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Abstract . We have tested the requirement of keratin
intermediate filaments for the formation and function
of a simple epithelium . We disrupted both alleles of
the mouse keratin 8 (mK8) gene in embryonic stem
cells, and subsequently analyzed the phenotype in de-
veloping embryoid bodies in suspension culture. After
the inactivation of the mouse keratin 8 (mK8) gene by
a targeted insertion, mK8 protein synthesis was unde-
tectable . In the absence of mK8 its complementary
partners mK18 and mK19 were unable to form fila-
ments within differentiated cells . Surprisingly, these

NTERMEDIATE filament (IF)' genes constitute a super-
family whose members are expressed in very specific
spatio-temporal patterns during development . Keratin

IFs are found in all mammalian epithelia and are obligate
heteropolymers composed of members of two groups of IF
proteins, the type I and II keratins (for review see Steinert
and Roop, 1988) . Subsets of 2 to 10 individual keratins of
the -20 members are expressed in pairs in diverse epithelia .
During mouse embryogenesis, MK8 and mK18(the mouse
homologue of the human keratin 8 and 18, also named Endo
A and B) are the first intermediate filament proteins to be ex-
pressed (Jackson et al ., 1980 ; Kemler et al ., 1981 ; Oshima
et al ., 1983) . They are detectedjust before the morula stage .
Subsequently, they become restricted to the simple epithe-
lium of the early embryo, including the trophectoderm, the
parietal and visceral endoderm, as well as the simple single-
layered epithelia of the adult animal, such as gut and liver
(Moll et al ., 1982) .
Keratins are commonly regarded as structural proteins .

However, they differ from other cytoskeletal components by
their complex and specific pattern of expression . This diver-
sity is thought to be functionally significant . Despite several
attempts to interfere with keratin filament formation, their
function remains obscure . Recently, it has been reported that
dominant negative mutations of keratin proteins prevented
extraembryonic epithelium formation (Trevor, 1990) or re-
sulted in a defective skin epithelium (Vassar et al ., 1991) .

1 . Abbreviations used in this paper : EB, embryoid body; ES, embryonic
stem ; HAS, hypoxanthine and azaserine ; hrpt, hypoxanthine guanine phos-
phoribosyl transferase ; h-LIF, human leukemia inhibiting factor ; IF, inter-
mediate filament ; mK8, mouse keratin 8 ; PCR, polymerase chain reaction .
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ES cells differentiate to both simple and cystic embry-
oid bodies with apparently normal epithelia . Ultrastruc-
tural analysis shows an apparently normal epithelium
with microvilli on the apical membrane, tight junctions
and desmosomes on the lateral membrane, and an un-
derlying basal membrane . No significant differences in
the synthesis or secretion of «t-fetoprotein and laminin
were observed between the mK8- or wild-type embry-
oid bodies . Our data show that mK8 is not required
for simple epithelium formation of extraembryonic
endoderm.

These studies supported the generally accepted view that
keratins were involved as a structural support during epithe-
lium formation .
An important approach to studying gene function in vivo

is the analysis ofcells or organisms homozygous for loss-of-
function mutations . Embryonic stem (ES) cells have been
used to introduce targeted mutations into the germ line of
mice (Thompson et al ., 1989 ; Koller et al ., 1989 ; Schwartz-
berg et al ., 1989 ; Zijlstra et al ., 1989 ; for review see Rossant
and Joyner, 1989; Capecchi, 1989) . In addition to their use
for functional studies in vivo, ES cells provide a powerful in
vitro model of embryonic development (Martin, 1981 ; Evans
and Kaufmann, 1981 ; Doetschman et al ., 1985 ; Nagy et al .,
1990 ; for review, Baribault and Kemler, 1990) . In suspen-
sion culture, ES cells differentiate to organized structures
known as embryoid bodies (EBs) containing an outer layer
of endoderm and an inner ectodermal layer, separated by a
basal lamina . These EBs expand into large cystic structures
reminiscent of the visceral yolk sac both morphologically
and biochemically. ThemA8 type II keratin, with its partners
mK18 and mK19 (Endo C) type I keratins, are induced in ex-
traembryonic endoderm in vivo, as well as in vitro after the
differentiation of ES cell and embryonal carcinoma cells to
EBs (Boller and Kemler, 1983 ; Oshima 1981, 1982) .
To analyze the function of mA-8 in early embryonic devel-

opment, and to test a possible involvement of mK8 in epithe-
lium formation and organization, we inactivated both mK8
alleles in ES cells, and thereby impaired filament formation
for all three keratins . We analyzed the effect of the targeted
mutation in developing EBs, and found that mK8 is dispens-
able for the formation of extra embryonic endodermal epi-
thelium .
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Materials andMethods

