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Machine‑learning‑aided method 
for optimizing beam selection 
and update period in 5G networks 
and beyond
Ludwing Marenco *, Luiz E. Hupalo , Naylson F. Andrade  & Felipe A. P. de Figueiredo 

Finding the optimal beam pair and update time in 5G systems operating at mmWave frequencies 
is time-intensive and resource-demanding. This intricate procedure calls for the proposal of more 
intelligent approaches. Therefore, this work proposes a machine learning-based method for 
optimizing beam pair selection and its update time. The method is structured around three main 
modules: spatial characterization of beam pair service areas, training of a machine learning model 
using collected beam pair data, and an algorithm that uses the decision function of the trained model 
to compute the optimal update time for beam pairs based on the spatial position and velocity of user 
equipment. When the machine learning model is deployed in a network with a single gNB equipped 
with a 8× 8 UPA and one UE equipped with a 1× 2 UPA in an mmWave scenario simulated in NS3, 
improvements in SINR and throughput up to 407% , were observed. Improvements are gathered 
because of a reduction of 85.7% in beam pair selections because of an increase of approximately 
1543% in the effective time between successive beam pair searches. This method could offer real-time 
optimization of the beam pair procedures in 5G networks and beyond.

With the evolution of service requirements in mobile communication systems and the increasing diversity of 
expected use cases for 5G and beyond, exploring new opportunities to achieve high data transmission rates and 
meeting the demands of Enhanced Mobile Broadband (eMBB) applications is imperative. Scenarios such as high-
definition video streaming and virtual reality applications involve significant peaks in data rates and require inno-
vative solutions1,2. Two primary approaches are considered to address this challenge: enhancing channel capacity 
and leveraging wider bandwidths. The latter option exploits millimeter-wave (mmWave) frequencies, particularly 
attractive due to using a broad spectrum above 20 GHz. However, the utilization of mmWave frequencies presents 
challenges such as high attenuation and propagation losses induced by obstacles and atmospheric conditions3–5.

Various techniques have recently been employed in modern wireless communication systems to mitigate 
the effects of propagation loss and attenuation within the mmWave frequency range. Multiple Input Multiple 
Output (MIMO) transmission systems are among these techniques, which leverage diversity in transmission 
and/or reception6. In MIMO transmissions, beamforming procedures can be implemented to direct transmis-
sion power toward specific spatial areas, thereby achieving Signal-to-Noise Ratio plus Interference (SINR) values 
capable of overcoming noise and attenuation, facilitating robust radio links between User Equipment (UE) and 
Next Generation Node Base (gNB). The task of finding the best beamforming vectors can be divided into initial 
access and beam management. As initial access methods aim to reduce the latency and overhead for uplink 
transmissions, beam management focuses on choosing and maintaining which beam pairs are best suited for a 
given context, such as mobility information7. Numerous methods exist in the literature for obtaining the best 
beam pairs, which can be based on knowledge of Channel State Information (CSI) through algorithms estimating 
channel gains, angle of arrival (AoA), angle of departure (AoD), or in the absence of such information, employing 
methods based on numerical optimization algorithms or exhaustive search8. Generally, beamforming vectors 
can be derived through precoding techniques such as Zero Forcing, Single Value Decomposition, and Discrete 
Fourier Transform9 or by employing a codebook-based approach where a predefined set of beams is available 
for selection during transmission10.

The codebook beamforming technique offers the advantage of producing optimal results by evaluating all 
combinations of codewords. However, this process becomes impractical as the exhaustive search for beam selec-
tion increases exponentially with the size of the codebook or the number of radiating elements in the antenna 
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array11,12. Another limitation of this technique relates to the fixed time interval within which the search for the 
optimal pair of beams is conducted. This constraint leads to sub-optimal beamforming results, as the fixed inter-
val period may not adequately adapt to changing channel conditions. Moreover, it can create network overhead 
due to the periodic transmission of reference signals to optimize the beamforming direction, thereby reducing 
the bandwidth for data transmission. This increase in latency is problematic for real-time applications, as the 
User Equipment (UE) must wait for the next reference signal transmission to update the beamforming direction5. 
Additionally, there is an increase in energy consumption as the UE needs to periodically wake up and listen for 
reference signals, which poses challenges for battery-powered devices with limited energy resources13.

To address these challenges, we introduce a novel machine learning (ML) aided method designed to opti-
mize the exhaustive beam selection search and, to the best of our knowledge, the beam pair update time using 
codebook beamforming techniques. Our proposal is formulated to perform beam management procedures that 
are aware of mobility context information and operate in real-time without compromising network capabilities. 
Indeed, using an ML-aided solution, an enhancement in both Signal-to-Interference-plus-Noise Ratio (SINR) 
and throughput is observed when compared to the classical exhaustive beam search procedure. The main con-
tributions of this work include:

•	 A customized beam pair sampling method: A novel method employed to characterize the beam pair area of 
service based on UE geolocation and extreme conditions for transmission, namely, small beam pair update 
and channel update interval. This method yields high-quality beam pair data, which is subsequently employed 
to train an ML model;

•	 An ML-model for obtaining the optimal beam pair based solely on UE geolocation: Our trained model 
significantly reduces the time required for beam pair selection by replacing the exhaustive search with pre-
dictions from a classification model, which operates 99.5% faster than the exhaustive search. This reduction 
minimizes idle time for resources to wait for the next optimal beam pair. The UE geolocation coordinates 
that are the inputs for the model can be obtained either via global geopositioning systems, GPS by the way 
of example, or through native procedures from the 5G NR positioning technology were introduced first in 
Release 1614 and refined in subsequent releases (1715 and 1816);

•	 An algorithm that dynamically computes the optimal beam pair update period using the decision function of 
the trained ML model: The algorithm calculates the time required for the UE to transition between beam pair 
areas of service. A notable reduction of 85.7% in the frequency of beam pair selection procedures is observed 
with the implementation of the ML-aided solution. This reduction is attributed to a significant increase of 
approximately 1543% in the effective time between successive beam pair searches.

•	 A ML-aided solution that improves SINR and throughput of network: When our trained model is combined 
with the algorithm for computing optimal beam pair update time to perform the beam pair selection proce-
dure, cumulative improvements up to 407% in SINR and throughput are observed compared to the classical 
exhaustive search method. Furthermore, enhancements in SINR and Throughput are noted across various 
UE-gNB power transmission configurations.

