of poly-ICLC, which has been found to significantly
increase the frequency of TILs when combined with peptide vaccination against glioma [82].
An overview of peripheral T cell chemotaxis and BBB penetrance is shown in Figure 1.

Figure 1. (A) The BBB consists of endothelial cells held together by tight junctions surrounded by pericytes and astrocytes.
(B) T cell chemotaxis across the BBB is facilitated by expression of tethering molecules (P-selectin, ICAM-1, VCAM-1, etc.)
on endothelial cell surfaces that bind to integrins on circulating T cells (LFA-1, α4β1, etc.) to slow and allow cells to roll
across the membrane surface. (C) T cells can cross the endothelial cells either between cells (paracellular) through tight
junctions or through individual cells (transcellular) to migrate into the brain. Produced using Biorender.
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3. Blood–Brain Barrier Specific Targets

Following the shift towards a pro-infiltrative phenotype, T cells must cross the BBB.
Although glioblastoma is a disease state in which the BBB is disrupted, regions of the
tumor are likely surrounded by intact portions of barrier [83]. These privileged regions
may act as the site of regrowth, shielded from immunotherapeutic attack [8,83]. Such
privileged regions correspond with the non-contrast enhancing infiltrating edge, which
can form the site of recurrence following core resection [84]. Infiltrating glioma cells at
the leading edge demonstrate upregulated fibroblast growth factor-mediated signaling
that promotes tumorigenesis [85]. The changes in cellular phenotype at the leading edge
are driven by histone deacetylase signaling from the tumor core [86]. This results in a
permanent alteration at the border to a pro-infiltrative milieu of glioma-initiating cells,
which does not reverse following resection of the core [86]. Immune cell populations differ
at this interface zone also. Spatial single-cell RNA-Seq analysis performed by Darmanis
et al. revealed that tumor associated macrophages (TAMs) dominated the core while
brain-derived microglia dominated the peritumoral zone [87]. These both have key roles
in T cell activity at the tumor site. Macrophages can express the cytokine TGF-β, which
enhances glioblastoma cell growth, migration, and invasion and downregulates antitumor
immunity [88,89]. Microglia in the peritumoral zone show an increased expression of
ligands for T cell exhaustion-associated receptors such as PD1 and CTLA4 [87]. Microglia
also express CCL2 and CCL5 which, as mentioned previously, enhances regulatory T cell
recruitment and myeloid-derived suppressor cells [56,90]. Notably, CCL5 also acts as an
auto-stimulatory signal for GBM cells by binding to the non-conventional receptor CD44,
resulting in increased cell survival, invasion, and proliferation [91]. Therefore, targeting this
zone of recurrence and immune exhaustion protected by intact barrier is key to enhancing
the efficacy of immunotherapy. However, achieving this requires CTLs to traffic through
the BBB.

The BBB is a highly regulated physical and metabolic barrier which extends from
the CNS microvasculature to the endothelial cells of postcapillary venules [92]. During
neuro-inflammation the permeability of the endothelial cells changes to allow for the
entrance of lymphocytes into the CNS. This is achieved by changes in BBB junctional
morphology that allow lymphocytes access either by squeezing between endothelial cells
(paracellular diapedesis) or crossing through pores in the endothelial cell membrane
(transcellular diapedesis) [93]. Recent single-cell RNA sequencing of the neuro-vasculature
also shows enhanced endothelial cell expression of MHC class II genes in the disease state.
The endothelial cell signature also changes from CNS specific to mirroring the periphery,
thereby promoting immune trafficking from the blood (preprint [94]). The endothelial
cells of the BBB are sealed by adherens junctions, a continuous series of complex tight
junctions, and recently discovered tricellular junctions [95]. In the inflammatory state,
these tricellular junctions have been suggested to be the primary site of cellular migration,
through the downregulation of proteins (tricellulin and angulins) which normally maintain
their morphology [95,96]. Interestingly, recombinant CCL2 and CCL5 administration was
demonstrated in vitro to enhance T cell diapedesis through tricellular junctions. This may
therefore offer a therapeutic strategy specifically to enhance paracellular crossing at the
BBB, although their effect on recruiting regulatory T cells must also be considered [95,96].