Cell Culture
E14TG2a ES cell line was originally established by Hooper et al . (1987) .
ES cells were routinely cultured in DME supplemented with 15 % FCS, 0.1
mM R-mercaptoethanol and 1,000 U h-LIF on gelatin-coated plates. LIF
was produced by transfecting the pC10-6R plasmid (kindly provided by J.
Heath) (Smith et al ., 1988 ; Moreau et al ., 1988 ; Williams et al ., 1988) into
cos cells and the supernatantwas subsequently titrated using ES cell-colony
plating efficiency. For embryoid body formation, ES cells were plated at a
density of 107 cells/100-mm bacterial petri dish (Fisher) in DME sup-
plemented with 10% FBS and 0.1 mM Q-mercaptoethanol . Culture medium
was changed every day.

Gene Targeting
The K8TV1 targeting vector contains two arms of homology to the mK8
gene (EndoA al), a 1 .8-kbXbaI fragment and a 1.2 Smalfragment, respec-
tively. The neon gene (pMClneopolA, Stratagene, La Jolla, CA) replaces
part of the first exon, including the ATGtranslation initiation colon (Sdmat
et al ., 1988) . The modified Herpes simplex virus thymidine kinase gene
(Mansour et al ., 1988), HSVtk, was added 3, followed by the Bluescript
vector (Stratagene) . K8TV2 and Kg1'V3 are essentially identical to KSTVI
except that the neoa gene has been replaced by the pIls(I2s) and pnll(I2s)
hpn mini-genes (Reid et al ., 1990) . For electroporation, ES cells were
transferred with 40 hg ofNot I linearized targeting vector in 0.7 ml of cul-
ture medium using a BTX Transfector 100 at 250 V for 5 ms. Cells were
plated at a density of 107 cells/90-mm petri dish . 12 h after electropora-
tion, one plate was trypsinized and the number of cells counted . This num-
ber was used to calculate cell survival . 150 mg/ml G418 (for KSTVl) or
G418 and hypoxanthine (0.7 pg/ml)-azaserine (10 pM) (HAS) (for KgrV2
and K8TV3) as well as 2 pM GanC were added 24 h after electroporation .
One plate was selected in the absence ofGanC to evaluate the transforma-
tion efficiency and the enrichment factorofthe GanC selection . Thenumber
of colonies withoutGanC selection are deduced relative to this control . Af-
ter 10d under selection, single colonies were pickedandgrown in duplicate .
PCR analysis was performed using 27-29-mer oligonucleotides, one com-
plementary to the neoR gene (for K8TV1, 5' >CGC ACG GGT GTT GGG
TCG TTT GTT CGG < 3'), or the HPRT gene (for K8TV2 and K8TV3,
5'-CCA CCGTGT GTT AGA AAAGTAAGA AGC AG-3') and one located
3' of the targeting vector homology in the mK8 gene (5'-GCT GAA CAG
GCA GAG AAA CTG ATT TGG GG-3') . 40 cycles of melting at 93°C for
1 min, annealing at 57°C for 30 s, and synthesis at 72°C for 2 min were
performed using 100 ng/reaction ofeach oligonucleotide, 2 U'Iaq polymer-
ase (Cetus Corp., Emeryville, CA), and crude cell lysate (-10,000 cells/
reaction) (Kim and Smithies, 1988) . The first screenings were done using
poolsof eight clones . Thesingle clones contained in poolswith the expected
PCR product were rescreened with PCR for the expected 1.4-kb product.
Positive clones were expanded further for Southern blot analysis . 5 Ag of
XbaI digested DNA per lane were loaded onto a 0.65% agarose gel and
transferred to a Zeta-probe membrane (BioRad Laboratories, Cambridge,
MA) . The filter was hybridizedwith the2.5-kb EcoRI pseudogene fragment
(Endo Aa2) (Vasseur et al ., 1985), which is homologous to the exonic se-
quences of the mK8 gene .