Note that the processes of choosing beamforming vectors and when to perform their selection are different 
and can be combined or not. For initial access purposes, where what matters is the time spent finding the optimal 
beam pairs, only the first solution is needed. However, if beam management is desired, the second solution is 
necessary so that the ML model can detect when to update beam pairs. This means that the proposed solution can 
be addressed in parts, either for initial access purposes or in its full capabilities for beam management purposes.

This paper is divided as follows. The related works section briefly surveys existing literature concerning 
codebook beamforming procedures to improve beam pair selection. The system model and problem formula-
tion section delineates the mathematical models and foundational theory pertinent to addressing the codebook 
beam pair selection challenge, focusing on the exhaustive beam search algorithm. The proposed method section 
exposes the proposed technique in-depth, encompassing the beam pair sampling technique, the ML model for 
beam pair selection, and the dynamic optimization algorithm for the beam pair update period. The simulation 
environment section outlines the simulation setup and environment employed to validate the proposed method. 
The results section presents the outcomes of simulation experiments, encompassing both quantitative and quali-
tative observations, and discusses their significance and implications. Collectively, these five sections provide 
a thorough and meticulous analysis of the proposed method and its efficacy in tackling the codebook beam 
pair-selection challenge through an ML framework. Finally, the conclusion section offers concluding remarks.

Related works
This section presents an overview of state-of-the-art methods for optimizing beam pair selection using codebook 
beamforming techniques. In Ref.17, the authors conducted a study about using a probabilistic codebook for V2X 
(Vehicle-to-Everything) networks instead of exhaustive search, under the assumption that the beamforming vec-
tors follow a non-uniform distribution because of road direction patterns. In studies such as Refs.11,12, the authors 
investigated methods to reduce the computational complexity of the exhaustive search by introducing segmented 
searches between the transmitter (TX) and receiver (RX). These approaches notably decrease the steps required 
for beam selection from 4096 to 48, showcasing a trade-off between training overhead and achieved directiv-
ity gain facilitated by the exchange of control signals during beam training. Additionally, works like Refs.18,19 
emphasize the utilization of precoding procedures in digital beamforming to circumvent the exhaustive naive 
beam search. They achieve reduced signaling overhead for beam training by employing deep learning models and 
adaptive channel estimation. Another approach, as demonstrated in Ref.20, offers a variant of the exhaustive beam 
selection method. This method aims to define a subset of the best possible M beams using deep reinforcement 
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learning without requiring offline training datasets. While still requiring an exhaustive search within these beams, 
the computational cost is significantly reduced compared to searching the complete set. Notably, the performance 
of the proposed model in Ref.21 improves as the cardinality of the beam subset increases.

Furthermore, beyond the potential enhancement of beam pair calculation speed through ML models, the 
opportunity exists to optimize the timing between search procedures by incorporating user context informa-
tion, thereby infusing intelligence into the beam management process. In Ref.22, an ML framework based on an 
encoder-decoder architecture is introduced for conducting beam tracking and prediction tasks in the millimeter-
wave (mmWave) spectrum, utilizing RGB images as contextual cues. This methodology mitigates the exhaustive 
search’s effects and conserves resources by preemptively predicting a set of future beams, thereby preventing the 
need for recalculating beam pairs. Similarly, the study presented in Ref.23 adopts an akin approach, employing 
context data derived from LiDAR sensors to reduce search space to the top-K predicted beams, often limiting the 
search to as few as three future beams while maintaining an accuracy surpassing 90% . In Ref.24, a deep learning-
aided beam selection approach is proposed for maritime environments, leveraging geolocation information to 
transform the beam-selection problem into an artificial classification task for predicting optimal beam indexes.

Like the ML-assisted beam-selection methodologies mentioned earlier, our work exploits context information 
to expedite beam search and diminish signaling overhead during transmission. However, in our case, we solely 
utilize the geolocation coordinates of user equipment (UE) devices in a classification problem, ensuring system 
robustness and accuracy. These coordinates may originate from Radio Access Technology (RAT) independent 
positioning techniques, such as Global Positioning System (GPS), or from positioning procedures already con-
tained into the 5G NR stack introduced in Release 16 through reference signals—Positioning Reference Signals 
(PRS) for downlink and Sounding Reference Signals (SRS) for uplink14. If our ML-aided method system works 
under a 5G NR Rel. 15 infrastructure, the present UE needs to be equipped with a GPS receiver capable of gather-
ing its geolocation data and transmitting it to the gNB in real-time; on the other hand, if the RAN works within 
the defined patterns of 5G NR Rel. 16 onwards, there is no need to make assumptions about the UE requirements 
to gather geopositioning data. One way or another, the proposed model is fully integrated with the 5G NR struc-
ture and can operate within all releases, incurring no additional complexity as it utilizes readily available data.

However, there are primary challenges in obtaining accurate real-time UE location data for optimizing beam 
pair selection and update times in 5G mmWave systems, including ensuring geolocation accuracy, minimizing 
latency, and accounting for device capabilities and environmental factors. Accurate geolocation data is crucial 
for effective beamforming based on this data, while any delays in acquiring this data can impact real-time per-
formance. Additionally, the precision of geolocation data may depend on the capabilities of the UE, particularly 
for older devices lacking integrated GPS. Environmental conditions like urban canyons or severe weather can 
also affect GPS signal accuracy. These challenges are mitigated by leveraging the near real-time positioning 
capabilities of the 5G NR infrastructure, including Positioning Reference and Sounding Reference signals, which 
provide high-precision data less susceptible to environmental interference25–27.