Tight junctions can also be targeted to allow for entry of therapeutic agents [97,98].
These junctions are maintained on the basolateral side by the transmembrane adhesion pro-
teins VE-cadherin and platelet endothelial cell adhesion molecule (PECAM)-1 [99,100]. The
apical side of endothelial tight junctions is secured by occludin and claudin-1/3/5/12 [101].
Together, these proteins seal the tight junctions together by binding with each other on
opposite endothelial cells, reducing the intercellular distance [101]. Claudin-5 is the most
commonly expressed protein in tight junctions [101], and can be targeted with recombinant
protein inhibitors such as the non-toxic C-terminal domain of the Clostridium Perfringens
enterotoxin [102]. This can reversibly open endothelial tight junctions and allow ingress
of therapeutic agents. Targeting of claudin-5 in vitro results in reduced paracellular di-
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apedesis of lymphocytes while increasing transcellular diapedesis [103]. Other studies
have also shown that knockout of adhesion molecules such as PECAM-1 does not result
in enhanced paracellular movement, but instead increases migration via cell membrane
channels [104]. Taken together, it becomes apparent that functional tight junction regulating
proteins are required for paracellular diapedesis, and that disruption of these proteins may
shift trafficking towards endocytic lymphocyte migration patterns similar to those found
in neuroinflammatory CNS states [93].

The process of transcellular diapedesis is mediated by endocytosis at the endothelial
cell membrane. This endocytosis occurs through vesicles containing caveolin (Cav)-1,
which are increased in number during disease states such as EAE [105,106]. Regions of the
BBB rich in Cav1 upregulate expression of adhesion receptors such as ICAM-1, capturing
T cells at regions of the BBB where endocytic vesicles are present [107]. Interestingly, in
inflammatory conditions such as EAE, ICAM-1 is highly expressed on the endothelium,
and this over-expression promotes transcellular diapedesis. This contrasts with the resting
state where low/intermediate expression of ICAM-1 favors paracellular diapedesis [108].
Therefore, promoting the expression of LFA-1 on T cells which can bind to over-expressed
ICAM-1 may enhance T cell trafficking (therapeutic approaches described in the previous
section). However, whether this effect also extends to CD8+ T cells in the context of
glioblastoma is unclear.

Differential trafficking of T cell subsets was also demonstrated by experiments using
Cav1−/− mice which induced almost total loss of Th1 transcellular migration but did not
impair migration of Th17 cells [109]. In EAE, Th17 T cells have been demonstrated to
use CCR6 to bind CCL20 produced by the choroid plexus epithelial cells to gain access
to the ventricular CSF [110,111]. When considering the CCR6–CCL20 axis for therapeutic
targeting in glioblastoma, CD8+CCR6+ T cells also migrate towards CCL20 and blockade
of CCL20 or CCR6 has also been demonstrated to reduce neuroinflammation in murine
models of subarachnoid hemorrhage [112,113]. However, over-expression of CCL20 by
tumors also correlates with tumor progression in multiple cancer types, as well as decreased
survival [114]. Importantly though, the tumor-promoting effects of CCR6 signaling appear
to rely on CCR6+ stromal cells but not CCR6+ immune cells [114]. Upregulation of CCR6 on
immune cells may therefore be the more prudent therapeutic approach for enhancing T cell
infiltration while maintaining tumor control. Transforming growth factor (TGF)-β has been
shown to promote CCR6 expression on human CD4 T cells but is also implicated in the
promotion of regulatory FOXP3 expression [115]. However, TGF-β priming also generates
a fractional population of CCR6+FOXP3− cells [116]. Further selection of this population
would therefore be desirable to achieve a pro-infiltrative, effector T cell phenotype. Models
of EAE have also found that increased expression of CCL19 and CCL21 from mononuclear
inflammatory cells binds CCR7+ T cells in the CSF [117]. CCL19 has been shown to
enhance the frequency of antigen responsive IFN-γ+ CD8+ T cells in viral infection and
CCR7 chemotaxis may be stimulated in vitro using by-products of coagulation factor XIIa
(high-molecular-weight kininogen domain 5) [118,119]. However, CCL19 may also promote
the migration of regulatory T cells (CD4+CD25+FoxP3+) and therefore its usefulness in
glioblastoma is unclear [120].

While these mechanisms are of interest therapeutically to allow T cells to cross the
BBB from the periphery, this is only the initial step in accessing the parenchyma. Inter-
action with professional antigen-presenting cells in the perivascular spaces is a key step
before penetration of the glia limitans, which lines the blood vessels and the surface of
the brain [121].