Immunobiochemical Analysis
For immunofluorescence analysis, EBs were sedimented at 1 g, mixed with
OCT compound, and frozen directly on dry ice . 5-Am sections were fixed
in 100% methanol for 10 min, rinsed with PBS, and then incubated with
the respective antibodies. For staining in monolayer, EBs were trypsin-
ized, replated on gelatin-coated coverslips, and methanol-fixed 2 d later.
TROMA-1, -2, and -3 rat mAbs are directed against mK8, mK18, and mK19,
respectively (Boiler and Kemler, 1983 ; Boiler et al ., 1987) . These three hy-
bridoma cell lines were a gift of Dr. R . Kemler (Max-Planck Institut fiir
Immunbiologie, Freiburg, Germany) . mK8 and mK18 antisera have already
been described previously (Oshima, 1982) . Antivimentin (Graver et al .,
1983) and antidesmoplakin I/II (Pasdar and Nelson, 1991) antisera were
gifts from Drs . J. Singer (University of California at San Diego, San Diego,
CA) and J . Nelson (Stanford University, Stanford, CA), respectively.
Laminin antisera was described previously (Oshima and Linney, 1980) .
Extensive immunoprecipitations and ELISA analysis confirmed that the
serum was specific to the laminin A and B chains . Anti-at-fetoprotein was
commercially available from Miles Laboratories Inc. (Elkhart, IN) . Fluo-
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rescem-conjugated rabbit anti-rat IgG, goat anti-rabbit IgG, and rhoda-
mine-conjugated goat anti-rabbit IgG antibodies were purchased from Or-
ganon Teknika (west Chester, PA) . For double staining experiments, the
species specificity of the second antibody was controlled as follows: cells
were incubated with TROMA2 rat mAband subsequently with rhodamine
anti-rabbit antisera . Also, cellswere incubated with desmoplakin LM rabbit
antisera and subsequently with fluorescein-anti-rat IgG. Both controls were
negative, showing that the second antibodies used herewere species specific.

For most immunoprecipitation experiments, EB cultures were labeled
overnight with 35S-Met ata concentration of 501&Ci/ml, in methionine-free
EB culture medium . Secretion was analyzed by pulse-chase experiments
where cells were labeled with 200 pCi/ml of 30 min and rinsed 3x with
normal complete EB culture medium . Both supernatant and EBs were col-
lected at different chase times. Cell lysate, containing 101 TCAinsoluble
cpm, were incubated for 2-3 h with the respective antibodies, followed by
a 30-min incubation with Staphylococcus aureus as described previously
(Oshima, 1982) . The pelleted proteins were separated on a 12.5% SDS-
PAGE and detected by fluorography (Bonner and Laskey, 1974) . Gels were
exposed to XAR5 Kodak film. For quantitative analysis, films were
scanned with an LKB laser densitometer.

Electron Microscopy
Epon-embedded EBs were sectioned and stained with uranyl acetate and
lead citrate, following standard procedures for EM .

Results

Inactivation ofmK8 by Gene Targeting
To impair both mK8/mK18 and mK8/mK19 keratin filament
formation, we inactivated the type II mK8 keratin . In the
mouse genome, there is one functional mK8 gene with eight
exons and one pseudogene (Vasseur et al ., 1985) . The target-
ing vectors used for the inactivation of both alleles are de-
picted in Fig. 1 . They contain 3 kb of the mK8 gene, inter-
rupted by the neo gene for the targeting of the first allele
(K8TV1) and by a hprt minigene for the targeting of the
second allele (KSTV2) . The Herpes simplex virus thymidine
kinase, HSVtk, gene was inserted to make use of the posi-
tive-negative selection with gancyclovir (GanC) (Mansour et
al ., 1988) . E14TG2a ES cells were transfected with K8TV1
and four targeting events were identified by PCR screen-
ing (Table I) . Three of those clones were expanded and
the planned alteration of one mK8 allele was confirmed by
Southern blot analysis (Fig . 2) .
The E14K8-Nl cell clone was used for the inactivation of