System model and problem formulation
This section presents the adopted system model, its underlying assumptions, and the beam pair selection prob-
lem. The system model encompasses a single millimeter-wave (mmWave) gNB and a single UE, each equipped 
with a uniform planar array (UPA). The UPA comprises Nh horizontal and Nv vertical elements, yielding a total 
of N = NhNv radiating elements. In this way, the number of radiating elements for the gNB and UE are denoted 
as NgNB = Nh

gNBN
v
gNB and NUE = Nh

UEN
v
UE , respectively. Additionally, the UE is equipped with a GPS receiver 

capable of gathering geolocation data and transmitting it to the gNB in real-time.
The beam pair selection problem comprises four stages: beam sweeping, beam measurement, beam deter-

mination, and beam reporting7. During the beam sweeping stage, all combinations of beamforming vectors 
intended to cover the entire angular space for both the gNB and UE are sequentially evaluated for synchroniza-
tion and reference signal purposes, as standardized in 3GPP TR 38.80228. These beamforming vectors are stored 
in the codebooks. A codebook can be defined as a collection B ≡ {bi}Mi=1 , where bi ∈ C

1×N represents the i-th 
beamforming vector out of M predefined ones, and N is the length of each beamforming vector, correspond-
ing to the number of radiating elements. The codebooks for the gNB and UE are denoted as F ≡ {fi}Ki=1 and 
W ≡

{

wj

}

 , respectively. It is important to note that there are a total of MB = KL different beam pairs 
(

wj , ; fi
)

 
available for transmission.

The beam sweeping process involves an exhaustive search where the received signal for a transmitted symbol, 
denoted as s with unit power, is measured for each k-th beam pair 

(

wj , fi
)

 , expressed as

where n is the additive white Gaussian noise (AWGN) with power N0 , H is the channel matrix, 
√
Ptot  is the 

symbol energy, fi and wj are the beamforming vectors for the transmitter (gNB) and receiver (UE), respectively. 
Here, the superscript (.)H means Hermitian transpose of the beamforming vectors, i.e wH = [w⊺]∗ . The beam 
measurement stage evaluates the quality of the received signal (Eq. 1) using a specific metric, in this case, the 
instantaneous received power given

such that for all MB possible beam pairs a vector of instantaneous received powers p =
[

p1, p2, p3 . . . , pk , . . . , pMB

]

 
is obtained. This vector is used within the beam determination stage, which relies on choosing the best beam pair 
with the best metric performance. In this case, the optimal beam pair z is obtained by computing

(1)yk =
√
Ptotw

H
j Hfis + wH

j n,

(2)pk =
∣

∣wjHfi
∣

∣

2
,
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The final phase involves beam reporting, where the optimal beam pair z is communicated to the network 
for resource allocation. These four steps are carried out periodically at a fixed time interval tupdate , known as the 
beam pair update time. This study optimizes the beam pair selection process by leveraging a machine learning 
model. This model aims to predict the optimal beam pair based on UE geolocation data, bypassing the initial 
three stages of traditional beam pair selection. The use of ML models inside the network is guaranteed by the 
new recommendations introduced in 3GPP in release 1816, and UE geolocation data can be acquired using native 
procedures from the 5G NR positioning technology introduced first in Release 1614 and refined in subsequent 
releases (1715 and 1816).

Proposed method
A comprehensive ML-aided method is proposed to improve the selection of optimal beam pairs and determine 
their update period. A spatial sampling process of beam pairs is initially exposed to map beam pair service areas 
around the gNB based on UE geolocation. This process facilitates the generation of datasets utilized for train-
ing ML models. Subsequently, employing the best-trained model, a straightforward algorithm is introduced to 
compute the update period of beam pairs dynamically. The proposed method comprises three main modules 
described in detail below. Integrating these modules enables an ML-driven solution to predict beam pairs and 
determine their optimal update period based on UE geolocation. The proposed method is summarized in Fig. 1.

Beam pair spatial sampling method
The spatial sampling process aims to characterize the area of service covered by beam pairs around the gNB in 
relation to UE coordinates. This process contains two main steps: segmentation of the space and collection of 
beam pairs. The initial step is depicted in Fig. 2.

In this step, the space around the gNB is partitioned into rings with a fixed width of R − r = 10 m (left panel 
of Fig. 2). Subsequently, each ring is further divided into 12 sectors, each spanning π/6 rad (right panel of Fig. 2). 
This subdivision ensures that the sectors encompass all potential directions around the gNB. Following this, 
beam pair collection is initiated for each sector according to the following procedure: (1) randomly position the 
UE within the sector and execute an exhaustive search over a duration tsample . Subsequently, UE coordinates, 
the selected beam pairs, and their respective instantaneous received power are stored. To adequately capture the 
small-scale fading of the channel and path loss, assign small values to the channel update time tchannel and the 

(3)z = argmax
{

p
}

.

Fig. 1.   Schematic representation of the ML-aided solution for optimizing beam pair selection and its update 
time.

Fig. 2.   Segmentation of the space around a gNB used for beam pair sampling technique. Segmentation is 
achieved through a two-step process: segmentation of the space and collection of beam pairs.
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beam pair update time tupdate . (2) Determine the optimal beam pair for a single realization of the preceding step 
by identifying the beam pair with the highest power spectral density and averaging its UE coordinates. Repeat 
steps (1) and (2) for a fixed number of trials to sample a sector. Finally, iterate this process for all remaining 
sectors within all rings. To prepare the collected data for ML training, transform the beam pairs into a single 
number, denoting a beam pair 

(

wj , fi
)

 as Bp ≡
(

wj , fi
)

 , where 1 ≤ k ≤ MB where MB = KL represents the total 
number of available beam pairs for transmission.

ML beam pair selection model
Once the data is collected, an ML model is trained to predict the optimal beam pair using only UE geolocation 
coordinates. The trained model must exhibit high accuracy due to the methodology employed for collecting 
beam pair data, which effectively captures the effects of small-scale fading in the environment by choosing a 
small value of channel update time. Various model architectures may be explored during training, and the model 
demonstrating the highest accuracy is selected for deployment on the network. These models are referred to as 
candidate models. The training stage involves accessing the beam pair database, dividing it into training and 
validation datasets, and fine-tuning the hyperparameters associated with each candidate model. These hyperpa-
rameters encompass intrinsic parameters governing the learning process of each candidate model, normalization 
methods, and coordinate systems.

The Beam Pair Spatial Sampling method and ML Beam Pair Selection Model steps are performed once per 
height and gNB power transmission settings. The chosen trained model offers versatility, as it can be applied 
across varying values of UE power transmission or different configurations of wireless data exchange.

ML dynamic beam pair update period
Using the decision function of the ML model with the highest accuracy, one can assess the beam pair update 
period, namely, the duration between successive beam pair selection operations. The decision function assigns 
a probability to each potential beam pair in the neighborhood of the gNB. Figure 3 illustrates the beam pair 
update period’s computation using an ML-trained model’s decision function.