4. The Glia Limitans—Accessing the Parenchyma

Between the outer BBB and the parenchyma lies the glia limitans. The glia lim-
itans is formed by astrocyte foot processes associating with the basal lamina of the
parenchyma [110]. It is divided into two membranes: the glia limitans perivascularis
(surrounding blood vessels) and the glia limitans superficialis (covering the surface of the
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brain) [122]. In much of the brain, these two membranes lie so closely together that they are
indistinguishable, but beyond the capillaries at the venules, inflammation can cause these
two membranes to separate, forming a perivascular space. This space communicates with
the CSF and allows for APCs to present antigens to entering T cells [123]. This interaction
is critical in allowing T cells to access the parenchyma—indeed, the effects of T cells in
EAE only begin once immune cells have crossed the glia limitans [124]. The APC–T cell
interaction drives the production of further pro-inflammatory cytokines which triggers
the recruitment of more immune cells [111,125]. Interestingly, while the initial T cells
that enter these perivascular spaces tend to have increased expression of CCR6, further
recruitment occurs in a CCR6-independent manner [110,111]. This would suggest that
CCR6+ T cells form part of an initial ‘licensing’ step and that their interaction with APCs in
the perivascular spaces facilitates further entry of T cells in a non-CCR6-specific manner.

In normal physiology, T cell crossing at the glia limitans is mediated by the expression
of laminins [126]. For example, the parenchymal membrane of the glia limitans contains
α1 and α2 laminins [127], which CD4+ T cells are unable to bind in the non-inflammatory
state. However, in EAE, CD4+ T cells can bypass this control mechanism by using matrix
metalloproteinases (MMPs) which disrupt the astrocytic foot processes, breaking down
barrier integrity and allowing for T cell ingress [124]. While this might suggest that MMP
agonism may be an attractive prospect for opening the glia limitans, MMPs are involved in
the angiogenesis and invasion of glioma [128]. Inhibition of MMP was even trialed using a
broad-spectrum MMP inhibitor, but this resulted in widespread reports of musculoskeletal
toxicity due to on-target, off-tumor effects [129,130]. Given these experiences, it is unlikely
that MMP agonism in glioblastoma will be a desirable therapeutic target.

Another mediator of T cell entry into the parenchyma is CXCL12. In murine models,
T cells have been noted to be held in perivascular spaces due to expression of CXCL12 [131].
This ‘hold’ is released in inflammatory conditions, as increased levels of IL-17 drive the
expression of CXCR7 on endothelial cells, resulting in the internalization of CXCL12 [132].
This leads to increased CXCR4 expression on T cells and subsequent T cell entry into the
parenchyma [131,132]. However, when considering the downregulation of CXCL12 as
a therapeutic strategy, it is worth noting that recent studies evaluating T cell responses
to viral infection in vitro have found that CXCL12 at the BBB endothelium can promote
CD8+ migration across the BCSF interface, suggestive of a location-dependent role [133].
A summary of these selected targets and therapeutic considerations is shown in Table 1.

Table 1. A summary of selected factors that may enhance trafficking and infiltration of T cells across the BBB.

Interactor Behavior Therapeutic Considerations References

T cell processes

LFA-1
T cell integrin which binds ICAM-1. Promotes
T cell capture and rolling in inflammatory and

non-inflammatory state.

IL-12 induces LFA-1 expression and can enhance
T cell migration in several murine malignancies. [36,73]

VLA-4
(α4β1)

Integrin on T cell which binds VCAM-1 in the
inflammatory state and interacts with other

transmembrane proteins (JAM-B, JAML, etc.).

IL-12 induces LFA-1 and VLA-4 expression and
enhances T cell migration in several murine

malignancies. Effect may be
malignancy dependent.

[41,42,73]

CXCL9: Polarizes T cells to a
Th1/Th17 phenotype.

Mediated lymphocyte infiltration and suppresses
tumor growth in cutaneous fibrosarcoma. [134]

CXCR3
(3 ligands)

CXCL10: Only moderately induces CXCR3
internalization and enhances T cell infiltration.

DPP-4 blockade increases TILs but is also
tumorigenic (independent of enzymatic

function). Combinatorial poly-ICLC enhances
CXCL10 expression.

[81–83]

CXCL11: Binds CXCR3 strongly and induces
receptor internalization. Promotes lineage of regulatory T cells. [75]
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Table 1. Cont.

Interactor Behavior Therapeutic Considerations References

CCR4 CCL2, CCL22 (and others): Overexpressed on
glioma cells, recruits regulatory T cells.

CCR4-CCL22 signaling recruits regulatory T
cells. Blockade of CCR4 in vitro can reduce
regulatory T cell migration. TMZ can also

mitigate production of CCL2.