the remaining allele . The parental E14TG2a ES cell line car-
ries a deletion in the hprt gene and therefore lacks hprt ac-
tivity completely (Hooper et al ., 1987) . Two forms of a hprt
minigene (Reid et al ., 1990) weretested as selective markers
in the construction ofthe targeting vectors for the second al-
lele . K8TV2 (Fig . 1) and K8TV3 (not shown) contain the hprt
minigene including the first and second introns or the second
intron alone, respectively. After transfection of E14K8-Nl
cells with K8TV2 and K9TV3, hprr clones were selected in
medium containing hypoxanthine and azaserine (HAS) in or-
der to inhibit de novo synthesis ofpurines and make the cells
dependent upon the activity of the hprt gene for growth .
Azaserine replaced the more conventional aminopterin and
thymidine combination, found in HAT medium, to avoid
possible interference with the negative selection using the
nucleotide analogue GanC. G418 selection was continued
during the course of the second homologous recombination
experiment in order to select only recombination events with
the unmodified allele . Six targeting events were identified by
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PCR from 153 screened colonies after transfection with
K8TV2, butnone with K8TV3 (liable 1) . The targeted modifi-
cations were confirmed by Southern blot analysis for all ex-
panded clones, which were positive by PCR (Fig . 2) . One
HASr clone, which did not contain a second targeted gene,
was also picked as a control for further functional assays
(Fig . 2, lane 9) .
The targeting frequency with K8TV2 (1/25 HASr + GanCl

colonies or 4.3 x 10-1 transfected cells) is approximately
half of that observed with K8TV1 (llll HASr + GanCr
colonies or 10 7 transfected cells) . Taking into account that
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only half the number of targets were present after the first
inactivation, these results are in agreement with previous ob-
servations that the targeting frequency is independent of the
length ofnonhomologous DNA (Mansour et al ., 1990). The
unique difference between K8TV2 and K8TV3 is the pres-
ence of the hprt first intron in the former construct. We were
unable to detect any targeting events with K8TV3, although
HASr colonies were obtained . The first intron appears to
contain regulatory elements necessary for sufficient levels of
hprt expression in the context ofthe nonexpressed mK8gene
(Reid et al ., 1990) .

K8TV1 targeting vector (Fig . 1) was used for the disruption of the firrst allele, K8TV2 (Fig. 1) and K8TV3 (not shown) for the disruption of the second allele .
The number of surviving cells is the number ofattached cells 12 h after electroporetion. The number of colonies without GanC is the number of colonies if they
would have been selected in G418 (for K8TV l) or HAS (for K8TV2 and K8TV3) only . The number ofcolonies with GanC is the total number ofG418` + GanC
colonies (for K8TV1) or G418' + HASr + GanC colonies (for K8TV2 and K8TV3) obtained .

Table I. Targeting Frequency

K8TV1 K8TV2 K8TV3

Transfected cells 10, 1 .4 x 108 108
Surviving cells 5 x 107 7 x 107 5 x 10 7
Colonies without GanC 6,400 1,526 300
Transformation efficiency 6.4 x 10-5 0.9 x 10-5 0.3 x 10 -5
Colonies with GanC 320 218 30
GanC enrichment factor 20-fold 7-fold 10-fold
Screened colonies 42 153 28
PCR positives 4 6 0
Targeted clones
(confirmed by Southern blot) 3/3 5/5
Targeting frequency per:
GanC ,/G418'/HAS , colonies 1/11 1/25 -
transfected cells 10-7 0.43 x 10 -7 <10-e



Figure 2. Southern blot analysis ofthe targeted ES cell clones . 5 'Ug
ofgenomic DNA, digested with Xbal was loaded in each lane. The
filter was hybridized with the 2.5-kb EcoRl pseudogene fragment
(Endo Aa2 [Vasseur et al ., 1985]), which is homologous to the ex-
onic sequences of the mK8gene. In the parental cell line (lane 2),
the 8.5 and the 5-kb bands represent the gene and the pseudogene,
respectively. The presence ofa 9.5-kb band in lane 3 shows the ex-
pected shift in one allele ofthe mK8 gene after homologous recom-
bination withK8TVl. The presence ofthe 10.5-kb band in lanes 4-8
shows that the remaining wild-type allele has been targeted with
K8TV2 . The control clone E14K8-N1-H6 (lane 9) is HASr, but, as
expected fromthe PCR analysis, the second allele was nottargeted .
Radiolabeled lambda HinDIH size markers are shown in lane 1.

Fblarized Epithelium Forms in mAa' Embroid Bodies
ES cells, homozygous or heterozygous for the targeted muta-
tion, as well as the parental cell line were allowed to dif-
ferentiate in suspension culture. All clones formed normal
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aggregates . Endoderm layers covering the surface of EBs
were morphologically recognizable by light microscopy af-
ter 2-4 d (Fig. 3 A) and in histological sections (Fig . 3, B
and C) . Ectoderm-like epithelia formed beneath the outer
endodermal layer as shown in sections of4-d-old EBsculture
(Fig . 3 B) . Large cystic structures expanded after 8-10 d
(Fig . 3 D) . Neither the kinetics of embryoid body formation
nor the proportion ofaggregates that formed cystic structures
appeared to be different from the wild-type in all mutant
clones analyzed .