In the left panel of Fig. 3, an example of a decision function featuring four spatial sectors is depicted. The 
decision function’s spatial sectors correspond to the service areas for each beam pair. Each beam pair’s service 
area is color-coded, with the color contrast indicating the probability of selecting a beam pair Bp based on UE 
geolocation coordinates, as shown in the color bar. The cyan triangle represents the gNB, while the red star 
denotes an UE positioned randomly, for which the beam-selection update period will be computed. The right 
panel displays contours of the decision function where p(BP |xUE, yUE) = pthreshold , with pthreshold being a con-
figurable probability threshold. The black dashed lines represent the distance from the UE to each contour, with 
the blue dashed line indicating the shortest distance, denoted as dmin . The beam pair update period, tupdate , is 
determined by calculating the time required for the UE to reach the closest contour given by

where vUE =
√

vx2UE + vy2UE  is the speed of UE. As shown in Algorithm  1, the method above can be 
summarized.

(4)tupdate =
dmin

vUE
,

Fig. 3.   Beam pair update period computation using the decision function of a trained ML model. The left 
panel shows an example of a decision function, and the right panel shows how the beam pair update period is 
computed.
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Algorithm 1.   ML-aided beam pair update time computation.

Simulation environment
This section outlines the key features and functionalities of the simulator, which were utilized in validating the 
proposed method for optimizing beam pair selection and its update time.

NS3 network simulator
To conduct the simulations required to validate the proposed method, the NS3 network simulator was 
employed29. NS3 is a discrete-event network simulator renowned for its robust support for IP-based networks. 
NS3 can emulate with a high precision representing data transmission protocols29. However, NS3 lacks a dedi-
cated 5G protocol stack implementation or the ability to simulate signal propagation at millimeter-wave frequen-
cies. To overcome this issue, the NS3 simulator was used along the mmWave module30. The mmWave module 
supports several channel models, including a model based on 3GPP TR 38.901 for frequencies between 0.5 and 
100 GHz31. The mmWave module was used without modification to collect beam pair data proposed in the 
proposed method section. To validate the ML-aided solution for optimizing beam pair selection and its update 
period, we employed the NS3-Gym module32 to establish the ML deployment infrastructure, enabling real-time 
interaction between the ML model and the simulator. The NS3-Gym module operates via sockets implemented 
with ZeroMQ32. In this scenario, it was necessary to modify the mmWave module to facilitate interaction between 
beamforming procedures and ML-based beam pair prediction. The main change occurred within the ns3::M
mWaveCodebookBeamforming class. This alteration ensures that the connection between the Python code 
and the NS3 simulator is established each time the simulator requires a new beam pair procedure. That means 
it is unnecessary to maintain the connection between the two programs continuously open. This modification 
ensures that the simulator sends UE information to the ML model, awaiting the predicted beam pair and update 
time as a response. No other simulation characteristics were altered, such as channel matrix or path-loss pattern.

Simulation setup
This work proposes a performance analysis of ML models in millimeter waves, more precisely in the FR2 range 
through carrier n257 of 28 GHz with a bandwidth of 100 MHz33. The transmit power of the gNB was set to 
20 dBm, while for the UE, we utilized three values: 8 dBm, 10 dBm, and 15 dBm, respectively. A 7 dBm noise 
figure was also selected. We simulated an urban environment where the gNB and UE were positioned at heights 
of 10 m and 1.5 m, respectively. Finally, a MIMO configuration of 8× 8 was employed for the gNB, while a 1× 2 
configuration was utilized for the UE, with codebooks already defined by the mmWave module. In our setup, 
we opted for an 8× 8 configuration for the gNB, representing the largest MIMO configuration available within 
the NS3-mmWave simulator. The gNB’s codebook comprises K = 70 codewords, whereas the UE’s codebook 
comprises L = 2 codewords, resulting in MB = KL = 140 possible beam pairs. To establish the packet flow 
between the UE and the gNB, the UDP protocol was utilized at a fixed packet rate of 1 Gbps. Table 1 summarizes 
all the parameters used in the simulations for collecting beam pair data and validating ML beam pair prediction. 
These parameters were employed to configure the beam pair dataset construction and evaluation scenarios in 
the NS3 simulator. We focused on a millimeter-wave scenario, assigning a single fixed value for the gNB power 
transmission and three distinct values for the UE power transmission.

Results
Beam pair dataset construction
The proposed method initiates by collecting beam pair data utilizing spatial sampling, as described in the 
proposed method section. Data collection encompasses beam pairs surrounding the gNB within the range of 
r = 20 m to r = 100 m, where r denotes the inner radius of the ring. We conducted distinct statistically inde-
pendent simulations to acquire beam pair data for each sector within each ring and for each trial. Specifically, 12 
sectors were simulated within each ring with 1× 103 trials, amounting to 12× 103 simulations per ring. When 
combined with the additional nine rings, more than 10× 105 simulations were executed to gather beam pair 
data. The UE is randomly positioned within a sector in each simulation, and packet transmissions occur over 
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ts = 0.2 s. Power transmission for both gNB and UE is set at 20 dBm and 10 dBm, respectively, with these values 
being consistent across all sectors and rings. With the Channel Update Period and Exhaustive Beam-Search 
Period set to 1 ms, a significant number of codebook-based beamforming procedures are executed during each 
transmission. Minimizing the channel update period, we create a simulated mmWave environment that exhibits 
strong fast-fading behavior, reflecting dynamic channel conditions under high-interference assumptions. Our 
objective is to demonstrate that the proposed sampling method ensures robustness for the acquired data, even 
in high-interference scenarios, allowing for selecting an optimal beam pair that accounts for extreme channel 
configurations. Figure 4 illustrates the collected beam pairs categorized by sector and ring and the aggregated 
results for all spatial samples around the gNB, considering an 8× 8 MIMO configuration. We employed the 
method outlined in the proposed method section to collect beam pair data.

The upper left panel of Fig. 4 depicts the beam pair data acquired from two sectors situated at r = 70 m. The 
first sector spans from π/6 to π/3 rad, while the second sector spans from 2π/3 to 5π/6 rad. The lower left panel 
displays data obtained from the ring corresponding to r = 70 m. The right panel presents beam pair data collected 
from all rings and sectors. Note that data points associated with spatial coordinates around gNB are related to 
beam pair data. Each possible beam pair is represented by a distinct color, as indicated by the colorbar in the 
right panel. The database utilized for training the ML model comprises data from all rings. In this ML model, 
the features used for training include positions, while the variable to predict is the beam pair.