[135,136]

CCR5
Binds CCL3, CCL4, and CCL5. May help to
recruit cytolytic T cells but also regulatory

T cells.

CCL4 can help recruit cytolytic CCR5+ T cells in
esophageal squamous cell carcinoma but
CCL4–CCR5 interaction can enhance the
invasion ability of glioblastoma in vitro.

CCL5 is also associated with enhanced T cell
diapedesis at tricellular junctions. However,
CCL5 also binds CD44 on GBM cells to drive
proliferation and survival and is produced by

perivascular stromal cells such as pericytes.
Blockade of CCR5 (maraviroc) may limit

cancer-associated fibroblast accumulation.

[54,62,63,91,95]

CCR6 Binds CCL20 expressed at the choroid plexus.
CD8+ T cells migrate to CCL20 in murine SAH.

TGF- β promotes CCR6 expression but also is
implicated in the promotion of FOXP3+ cells.

However, a fraction of the population is
CCR6+FOXP3−. CCR6 T cells may also be

involved with licensing further recruitment to
perivascular spaces.

[115,116]

CCR7 Present on activated CD8 T cells (and central
memory T cells).

Interacts with CCL19 and may mediate integrin
activation on immune cells or diapedesis.

Chemotaxis may be enhanced by a peptide
derived from the byproduct of coagulation factor

XIIa cleavage. May also promote regulatory
T cells.

[117,119,120]

Blood–brain barrier processes

E/P-
Selectin

Expressed in inflammatory state only. Binds
PSGL-1+ CD8 T cells, slowing them on

BBB endothelium.

Expression enhanced in response to
inflammatory cytokines (e.g., IL-1 or TNF α).

IL-1 has been delivered via CED in rat models
of glioma.

[45,137]

Claudin-5,
PECAM-1

Commonly expressed proteins involved in
sealing tight junctions at BBB.

Modified Clostridium perfringens enterotoxin
can reversibly open tight junctions. May drive

T cells to transcellular migration.
[93,103,104]

ACKR1 Trafficking of pro-infiltrative chemokines from
abluminal to luminal surface of BBB.

IL-1 signaling associated with upregulated
expression ACKR1 (along with VCAM-1,

ICAM-1). Trialed using CED in rat glioma.
[45]

Caveolin-1 Expressed in endocytic vesicles at BBB and acts
as a mediator of transcellular diapedesis.

Regions of BBB rich in CAV-1 are also rich in
ICAM-1. Enhancing ICAM-1 on BBB (e.g., via

IL-1) may capture more T cells that can undergo
para and transcellular diapedesis.

[108]

CXCL12
Acts as a T cell, holding factor cells in

perivascular spaces. Expression of CXCR7 on
endothelial cells internalizes CXCL12.

IL-17 drives expression of CXCR7 on endothelial
cells and CXCR4 on T cells which licenses their
entry into the parenchyma. However, CXCL12

may promote CD8+ migration across BCSF
barrier—may be a location-specific role.

[131–133]

This table only provides selected examples and is not exhaustive.
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5. T Cell Trafficking through the Parenchyma

Once past the glia limitans, effector T cells must reach and infiltrate the tumor to
exert their cytotoxic effect. As discussed in the introduction, glioblastoma can restrict
T cell trafficking due to the downregulated expression of VEGF-C, resulting in restricted
lymphangiogenesis [22]. Notably, in patients treated with neoadjuvant anti-PD-1, VEGF-C
expression was highly correlated with increased infiltration of T cells [138]. Thus, restoring
levels of lymphangiogenesis-promoting factors such as VEGF-C could also enhance T cell
homing and infiltration to the tumor. This is supported by the findings of Song et al.,
who demonstrated that intra-cisterna magna injections of an adeno-associated viral vector
coding for VEGF-C could remodel meningeal lymphatic vessels in murine models of
glioma [22]. Further enhanced expression of VEGF-C in lymphatic endothelial cells could
potentiate the effect of checkpoint blockade due to enhanced T cell infiltration [22].