Transmission EM revealed apparently typical and normal
epithelium in mK8- and wt EBs (compare Fig. 4, A and B).
Cells were polarized with microvilli on the apical membrane
and a basement membrane underlying the epithelial cell
layer. Secretion granules were observed, indicating that
these cells were actively secreting . Because keratins are as-
sociated with desmosomes we were particularly interested in
whether these structures are present in mK8- EBs. Struc-
tures resembling desmosomes and tight junctions were ob-
served on the lateral membrane of epithelial cells derived
from both mK8- and wild-type ES cells (Fig . 4, C and D
and inset to Fig. 4 D) .

Lack ofmK81MK18 Filaments in Doubly
Targeted Clones
To confirm that the introduced mutations in the mK8 gene
functionally inactivated the mK8 gene, we let the parental
and doubly targeted ES cells differentiate to EBs and per-
formed immunoprecipitation and immunofluorescence ex-
periments. The mK8 was immunoprecipitated with an mK8-
specific antiserum from the parental cell line (Fig. 5 A, lane
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Figure 3 Embryoid body formation . Em-
bryoid bodies (EBs) from the E14K8-Nl-HI
doubly targeted ES cell lines are shown in
A-D. A 4-d-old embryoid body (ER) is
shown by phase-contrast microscopy in A
(100x) . Note the formation ofan endoderm
layer (open arrow) . B shows a section of a
paraffin embedded 4d-old EB (250x) . Note
endoderm-like (short arrow) and ectoderm-
like (long arrow) layers ; (C) methylene
blue-stained sectionof plastic embedded EB
showing the differential staining of the en-
dodermal layer (250x) ; D shows a cystic
structure in a 10-d-old EB (100x) .



Figure 4. Ultrastructural analysis of mK8- and wild-type endoderm . 4-d-old EBs derived from parental (A and C) and doubly targeted
(B and D) ES cells were embedded in Epon . Transmission EM of thin sections show that mK8- and wild-type EBs form a polarized epi-
thelium with microvilli (mv), basal membrane (bm), secretion granules (g), tightjunctions (d), and desmosomes (d) . Magnifications : (A
and B) 6,000x ; C is a higher magnification of A at 15,000x ; (D) 18000x ; inset in D shows desomosome-like structure in mK8-EB at
higher magnification .
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Figure 5. Immunoprecipitation
of mK8, mK18, laminin, and
al-fetoprotein in wild-type
and doubly targeted ES cells .
(A) 7-d-old EBs derived from
doubly targeted (lanes 2, 4, 6)
or parental panes 1, 3, 5) ES
cells were labeled with 50
ACi/ml 'SS-Met overnight .
107 cpm of lysate were incu-
bated with mK8 panes 1 and
2), mK18 panes 3 and 4), or
laminin panes 5 and 6) anti-
sera . The immunoprecipitated
proteins were separated on a
12.5% SDS-PAGE andexposed
to film for 3 d . Arrows indi-
cate the position of mK8,
mK18, as well as laminin A
and B chains . In B, 12-d-old
EBs derived from doubly tar-
geted panes 3-4, 7-8, 11-12,
1516) and parental panes 1-
2, 5-6, 9-10,13-14) ES cells
were labeled with 200,uCi/ml
for 30-min pulse . Radioactive
medium was replaced with a
normal medium and EBs were
harvested after 0 h panes 1-4),

1 .5 h panes 5-8), 2.5 h panes 9-12), or 5 h panes 1316) . a,-Fetoprotein was immunoprecipitated from the cell lysates (lanes 1, 3, 5,
7, 9,11,13,15) or from the culture supernatants panes 2, 4, 6, 8,10,12,14,16) . Immunoprecipitated proteins were separated on a 12.5 %
SDS-PAGE and exposed to film overnight . Fluorograms were scanned and the percentage of secreted a,-fetoprotein (a l -fetoprotein in su-
pernatant/total a l -fetoprotein) was plotted as a function of time . P, cellular pellet ; S, culture supernatant .