Table 1.   Simulation parameters.

Simulation parameter Value

LOS condition Always with line-of-sight

Carrier frequency 28 GHz

Bandwidth 100 MHz

gNB height 10 m

gNB Tx power 20 dBm

UE Tx power 8 dBm, 10 dBm, 15 dBm

Noise figure 7 dBm

Channel update period (validation) 100 ms

Channel update period (sampling) 1 ms

Scenario 3GPP TR 38.901, Table 7.4.1-1 for UMa scenario

Path-loss model Urban macro (UMa)

gNB antenna array 1× 2

UE antenna array 8× 8

UE mobility model Random walk

UE speed (sampling) Sampled from N (µ, σ 2) with µ = 1.5 and σ 2 = 0.04

UE speed (validation) 2 m/s

Exhaustive beam-search period (validation) 50 ms

Exhaustive beam-search period (sampling) 1 ms

Simulation time (sampling) 0.2 s

Simulation time (validation) 30 s

Fig. 4.   Beam pair dataset construction. The upper left panel illustrates the beam pair data acquired from two 
sectors, while the lower left panel displays data obtained from the ring. The right panel presents beam pair data 
collected from all rings and sectors.
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ML model training and deployment
After collecting beam pair data, the next step involves training an ML model capable of predicting beam pairs 
using UE geolocation information as input data. The Optuna framework34 was used to select the optimal model 
for deployment within the network. A case study used Optuna to find the best hyperparameters for learning, 
normalization methods, and coordinate systems in each candidate model. The candidate models considered 
include k-nearest Neighbors (KNN), Multilayer Perceptron (MLP), Decision Tree (DT), Random Forest (RF), 
and Support Vector Machines (SVM). These models were implemented using the Scikit-Learn framework35. 
Three distinct normalization techniques were applied: the first method individually scales training features to a 
specified range, the second standardizes features by centering them around the mean and scaling to unit vari-
ance, and the third method involves dimensional scaling to ensure all distances are in meters. The coordinate 
systems selected were Cartesian and Polar. A case study was set up for each candidate model comprising 100 
trials. The cross-validated 3-fold accuracy score was maximized during these trials, and the best-performing 
trial was selected for further comparison. Rather than exhaustively searching for values for all hyperparameters 
for each candidate model, a strategic subset of the most critical ones was selected for exploration within the 
Optuna framework. At the same time, the remaining parameters retained their default values.The results for 
each candidate model are summarized in Table 2. This table details the three normalization methods and two 
coordinate systems used in the analysis. The “Dimensional” normalization indicates that all user equipment (UE) 
coordinates are consistently represented in meters. The cross-validated accuracy score was optimized throughout 
all candidate models using a 3-fold approach.

It is evident from Table 2 that the DT and the MLP emerged as the candidate models exhibiting the highest 
performance, achieving identical values for both F1-Score and accuracy metrics. The subsequent step involved 
deploying each within the network using the NS3Gym module to determine the optimal model, as discussed in 
the simulation environment section.

Subsequently, the execution time (ET) of the beamforming procedure inside the simulator was measured 
utilizing the exhaustive search (ES) method and the candidate models for beam pair prediction. A series of 50 
statistically independent simulations were conducted, and the average execution time was computed. Results 
are depicted in Fig. 5.

Observe that all candidate models exhibit superior performance compared to the exhaustive search method. 
Among these models, Random Forest demonstrates the longest execution time. However, it is still 71% faster than 
the exhaustive search method. Upon closer examination of the zoomed plot in the upper right, it is evident that 
KNN, DT, and MLP models are the most expeditious. MLP is the fastest, boasting a 99% increase in performance 

Table 2.   Classification metrics, coordinate system, and optimal hyperparameters of the best ML models found 
by the Optuna framework.

Model F1-Score Accuracy Coordinate Scaler Model parameters

KNN 97.62% 95.33% Polar Standard n_neighbors: 13, weights: uniform, metric: minkowski

DT 99.33% 99.54% Polar Dimensional max_depth: 25, min_inst: 5, min_split: 8

SVM 98.86% 99.07% Polar MinMax kernel: rbf, regularization: 9.393, degree: 3

RF 98.33% 95.39% Cartesian Dimensional max_depth: 43, min_inst: 2, min_split: 29, max_features: log2. n_estima-
tors: 209, criterion: entropy

MLP 99.41% 99.89% Polar MinMax n_layers: 2, n_units per layer: [100, 6], regularization: 0.059, solver: lbfgs, 
activation: tanh

Fig. 5.   Execution time of beamforming selection methods measured over 50 simulations.
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over exhaustive search. Consequently, the MLP model was selected as the optimal candidate for evaluating the 
performance of the ML-aided codebook beamforming procedure in the network.

Evaluation of the proposed ML‑aided solution
The final step involves evaluating whether an ML-aided solution, comprising an ML model predicting beam pair 
data based on UE geolocation information and an algorithm optimizing beam pair selection periods, can outper-
form the classical exhaustive search method in network behavior. Three simulation scenarios were implemented 
to assess this. The first scenario employs the exhaustive search method for setting beams for transmission. The 
second one uses the deployed ML model without optimization of beam pair update time, adhering to traditional 
ML beamforming optimization procedures36. Finally, the third scenario utilizes the deployed ML model to set 
beams and optimize the timing of their switching according to UE positions. The baseline trajectory for the 
UE incorporates multiple beam pair exchanges and is the same across all scenarios. This trajectory initiates at 
coordinates (−62, 0) and progresses towards (−2, 60) at a constant speed of 2m/s with a fixed direction of π/4 . 
Figure 6 illustrates the UE baseline trajectory alongside the MLP model’s decision function for an 8× 8 MIMO 
configuration.