T cell motility is also dependent on metabolic pathways that are often usurped by
rapidly proliferating tumors. Tumor cells demonstrate increased glucose uptake and lac-
tose production, even in the presence of oxygen and functioning mitochondria (known as
the Warburg effect) [139,140]. This affords the tumor and other rapidly proliferating cells
essential anabolic precursors for cell proliferation [140]. The increased glucose demand
by tumor cells therefore decreases the amount available for circulating T cells to maintain
effector and migratory function [141]. Aerobic glycolysis is the main source of ATP pro-
duction in leukocytes, which is required for the energetic demands of migration [142,143].
Inhibition of the T cell glycolytic pathway through administration of 2-DG and rapamycin
causes a decrease in naïve T cell motility, demonstrating the importance of glucose in T cell
homing [144,145]. The associated build-up of lactate caused by the Warburg effect also
results in decreased migration of CD4+ T cells and a loss of cytolytic function of CD8+

T cells by interfering with T cell glycolysis [145–148]. However, this effect can be reversed,
as demonstrated in an animal model of peritonitis where antibody-mediated blockade of
lactate transporters on T cells allowed them to maintain their migratory potential [149].
Expression of CTLA-4 decreases the expression of the glucose transporter GLUT-1 on
T cells, and further decreases effector function, implying that combinatorial approaches
using checkpoint blockade may aid with T cell trafficking as well as reinvigoration of
function [142,150]. However, recent work suggests that exhausted human CD8+ T cells
may actually become more mobile [151]. CTLA-4 signaling can lead to a RAP1-mediated
increase in LFA-1 binding, which can induce migration [152]. This has potential impli-
cations for considering which form of ICI would best work with a tumor where T cell
trafficking poses a significant challenge. An overview of the metabolic pathways limiting
T cell efficacy in glioblastoma is shown in Figure 2.

Another mediator of T cell glycolysis is the PI3K/AKT/mTOR pathway, whose
activation can also downregulate the expression of adhesion and migration molecules
CD62L, CCR7, and S1P1 in CD8+ T cells [142,153]. Loss of S1P1 has been shown to
mediate T cell sequestration in bone marrow in glioblastoma, while S1P1+ cells are resistant
to sequestration and can return into the circulation [142,154–156]. Therefore, reversing
sequestration will be critical for future immunotherapy efficacy and is currently the subject
of ongoing therapeutic investigation [157]. While one approach may be to inhibit the
PI3K/AKT/mTOR pathway, this inhibition must be selective, as AKT possesses three
isoforms which have varying pro- and anti-tumor effects. AKT signaling also plays an
important role for the development of effector-like memory CD8+ T cells necessary for
tumor immune surveillance [158]. Interestingly, recent work has described small-molecule
inhibitors that may be capable of targeting pathogenic AKT isoforms only (AKT1 and
AKT2) while leaving the tumor-suppressive functionality of AKT3 intact [159,160]. Indeed,
specific AKT1 and 2 inhibition has been associated with enhanced central memory CD8+

T cell proliferation with prolonged cytokine and Granzyme B production, making this a
potential future therapeutic strategy [158–161].
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Figure 2. Glioblastoma effects on T cell metabolism and motility. As a rapidly dividing tumor,
glioblastoma rapidly takes up glucose and produces lactate (the Warburg effect). Lack of glucose
results in decreased GLUT1 binding (also downregulated by CTLA4) and downregulates effector
function and motility. Increased lactate is internalized in T cells, where it also inhibits glycolysis
and interferes with cytoskeleton rearrangement, resulting in decreased T cell migration. Produced
using Biorender.

6. The Tumor Microenvironment

Once T cells traffic past the BBB and through the parenchyma, they will encounter the
highly immunosuppressive tumor microenvironment. This is made up of regulatory T cells
(CD4+CD25+FOXP3+), tumor-associated macrophages (TAMs) and myeloid-derived sup-
pressor cells (MDSCs), as well as other stromal cells such as GSC-derived pericytes [23,162].
These can all work to suppress effector T cell function. Regulatory T cells induce T cell
exhaustion and apoptosis, signaling via programmed death-ligand 1 (PD-L1), cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4), lymphocyte activation gene 3 (LAG-3), T cell
immunoglobulin and mucin domain-containing protein 3 (TIM-3), and others [163,164].
They also can dampen the production of inflammatory cytokines and CTL proliferation by
downregulating interleukin-2 and interferon-γ [165]. Gliomas are adept at recruiting regu-
latory T cells to the microenvironment by over-production of factors such as indoleamine
2,3 -dioxygenase-1 (IDO-1) [166]. As mentioned previously, GSC-derived pericytes also
secrete CCL5, which can promote the recruitment of regulatory T cells to the TME [54].
Stromal cells in the microenvironment also produce highly immunosuppressive cytokines,
such as transforming growth factor β (TGFβ) and interleukin-10 (IL-10) [167,168].