1), but was not detected in EBs derived from the doubly tar-
geted ES cells (Fig . 5 A, lane 2) . Immunofluorescence stain-
ing was performed on EB frozen sections. mK8 was uni-
formly present throughout the differentiated endoderm of
wild-type EBs (Fig . 6 A), but was absent from doubly tar-
geted EBs (Fig . 6 B) . In addition, in the mIO- EBs, no
mK18 staining was observed (Fig . 6, C and D), even though
mK18 protein synthesis was detected by immunoprecipita-
tion (Fig. 5 A, lanes 3and 4) . These results confirm that both
mK8 and mK18 are required for keratin filament formation
and are in agreement with previous observations that human
K18, expressed in the absence of a complementary keratin
partner, is rapidly degraded (Kulesh et al ., 1989) . mK19 is
expressed in extraembryonic endoderm and it has been sug-
gested to be a partner keratin for mK8. mK19 was found to
be present in the endoderm layer of the cystic structure in
wild-type EBs (Fig. 6 E). In the absence of mK8, mK19
was unable to form filaments (Fig. 6 F), which strongly sup-
ports the notion that mK8 is the partner of mK19 in extra-
embryonic endoderm .
To better visualize the staining pattern of these antigens in

differentiated ES cells, 10-d-old EBs were replated on cover-
slips . Endodermal cells as well as other cell types migrated
out of the EBs . Immunofluorescence staining for mK8,
mK18, and mK19 on EB outgrowths confirmed the results
obtained with EB sections (Fig . 7), except for a small sub-
population ofcells (from a few to about 10 % ofdifferentiated
cells) which showed mK18 and mK19 staining at the periph-
ery of mK8- cells. The nature of these cells is unclear, but
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the punctate staining pattern was reminiscent of desmosome
staining by desmoplakin antibodies . To test the hypothesis
that the structures associated with mK18 and mK19 were
desmosomes, we performed double staining of mK18 (Fig .
8 B) or mK19 (not shown) and desmoplakin UII (Fig . 8 A) .
The staining patterns were identical, suggesting that in the
absence of mK8, mK18 and mK19 have the ability to associ-
ate with desmosomes . The colocalization of both antigens
was not observed in EB sections . Therefore, it is unlikely that
this cell population represents endodermal cells . In addition,
this phenomenon is not observed when ES cells are induced
to differentiate to a homogenous endodermal cell population
by retinoic acid (data not shown) . Desmoplakin I/II is ob-
served in most extraembryonic endoderm ofboth n;10- and
wild-type EBs (Fig . 6, K and L) .
The absence ofnormal filament staining patterns for mK18

and mK19 indicates thatit is unlikely that another type II ker-
atin is expressed in the differentiated cells of mK8- EBs
because any other type II keratin would be expected to poly-
merize with mK18 and mK19 resulting in detectable fila-
mentous structures (Hatzfeld and Franke, 1985) . However,
vimentin is expressed in most cultured cells including un-
differentiated ES cells (Paulin et al ., 1982 ; personal observa-
tion) even though it is absent from the inner cell mass from
which ES cells are derived (Jackson et al ., 1980 ; Oshima et
al ., 1983) . While vimentin and keratins form distinct IF net-
works, they are similar in primary structure (Singer et al .,
1986 ; Steinert and Roop, 1988) . Thus, vimentin could con-
ceivably complement the absence of keratin filaments . How-
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Figure 6. Immunofluorescence staining ofdoubly targetedand wild-
type EBs. Frozen sections of EBs derived from the parental (A, C,
E, G, I, K) and from doubly targeted (B, D, FH, J, L) ES cells
were stained by immunofluorescence with TROMA1 (A and B),
TROMA2 (Cand D), TROMA3 (E and F) rnAbs directed against

Baribault and Oshima Targeted Inactivation ofBoth Mouse Keratin 8 Alleles

Figure 7. Immunofluorescence staining of mK8, mK18, mK19 in
differentiated ES cells . 10-d-old EBs derived from parental (A, C,
and E) and doubly targeted (B, D, andF) ES cells were trypsinized
briefly and replated on gelatin-coated coverslips. After 3 d, cells
were stained by immunofluorescence with TROMA1 (A and B),
TROMA2 (C and D), and TROMA3 (EandF) mAbs . (Magnifica-
tion 400x.)

ever, the endodermal layer of mK8- EBs was negative for
vimentin staining with a polyclonal antiserum (Fig. 6, I
and J) .