Each colored zone of the decision function corresponds to a distinct area of service for beam pairs. The con-
trast in color reflects the probability of selecting a specific beam pair based on the relative position of the UE, as 
explained in the colorbar on the right. It is worth commenting that the decision function provides a convenient 
way to visualize all potential beam pair service zones. This capability is crucial for determining the optimal beam 
pair update period, in which we set pthreshold = 0.05 as discussed in Algorithm 1. The ML-aided solution was 
evaluated using the following methodology: 50 independent simulations were executed for each scenario, during 
which SINR, throughput, beam pair data, and beam pair update period metrics were collected. Figure 7 illustrates 
the average values obtained across all simulations for the three scenarios, as mentioned earlier. Additionally, we 
consider three different levels of UE power transmission for a detailed comparison.

In all panels of Fig. 7, circles, triangles, and stars represent quantities measured under UE power transmis-
sions of 8 dBm, 10 dBm, and 15 dBm, respectively, with gNB power transmission fixed at 20 dBm. Gray colors 
depict results obtained using the exhaustive search method, while blue, red, and green markers indicate outcomes 
derived from the ML-aided solution deployed within the network. The upper panel displays results for the ML-
aided solution without beam pair optimization. In contrast, the lower panels depict results for the ML-aided 
method with beam pair update time optimization as proposed in Algorithm 1. The left and center-left panels 
display the Cumulative Distribution Function (CDF) of SINR and throughput, respectively. The center-right and 
right panels depict the beam pair update period and the beam pair pattern measured throughout the simulations. 
Except for the beam pair pattern, these metrics were computed by identifying the common set of time instances 
across the simulation dataset. Subsequently, the values corresponding to each time instance were averaged. In the 
case of the beam pair pattern, the process remains the same, except that instead of averaging, the most frequently 
appearing beam pair for each time instance was selected.

The primary results under consideration are the improvement in SINR and throughput when employing the 
ML-aided solution with and without beam pair update time optimization, compared to the exhaustive search 
method. It is noteworthy that CDF curves for the ML-aided approach are shifted towards higher values for 
both SINR and throughput, indicating an evident enhancement. When the ML-aided solution is used inside 
the simulator, the capacity to increase SINR levels is achieved, leading to mitigating the adverse effects of noise 
and attenuation, which consequently facilitates the increase of data transmission rates, hence achieving higher 
Throughput.

To quantify enhancements in SINR and Throughput, one can calculate the mean values of CDF curves and 
cumulative gains. Figure 8 illustrates these computations for both the exhaustive search method and the ML-
aided solution, with and without beam pair update time optimization, across all levels of UE power transmission. 
The cumulative gains are computed over the entire simulation period tsimulation = 30 s.

Fig. 6.   Baseline trajectory for the UE alongside the decision function of the MLP model for an 8× 8 MIMO 
configuration.
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In Fig. 8, yellow, blue, and red bars denote values computed for the ML-aided solution with update time 
optimization, the ML-aided solution without update time optimization, and the exhaustive search method, 
respectively. The left panel illustrates a comparison for SINR, while the right panel pertains to Throughput. Note 
from the upper panel that both network metrics’ mean values demonstrate superior performance when employ-
ing ML-aided methods across all UE power transmission levels. Particularly, the ML-aided solution with pair 
beam update time optimization shows the most significant improvements, as evidenced by the cumulative gain 
computed over the tsimulation = 30 s simulation period in the lower panel of Fig. 8. This highlights the effectiveness 
of optimizing beam pair update times using the decision function of the ML model described in Algorithm 1. To 
elucidate the results further, our method shows average SINR improvements of 0.37 dB, 0.72 dB, and 0.91 dB per 
time-step, corresponding to cumulative gains over the entire simulation period of 76.42% , 251.49% , and 452.84% 
for UE power transmissions of 8 dBm, 10 dBm, and 15 dBm, respectively. Similarly, concerning Throughput, the 

Fig. 7.   Average network metric values obtained across all simulations are presented for three methods: 
exhaustive search, ML-aided without beam pair optimization (upper panels), and ML-aided method with beam 
pair update time optimization as proposed in Algorithm 1 (lower panels). Gray colors depict results obtained 
using the exhaustive search method, while blue, red, and green markers indicate outcomes derived from the 
ML-aided solution deployed within the network.

Fig. 8.   Mean values of CDF curves and cumulative gains are compared between the exhaustive search method 
and the ML-aided solution across all levels of UE power transmission. Yellow, blue, and red bars denote values 
computed for the ML-aided solution with update time optimization, the ML-aided solution without update time 
optimization, and the exhaustive search method, respectively. The left panel illustrates a comparison for SINR, 
while the right panel pertains to Throughput.
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average gain is 1.36Mbps , 1.75Mbps , and 3.40Mbps , translating to total enhancements of 158.61% , 246.86% , and 
407.07% for the same power transmission levels 8 dBm , 10 dBm , and 15 dBm.

The ML-aided solution improved SINR and throughput without compromising beam pair selection. Note 
that the selected beam pair pattern remains consistent with that of the exhaustive search method, as illustrated 
in the right panel of Fig. 7. The enhancement of network metrics arises from optimizing both the execution time 
of the beamforming procedure and the update period for beam pairs. In the ML-aided model without beam pair 
optimization. However, the update time for beam pairs remains the same as the fixed time used in the exhaustive 
search (see center-upper-right panel of Fig. 7). Improvements are observed because the ML model determines 
the best beam pair for transmission more efficiently, as shown in Fig. 5. For the complete solution, which includes 
beam pair optimization as depicted in the center-lower-right panel of Fig. 7, the ML-aided approach dynamically 
adjusts the update period for beam pairs. Notably, in some cases, the ML-aided method computed an update 
period for beam pairs even shorter than the fixed update time used in the exhaustive search method. Optimizing 
the beam pair selection period and the execution time of these procedures facilitates more efficient utilization 
of radio resources by eliminating unnecessary signaling exchanges between UE and gNB inside the simulator.

Consequently, an enhancement in spectral efficiency is achieved. In cases where UE is situated far from the 
closest beam pair service area, the ML-aided method assigns a longer beam pair selection period, which ensures 
an undisturbed data flow because of the reduction of the frequency of beamforming procedures. That reduces 
overhead and latency, which promotes the improvement of network capacity for transmission. To quantify the 
reduction in beamforming procedures achieved by the ML-aided solution, we computed two metrics: the aver-
age time not expended in beamforming selection procedures ( NEBP ) and the percentage of beam pair update 
savings ( BpUS ). NEBP represents the average duration a UE remains within a beam pair’s service area without 
requiring any beamforming update, as determined by the ML model’s decision function. Similarly, BpUS indicates 
the proportion of beamforming procedures omitted by the ML-aided solution compared to the exhaustive search 
method. These results are illustrated in Fig. 9. Additionally, we extend our analysis to include two additional 
MIMO configurations: 2× 2 and 4× 4.