Despite the numerous targets for blockade, it is notable that ICI and the interruption
of pro-tumor metabolic pathways have failed as a monotherapy [9,169]. Increasingly, atten-
tion is turning towards combinatorial therapies, where multiple drivers of T cell exhaustion
can be blocked simultaneously [170]. This includes using bispecific antibodies against
TGF-β and PD-L1 or against PD-L1 and the anti-agonist CD27 [171–173]. These approaches
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are currently being evaluated in Phase I trials in advanced solid tumors (NCT04429542,
NCT04440943). Cytokine modulation approaches are also a potential avenue for enhancing
T cell activity in the TME, as seen in ‘armored’ CAR-T constructs. The addition of IL-12,
IL-15, or IL-18 along with antigen specificity to T cells appears to result in greater CTL
activity and anti-tumor efficacy [174–176]. A high percentage of regulatory T cells in the
peripheral blood of GBM patients express CCR4 compared to controls (74 vs. 43%) [135].
CCL4 binds CCL22 (and others), which has been shown to be overexpressed in freshly
resected human glioma cells, and blockade of CCR4 in vitro can significantly reduce
regulatory T cell migration [135]. Targeting fibroblast activation proteins or introduc-
ing heparinase-expressing agents may also help to disrupt immunosuppressive stromal
elements [146,177,178]. Intratumoral APCs are also necessary to stimulate and retain infil-
trating lymphocytes at the tumor site, as well as carrying antigens to draining lymph nodes
and cross priming peripheral CD8 T cells [179–181]. The administration of intratumoral
FMS-like tyrosine kinase 3 ligand (Flt3L) and poly I:C has been shown to expand and ma-
ture dendritic cell precursors, resulting in greater antitumor efficacy when combined with
immunotherapies such as PD-L1 blockade or oncolytic herpes simplex viruses [179,182].

Standard-of-care therapies also can help drive a more potent immune response. Temo-
zolomide (TMZ) is an alkylating chemotherapy whose main function is to induce DNA
double-stranded breaks, resulting in tumor cell death [183]. Interestingly, TMZ can also
help to reduce the numbers of peripheral regulatory T cells, as well as interrupting their
migration [136,184]. In disease states such as glioblastoma, tumor cells and platelet-derived
growth factor receptor beta (PDGFRβ)-expressing cells of the neurovascular sub-units
(such as pericytes and perivascular fibroblast-like cells) produce CCL2 to recruit regulatory
T cells and dampen the effector response [185]. TMZ interrupts the CCL2–CCR4 axis,
thereby reducing this effect [136,184]. Combining immunotherapy with radiotherapy also
can help to polarize the T cell response to a cytotoxic phenotype by inducing greater
T cell receptor diversity and expanding the numbers of tumor-infiltrating lymphocytes
and effector memory T cells [186]. In pre-clinical murine models of glioma, radiotherapy
combined with antibodies against markers of exhaustion such as TIM-3 and PD-1 was able
to produce long-term survival [11].

7. Modeling the BBB

Animal and in vitro models have contributed greatly to our knowledge regarding
the cell and protein interactions required to cross the BBB. Rudimentary animal models
from the 1980s first established how BBB permeability could change in response to sys-
temic compounds by tracking the CNS uptake of Evan’s Blue dye following intravenous
infusion [187–190]. These models established protocols to visualize membrane cellular
components and tissue hierarchy through fluorescent microscopy and histology, allowing
for the elucidation of fundamental mechanisms behind membrane permeability. Such
models included mice with proteins essential for T cell chemotaxis across the BBB knocked
out, including tight junction proteins claudin 5 [100] and occludin [191]. Unfortunately, full
knockout of these proteins results in non-viable pups or other dysfunctional phenotypes,
suggesting the importance of tight junction proteins in development. Additional knockout
mice focusing on proteins involved in T cell rolling, p-selectin, and its ligand PSGL-1 [192]
were developed and confirmed less BBB breakdown and leukocyte trafficking into the
CNS. Similarly, the use of antibody natalizumab to block the α4 subunit on T cells has been
successful in preventing BBB chemotaxis in MS [193]. Genetic models targeting pericyte
and astrocyte function have also been generated to establish how these cell types support
BBB formation in development and regulate tight junctions in injury and disease. The use
of two-photon microscopy has allowed for imaging at depths up to 1mm, but real-time
high-resolution imaging and cell tracking capabilities are limited. Animal models closely
mimic BBB features by including all cell types within the vascular interface, fluid flow
and biochemical concentrations. However, there are still challenges translating in vivo
finding to clinical significance. Genetic, molecular, and immunological differences between
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humans and rodents, as well as high cost and ethical concerns with animal testing, have
generated a need for robust in vitro models.