Functional Activity ofthe Visceral Endoderm

The large cystic structures of EBs are reminiscent of the
visceral yolk sac, both morphologically and biochemically.
Visceral endoderm of the yolk sac actively produces and se-
cretes a1-fetoprotein and laminin in vivo. In EBs derived
from embryonal carcinoma cells, the production and secre-
tion of a1-fetoprotein appears to be a good indicator of the
organization and maturity ofthe visceral endodermal epithe-
lium (Grover et al ., 1983). To test the functional activity of
the mli- extraembryonic endoderm we monitored a1-feto-
protein synthesis and secretion in EBs culture. No differ-
ences in the rate of synthesis or secretion were detectable by
pulse-chase immunoprecipitation experiments (Fig . 5 B) .
Similarly, laminin synthesis (Fig . 5 A, lanes 5 and 6) and
secretion (not shown) were not significantly different be-
tween the mI - and wild-type EBs. Immunofluorescence

the indicated antigens, antilaminin (G and H), antivimentin (Iand
J), and antidesmoplakin I/II (K and L) antisera. (Magnification
250x.) The white arrows indicate endoderm layers.
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Figure 8. Double immunofluorescence staining of desmoplakin I/II and mK18 in doubly targeted differentiated ES cells. 10-d-old EBs
derived from doubly targeted ES cells were trypsinized briefly and replated ongelatin-coated coverslips as inFig . 5. Double immunofluores-
cence staining with antidesmoplakin I/II antisera (A) and TROMA-2 mAbs (B) show that both antigens colocalized at the periphery of
the cells, in a subpopulation of epithelial cells .

staining revealed that laminin was deposited beneath the en-
doderm layer in rreRB - EBs in the same manner as in wild-
type EBs (Fig . 6, G and H) . These results demonstrate that
an epithelium similar to the functional visceral endoderm
can form in the absence of mK8.

Discussion
We show here that a polarized and functional epithelium can
form in the absence ofthe mouse keratin 8 . These results are
unexpected because keratins are commonly regarded as
structural proteins that provide strength to epithelial layers.
However, it is clear that the visceral endodermal layer ofcys-
tic embryoid bodies that lack keratin filaments are able to
withstand the apparent hydrostatic pressure associated with
their expansion . In addition, the normal synthesis and secre-
tion of a l-fetoprotein, a sensitive marker ofmature visceral
endoderm, indicates that neither the processes ofdifferentia-
tion nor that of active secretion requires simple epithelial
keratins.

Is the Lack ofmK8Requirementa Consequence of
Functional Redundancy amongIF Genes?
As an increasing number oftargeted mutations are analyzed
in mice, it has become evident that the pattern ofexpression
ofthe targeted gene is not necessarily a good indicator ofthe
tissue or time during development when the gene product is
essential . The en-2 targeted mutation has an effect restricted
to neural cells expressing en-2 but lacking en-1 (Joyner et al .,
1991) . Despite constitutive expression of c-src, a targeted
mutation of c-src results in a defect in bone formation only
(Soriano et al ., 1991) . Both groups suggested that other
members of the same multigene family could complement
the targeted gene function when coexpressed . Functional
redundancy between similar proteins has been shown to oc-
cur in the E(spl)-C (enhancer of split complex in Drosoph-
ila), where several closely related transcripts have the same
expression pattems (for review see Campos-Ortega and
Knust, 1990) . However, it is very unlikely that the deficiency
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in keratin filaments is complemented by another member of
the keratin gene family, because other type II keratins capa-
ble ofpolymerizing with the normal mK18 andmK19 are ab-
sent from the mK8- visceral endodermal layer. However, a
low level or an altered polymerized form of vimentin might
escape detection by immunofluorescent staining even by
polyclonal antiserum and might complement the keratin
deficiency. No other intermediate filament proteins are
known to be expressed in this tissue.

mK8Is Dispensablefor Endoderm Formation
The results of this study appear to contrast with two recent
studies of the effects of dominant-negative mutations of two
different keratin proteins . The disruption of mK8/mKl8 fila-
ments by a dominant mutation ofK18 impairedthe formation
of an extraembryonic epithelium in an EB assay similar to
that used here (Trevor, 1990) . However, null and dominant-
negative mutations are distinctgenetic modifications that can
lead to distinct phenotypes . One explanation of the differ-
ences of dominant-negative keratin mutant phenotypes with
the null mutant phenotype reported here is that the remaining
presence of disrupted keratin filaments or bundles found in
cells expressing dominant-negative mutations may interfere
with components essential for epithelial assembly or in-
tegrity. Possible unexpectedfunctions ofmutantproteins and
consideration ofthe level of expression necessary for a bio-
logical effect are complications of experiments utilizing
dominant negative mutations or other similar disrupting
agents . The future use ofgenetargeting to generate dominant
negative mutations may minimize the potential complication
ofobtaining physiological concentrations ofthe mutantgene
product . In a second investigation, the expression of a
dominant-negative mutation ofan epidermal specific keratin
in transgenic mice resulted in the formation of a defective
basal epithelial layer with subsequent pathology similar to
a group ofhuman genetic disorders known as epidermolysis
bullosa simplex (Vassar et al ., 1991) . In this case, epidermal
keratins appear to have an important structural function .
However, epidermal and simple epithelial keratins may have
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different functions. Alternatively, the differences in pheno-
type may be due to different requirements of the respective
tissues .
The function for these simple epithelial keratins may be