In Fig. 9, royal-blue, dark-orange, and medium-sea-green bars depict measurements for 2× 2 , 4× 4 , and 
8× 8 MIMO configurations, respectively. The left panel is dedicated to the average time not expended in beam-
forming procedures, while the right panel is for beam pair update savings. Specifically for the 8× 8 MIMO 
configuration, the average time between beam pair procedures is approximately tupdate = 772ms , representing 
an improvement of 1543% compared to the exhaustive search beam pair update period of tupdate = 50ms . That 
improvement directly translates to proportional gains in SINR and throughput, presented in Fig. 8, because it 
notably reduces network overhead and enhances overall system efficiency inside the simulator. Moreover, the 
exhaustive search method involves 1199 beam pair selections in a simulation of tupdate = 30s . In contrast, the 
ML-aided method only requires 171, showcasing a reduction of 85.74% in the number of necessary beam pair 
procedures. Optimization of the beam pair update period is similarly attained in the other two MIMO configu-
rations. Note that the time saved in the beamforming procedure and an effective number of beam pair updates 
is more pronounced for the 2× 2 and 4× 4 compared to the 8× 8 configuration. This is mainly attributed to 
the reduced number of radiating elements in 2× 2 and 4× 4 , leading to a decrease in the number of beam pairs 
available from the transmission, which reduces the quantity of beam pair zones of service, characterized by the 
ML model. Consequently, the area of these new beam pair zones of services is larger; therefore, the beam pair 
update time would also be larger.

Evaluation of the proposed method on real data
In this section, we demonstrate the practical application of the proposed method using freely available data 
from DeepSense 6G37, specifically focused on Real-World Communication Datasets for 6G Deep Learning 
Research. We conducted experiments in two distinct scenarios to showcase the versatility of our approach. The 
first scenario simulates a Vehicle-Pedestrian-to-Infrastructure (VP2I) mmWave communication setup38, desig-
nated as scenario 9 in DeepSense’s documentation (https://​www.​deeps​ense6g.​net/​scena​rio-9/). The testbed for 

Fig. 9.   Average time not expended in beamforming selection procedures ( NEBP ) and the percentage of beam 
pair update savings ( BpUS ) achieved with the ML-aided method. Royal-blue, dark-orange, and medium-sea-
green bars depict measurements for 2× 2 , 4× 4 , and 8× 8 MIMO configurations, respectively. The left panel is 
dedicated to the average time not expended in beamforming procedures, while the right panel is for beam pair 
update savings.

https://www.deepsense6g.net/scenario-9/
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this scenario included one stationary RX unit equipped with a 16-element 60GHz-band phased array and two 
mobile TX units - one mounted on a vehicle and the other on a pedestrian. The stationary unit uses a codebook 
of 64 predefined beams for signal processing. The mobile units had quasi-omni mmWave transmitters operating 
at 60 GHz alongside GPS receivers. Each data sample included power vectors for all 64 beam pairs and latitude 
and longitude information. This dataset consisted of 6318 samples collected during daytime trials on McAllister 
Avenue, Tempe, Arizona, USA—a two-way street with two lanes, w = 10.6 m wide, and a vehicle speed limit of 
v = 11.176 m/s. The second scenario simulated high-frequency wireless communication applications involving 
drones39, labeled as scenario 23 (https://​www.​deeps​ense6g.​net/​scena​rio-​23/). The setup comprised a station-
ary RX unit with characteristics similar to those in the first scenario and a mobile TX unit mounted on an RC 
drone. The drone was equipped with a mmWave transmitter operating at 60 GHz, a GPS receiver, and inertial 
measurement units (IMU). Each data sample included power vectors for all 64 beam pairs, latitude and longitude 
information, and the drone’s speed. This dataset comprised 12004 samples collected in a rectangular public park 
in Chandler, Arizona, USA, with dimensions of l = 205 m in length and b = 152 m in breadth. Beam pair update 
time for both scenarios was set up as fixed value tupdate = 100 ms.

The initial step of our method involves selecting the optimal beam pair within circular sectors. However, the 
circular sector criterion cannot be directly applied due to the non-geometric nature of data collection, which 
occurred at sparse locations across various scenarios. Spatial coordinates were computed from Latitude and 
Longitude information to address this challenge. After that, the spatial domain was divided into square sectors, 
each covering an area of approximately a = 0.33m2 . We identified the data sample within each square sector 
with the highest received power and its corresponding beam pair. Subsequently, all data samples associated with 
this optimal beam pair were selected to form the final dataset. The left panel of Fig. 10 illustrates the distribution 
of beam pair data across both scenarios. The upper-left and lower-left panels display the beam pair data for the 
VP2I and wireless RC drone scenarios. The Cyan triangle shows the position of the mmWaveRx device.

The next step involves training a machine learning (ML) model. To balance the classes of beam pair data, 
we followed the same guidelines as outlined in Ref.38. Subsequently, we employed the best candidate network 
architecture, in this case, the MLP. The Optuna framework determined the optimal learning parameters, which 

Fig. 10.   Validation of proposed method on real beam pair data. Available beam pair data from DeepSense 
6G will be used to validate our proposed method with real data. The beam pair data were collected from VP2I 
and drone wireless communication scenarios. Due to the non-geometrical sampling of the data, we computed 
optimal beam pair data by dividing spatial domains into squares instead of circular sectors. The left panel 
displays the beam pair data obtained for VP2I (upper panel) and drone communication (lower panel). The right 
panel depicts the decision functions of the trained models for VP2I (upper panel) and drone communication 
(lower panel). Beam pair update times for three positions and velocities—two for VP2I and one for drone 
communication—are presented in a blue rectangle next to the colorbar.

https://www.deepsense6g.net/scenario-23/
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align closely with those shown in Table 2, except for a change in regularization values to 0.020 and 0.013 for the 
VP2I and RC drone scenarios, respectively. This resulted in maximum scores of 81.2% and 74.8%. The decision 
functions for each model are depicted in the upper-right and lower-right panels of Fig. 10. Both decision func-
tions effectively delineate service areas for beam pairs, validating the efficacy of our methodology when applied 
to real beam pair data.