In vitro models of the BBB range from simple endothelial cell monolayers to complex
three-dimensional systems with fluid flow and ionic gradients [194,195]. These models
have the advantage of using human cells as well as being cost effective and allowing for
high-throughput screening of a variety of different conditions or molecules. Transwell,
hydrogels, and microfluidic devices with three or four different cell types have been
created in attempts to best mimic native BBB function. Simplified in vitro models allow
for researchers to specifically modify or track elements of the BBB. Cell types used in
these models have traditionally been primary brain endothelial cells or immortalized cell
lines. Immune factors affecting BBB permeability have been most studied with BECs due
to their accurate expression of chemokine and cytokine receptors. Interestingly, these
models found CCL2 to cause redistribution of tight junction proteins, such as claudin-5 and
occluding, under physiological and pathological conditions [196,197], which gives insight
into the mechanism of increased T cell chemotaxis during inflammation and elevated
CCL2. Brain-cancer-specific models have focused on integrating vasculature and tumor
cells to test the toxicity of therapeutics prior to animal studies [198,199]. These models
recapitulated the three-dimensional structure of a brain tumor but used lung fibroblasts,
HUVECs, and gelatin, which may not accurately represent the blood–brain barrier and
brain microenvironment. The development of induced pluripotent stem cells (iPSCs)
has allowed for genetically identical personalized in vitro models to test drug and cell
interactions with BBB of specific individuals and disease conditions [200]. Overall, both
in vivo and in vitro models of the BBB have limitations but can provide valuable insight to
improve T cell chemotaxis in GBM.

8. Safety

While this review has largely focused on strategies by which T cells can be recruited
and restored to a cytotoxic effector status, it must be noted that rapid increases in acti-
vated T cells in the circulation can potentially lead to cytokine release syndrome (CRS),
mediated by the release of pro-inflammatory cytokines such as IL-6 [201]. Therefore, when
considering therapies that will increase circulating activated T cells and subsequent CNS
T cell infiltration, careful consideration must be given to the safety of any such approach.
Such therapies may lead to systemic and neurological complications, even when not used
specifically to treat CNS malignancies.

This is demonstrated by the example of clinically used therapeutics such as ipili-
mumab, which re-invigorates T cells by blockade of CTLA-4 [202]. Ipilimumab has been
associated with pituitary inflammation (hypophysitis), occurring in up to 17% of patients
receiving ipilimumab treatment [203,204]. Similar syndromes are also observed when
using anti-PD-1 and anti-PD-L1 therapies, albeit at a lower frequency compared to anti-
CTLA-4 [205]. The mechanism of how ipilimumab causes hypophysitis remains unclear,
but it is speculated that ipilimumab can release the brakes on T cells that target and destroy
pituitary cells, or that expression of CTLA-4 on pituitary cells leads to complement fixation
mediated by ipilimumab, resulting in the destruction of pituitary cells [206,207]. In rarer
circumstances (less than 0.2% of patients), ICI, especially ipilimumab or combination ipili-
mumab/nivolumab (anti-PD-1), has caused aseptic meningitis and encephalitis [208–212].
Like with hypophysitis, the exact mechanism is unclear. However, in the case of encephali-
tis, there is evidence that the effect is autoimmune in origin, as some patients treated with
ICI exhibit autoantibodies to the NMDA receptor, a characteristic of other autoimmune
encephalopathies [213,214]. ICI has also reportedly induced new CNS demyelination and
exacerbated existing CNS demyelination in MS patients [215,216]. These rare, but serious
neurological deficits resulting from systemic ICI emphasize the need for careful monitoring
of patients receiving therapies that enhance T cell trafficking and function.
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The experience of treatments using adoptively transferred chimeric antigen receptor
(CAR) T cells in extracranial and intracranial malignancies can also be illustrative for
potential systemic and neurological toxicities. The most common CAR-related toxicity is
cytokine release syndrome (CRS), occurring in up to 37–93% of patients with lymphoma
or leukemia receiving CD19 CARs [217]. As described previously, CRS is caused by rapid
activation of CAR T cells upon administration and subsequent release of pro-inflammatory
cytokines, such as IL-6 [201]. High levels of serum IL-6 were found to correlate with severe
CRS, which led to the FDA approval of tocilizumab, an anti-IL-6 receptor antagonist [218].
Strategies to reduce CRS include administering lower doses of CAR T cells over multiple
infusions as opposed to one single bolus [219,220].