much more subtle than previously suggested or than revealed
by the in vitro differentiation of ES cells . The analysis of
germ line mutation of the keratin 8 gene will extend this
analysis to all murine epithelia and provide the most rigorous
test of the function of affected tissues . However, the tissue-
specific patterns of keratin expression vary considerably
among species . For example, the expression of keratin fila-
ments in preimplantation mouse and hamster embryos and
oocytes appears to differ significantly (Plancha et al ., 1989) .
Myocardial and retinal pigment epithelial cells of different
species differ with regard to keratin expression (Kuruc and
Franke, 1988; Owaribe et al ., 1988 ; Jahnet al ., 1987; Markl
and Franke, 1988) . These inconsistencies suggest that kera-
tins are fortuitously expressed in some epithelial cells . In ad-
dition, disruption of keratin filaments by antibody injection
had no effect on cellular morphology or other aspects of PTK
epithelial cell behavior in monolayer culture (Klymkowsky
et al ., 1983) . Similarly, mouse embryos develop normally to
theblastocyst stage after microinjectionofkeratin antibodies
which disrupted filament organization (Emerson, 1988) .
These studies are in agreement with our results that mK8/
mK18 and mK8/mKl9 filaments are dispensable for endo-
derm formation .

Further Applications for Double Gene Targeting
The total loss of expression of mK8 in ES cells permits ex-
tensive biochemical analysis because EBs can be cultured in
large quantity. Keratin IF bundles radiate from the perinu-
clear region to the desmosomes (Jones and Goldman, 1985)
and hemidesmosomes (Klatte et al ., 1989) which contribute
to cell adhesion . Desmoplakin, a major component of the
desmosome, is associated with keratin filaments before des-
mosome formation in MDCK cells (Pasdar et al ., 1991) .
However, we found desmosome-like structures in the ab-
sence of mK8 filaments . Future detailed analysis of des-
moplakin localization in mK8- epithelial cells may reveal
differences in desmosome assembly. In that respect, the
colocalization of mK18 and mK19 with desmoplakin I/II in
a subpopulation is a surprising observation . It seems likely
that mK18 and mK19 are able to bind desmosome compo-
nents without the presence of a partner keratin . A recent
analysis of mK8, mK18, and mK19 domain function empha-
sized the necessity for the absence ofthe endogenous protein
to perform functional and structural analysis (Xu and Lane,
1990) . Using a variety of truncated keratin expression vec-
tors ectopically expressed in fibroblasts, the authors ana-
lyzed specific domain functions in filament formation . The
system developed in this study would be ideal to study the
effects of these mutations in an endogenous epithelial cell
where keratins could interact with desmosome components.
The method oftargeting both alleles ofa gene and analyz-

ing the phenotype in vitro (Riele et al ., 1991 ; Mortensen et
al ., 1991) may be suitable for any gene that is not essential
for ES cell growth and is expressed in differentiated ES cells
such as the early embryonic development lineages, hemato-
poietic lineages (Schmitt et al ., 1991; Wiles and Keller,
1991), and cardiac muscle cells (Robbins et al ., 1990) . In ad-
dition, in cases where targeted mutations are embryonic le-
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thal, chimeras of doubly targeted ES cells with wild-type
embryos will permit the analysis of the phenotype at later
stages (Pevny et al ., 1991) .
hprt is a bidirectional selective marker (Reid et al ., 1990 ;

Valancius and Smithies, 1991) . We selected for the presence
of HPRT activity. Subsequent selection against HPRT with
thioguanine would permit replacement of the modified gene
with additional constructs carrying modification of pro-
tein domains or regulatory signals . This will permit un-
limited modifications of one allele in a null genetic back-
ground .
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