The method’s final step involves computing the beam pair update time for the mmWaveTx device at specific 
positions and speeds. In the VP2I scenario, the device is positioned at the lower middle point of the spatial 
domain. The beam pair update time was computed for two speeds: pedestrian speed v = 1.42 m/s and the maxi-
mum speed limit of the Avenue, set at v = 11.17 m/s. The update times for these cases were tupdate = 1639 ms and 
tupdate = 208 ms, respectively. For the RC drone scenario, the device was located at the upper-right corner of the 
spatial domain. The speed of the RC drone was computed as the average speed of the data samples, resulting in 
v = 4.36 m/s. This case’s beam pair update time was tupdate = 3444 ms. The positions of the devices are indicated 
as red stars in the right panel of Fig. 10, and the update times corresponding to the speeds are displayed next to 
the colorbar inside a blue rectangle.

Conclusion
A comprehensive ML-based method for optimizing beam pair selection and its update time is proposed. The 
method is structured around three main modules: spatial characterization of beam pair service areas, training 
of an ML model using collected beam pair data, and an algorithm that uses the decision function of the trained 
model to compute the optimal update time for beam pairs based on the spatial position and velocity of user 
equipment. Key findings from the proposed method include: (1) Utilizing the user equipment geolocation data 
for both data sampling and ML prediction input. (2) Proposal of a simple yet effective algorithm for comput-
ing the optimal beam pair update period, determined by the distance between the user equipment and the 
neighboring area of the beam pair zone of service. (3) Superior performance of the proposed method over the 
classical exhaustive search method, as evidenced by observed gains in Signal-to-Interference-plus-Noise Ratio 
and Throughput, consequently improving transmission capacity. (4) Enhanced network metrics are correlated 
with a reduction in beamforming procedures, achieved through the fastest execution of beam pair selection and 
optimal beam pair selection, thereby improving the efficient utilization of network resources.

The Advantages of the proposed method are: (1) It introduces a novel approach for selecting the most effective 
model for deployment within a network. Rather than focusing on a single ML architecture, we offer a selection 
of potential ML model candidates. For each model, we choose a computationally inexpensive configuration to 
facilitate the short-term implementation of our methodology in real-world scenarios. The models we consider 
avoid complex layers such as convolutional or recurrent structures and can be trained without GPU acceleration. 
The optimal model selection is based on two key criteria: high prediction confidence and low response time dur-
ing deployment. (2) The beam pair data collection methodology proposed in this study could establish guidelines 
and best practices for beam pair data collection using both geometric and statistical criteria. This could be used 
for creating real beam pair datasets for emerging research in 6G use cases, such as V2X (Vehicle-to-Everything) 
communication or drone wireless networks (3) By optimizing the beam pair selection period and the execution 
time of beamforming procedures, a more efficient way to use radio resources is acquired because of the elimina-
tion of unnecessary signaling exchanges for transmission something valuable for scenarios with high density of 
users which is the case of real application.

Assumptions and Simplifications of the proposed solution are: (1) The research relies on a simplified system 
model that considers a single mmWave gNB and a single UE, each equipped with a uniform planar array (UPA). 
While this system model effectively demonstrates the proposed method, it may not fully capture the complexity 
of real-world multi-user scenarios and dynamic environments. Additionally, the availability of near real-time 
UE positioning data is assumed, which may not always be practical due to network infrastructure and device 
capabilities variations. (2) The proposed method is validated in a single UE scenario, simplifying the beam pair 
selection process. However, in practical 5G networks, multiple UEs are present, each with varying mobility pat-
terns and data requirements. The scalability of the proposed method to efficiently handle multiple UEs while 
maintaining low latency and high accuracy in beam pair selection remains to be validated. (3) The research 
assumes certain channel conditions and models, specifically, 3GPP TR 38.901 for the UMa scenario, which may 
not fully represent all possible dynamic channel conditions encountered in real-world deployments. Variations 
in urban environments, obstacles, and weather conditions can introduce additional challenges that were not 
captured in the training data, potentially impacting the robustness of the ML model. (4) Environmental factors 
such as urban canyons or severe weather conditions can affect the accuracy of geolocation data obtained via GPS 
or other methods. While the proposed method leverages the 5G NR infrastructure’s positioning capabilities, the 
extent to which these environmental factors impact the overall performance and accuracy of the system needs 
further investigation.

This paper contributes useful insights to the current body of research on beamforming and the application of 
ML in 5G and upcoming networks. Our findings indicate that ML techniques can enhance beam pair selection 
and optimize the update time in 5G mmWave systems. While our results are promising, further research and 
validation are necessary to fully understand the potential and limitations of ML in this context. ML can poten-
tially play a crucial role in future 5G and beyond network optimizations. As the number of connected devices 
proliferates and data traffic experiences exponential growth, there is an urgent need for more intelligent and 
automated network management systems. These systems must be capable of optimizing network performance, 
enhancing user experience, and supporting the introduction of novel services and applications. ML algorithms 
offer a promising solution to these challenges by enabling networks to glean insights from historical data, fore-
cast future occurrences, and dynamically adjust to evolving conditions in real time. Therefore, we foresee that 
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integrating ML into initial access and network management procedures can achieve more efficient and adaptive 
systems that meet the increasing demands of modern telecommunications.

Promising future research directions that could build upon the work presented include exploring more 
advanced ML techniques like convolutional and recursive neural networks and reinforcement learning to model 
spatial correlations better and enable online beam selection optimization as the UE moves. Additional context 
data, such as from sensors, location services, and network telemetry, could be incorporated to improve predic-
tions further. Experimental validation through real-world channel measurements and network trials would help 
identify gaps between simulations and practical deployed scenarios. The proposed ML solution could seam-
lessly integrate with network functions like mobility and beam management to autonomously adapt beams in 
real time to UE mobility. Finally, studying the robustness of ML models to non-stationary network conditions 
under varying traffic, hardware failures, and spectrum usage would be important to enable deployment under 
dynamic operational conditions.

Data availability
The datasets generated during the current study are available in the https://​github.​com/​lhupa​lo/​oran-​inatel. For 
detailed instructions, please consult the repository’s README file.
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