Neurological-specific toxicities after CAR administration are also possible. Immune
effector cell-associated neurotoxicity syndrome (ICANS) can develop in around 50% of
patients following systemic CAR infusion [221]. ICANS manifests with minor symptoms
such as lethargy and confusion but can also cause seizures and coma. The pathophysiol-
ogy of ICANS remains unclear, but evidence suggests that release of pro-inflammatory
cytokines, such as IL-6 and IL-1β, by CAR T cells can disrupt the BBB, resulting in the ac-
cumulation of CAR T cells and pro-inflammatory cytokines in the CNS [222]. Klinger et al.
recently described a mechanism whereby CD19 bi-specific T cell engagers (blinatumomab)
can induce T cell adhesion to endothelial cells of the BBB followed by T cell migration
into the perivascular space in a CD19-independent manner. Once past the BBB, they
may encounter rare target CD19 cells in the CNS and release pro-inflammatory cytokines,
triggering ICANS-like symptoms [223]. However, unlike CRS, ICANS does not respond
to tocilizumab treatment, and symptoms are typically managed with corticosteroids or
cessation of therapy [224]. Klinger et al. also reported that the non-specific entry of CD19
T cells into the CNS could be abrogated by the administration of anti-adhesion agents
(anti-VLA4, natalizumab), offering another potential therapeutic if toxicity occurs [223]. In
summary, while enhanced T cell chemotaxis and infiltration of glioblastoma are necessary
for effective immune-mediated treatment of tumors, this must be carefully balanced with
the risks described above.

9. Conclusions

For immunotherapy in glioblastoma to be successful, sustained recruitment of effector
lymphocytes from the periphery to the tumor is necessary. However, achieving this in a
unique immune environment such as the CNS must overcome both physical and chemical
barriers. In this review, we have described the process by which effector T cells can be
recruited from the periphery and what modifications may result in a pro-infiltrative pheno-
type. We have described both T cell and BBB factors that would be desirable therapeutic
targets and set out strategies by which this may be achieved. Adhesional factors on the BBB
endothelium such as ICAM-1, VCAM-1, or ACKR1 may be upregulated by IL-1β or IFN-γ,
which can be delivered via convection-enhanced delivery (CED) directly to the tumor site.
Delivery of these cytokines and other inflammatory factors can have profound effects on
increasing BBB penetration and the migration potential of T cells. Induced expression of
CXCL10 by using poly-ICLC can also interact with CXCR3 on effector T cells, prompting
their infiltration into tumor. Co-culture with IL-12 may help drive the expression of key
integrins such as LFA-1 on the surface of T cells in preparation for adoptive transfer to
further enhance their adhesive capabilities. CCL2 and CCL5 may promote paracellular
diapedesis through tricellular junctions in the BBB endothelium, while TGF-β priming
of T cells can increase their CCR6 expression, which can promote transcellular crossing.
However, CCL2 and CCL5 may also mediate regulatory T cell recruitment, perhaps ne-
cessitating co-administration with checkpoint blockade. Subsequent navigation through
the glia limitans may be aided by IL-17-mediated downregulation of CXCL12, although
this may be a location-specific effect. Once inside the parenchyma, lymphangiogenesis-
promoting factors such as VEGF-C may further enhance trafficking of T cells to the tumor.
Metabolic mediators such as the PI3K/AKT/mTOR pathway may also be therapeutically
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targeted using small-molecule inhibitors of the AKT1 and AKT2 isoforms. Combinatorial
approaches to stimulate T cells and block checkpoint inhibition will likely be necessary to
overcome the microenvironment. This may be achieved using novel bispecific constructs
or co-administration with immune stimulatory cytokines such as IL-12, IL-15, or IL-18.
Standard-of-care therapies such as TMZ and radiotherapy may also help to blockade regu-
latory T cell recruitment and drive a more diverse and potent T cell response. Importantly,
however, any approach that enhances T cell infiltration into the CNS must consider safety,
and although there are therapeutic options for adverse events, future trial designs using
pro-infiltrative therapies should err on the side of caution. Nevertheless, enhanced T cell
trafficking and infiltration of glioblastoma is essential for immunotherapeutic efficacy.
While ICI seeks to ‘release the brakes’ on T cell activity, in the case of glioblastoma, we
must first drive T cells to the tumor.
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