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Abstract: Transmission lines are affected by Aeolian vibration, which causes strands to break and
eventually causes an entire line to break. In this paper, a method for monitoring strand breaking
based on modal identification is proposed. First, the natural frequency variation of a conductor
caused by strand breakage is analyzed, and a modal experiment of the LGJ-95/15 conductor is
conducted. The measurement results show that the natural frequencies of the conductor decrease
with an increasing number of broken strands. Next, a monitoring system incorporating a fiber Bragg
grating (FBG)-based accelerometer is designed in detail. The FBG sensor is mounted on the conductor
to measure the vibration signal. A wind speed sensor is used to measure the wind speed signal and is
installed on the tower. An analyzer is also installed on the tower to calculate the natural frequencies,
and the data are sent to the monitoring center via 3G. Finally, a monitoring system is tested on
a 110 kV experimental transmission line, and the short-time Fourier transform (STFT) method and
stochastic subspace identification (SSI) method are used to identify the natural frequencies of the
conductor vibration. The experimental results show that SSI analysis provides a higher precision
than does STFT and can extract the natural frequency under various wind speeds as an effective basis
for discriminating between broken strands.
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1. Introduction

Aeolian vibrations often occur on transmission lines when a steady wind blows toward the
conductors. Long-term vibration often causes a transmission line to break at the point of clamped
contact [1,2]. To avoid such an accident, the vibration of transmission lines must be monitored.
The existing method for such monitoring calculates the dynamic bending strain value by measuring
the vibration amplitude of a conductor at a distance of 89 mm from the last contact point between the
conductor and clamp; the method then calculates the fatigue life based on the dynamic bending strain
and number of vibration cycles. Cantilever beam sensors [3,4], radar sensors [4,5], and acceleration
sensors [6] have been used to implement this monitoring technique. Some of these sensors can
accurately measure amplitude and frequency; however, they cannot accurately predict fatigue life.
According to Reference [7], vibration will cause wear between strands; this wear is another factor that
reduces operating life, in addition to metal fatigue effects, and leads to the need for frequent manual
inspections to avoid broken line accidents.

In fact, strands can be repaired immediately after breaking, thereby preventing the line from
breaking. A superconductor quantum interference device based on a high-temperature superconductor
is used to monitor single line fracture in transmission lines. However, in this method, current must
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be injected into the running conductor, and the current and weight must then be detected [8].
The electromagnetic induction method is used to detect defects in transmission lines, and the defect
voltage is determined by collecting the coil voltage [9]. Similarly to the magnetic induction method,
some scholars have attempted to use eddy current sensors to measure the local defects in wires and
identify the damage [10,11] to the wire through changes in the magnetic field reflected by the eddy
current. However, the load current of transmission lines is variable, as is the magnetic field around
them; these variations have a considerable influence on the magnetic induction or eddy current method.
Moreover, these sensors must be installed above the broken strand position, and a broken wire may
cause the sensor to loosen. A more effective noncontact measurement method is to identify a strand
through image recognition. Image recognition can identify a broken strand by extracting the contour
of the wire or comparing the chromatic aberration of the crack position [12,13]. However, there are still
some problems with this method, such as the camera installation location, blind areas, and fouling
caused by the surface of the wire.

For transmission lines, the most commonly used aluminum conductor steel reinforced (ACSR)
cable is composed of several aluminum strands and steel cores. When one strand is broken, the bending
stiffness decreases, which leads to changes in modal parameters. This technology, called modal
identification, is applied to the structural monitoring of bridges [14,15] and wind turbines [16].
The mode of a structure can be identified through changes in the natural frequency, enabling the
location of a fault or the length of a crack to be detected.

In this paper, a broken strand detection method using modal identification is proposed.
This method is tested on an LGJ-15/95 transmission line. Experimental results show that the natural
frequencies of each mode decrease after the strands break. Moreover, a fiber Bragg grating (FBG)-based
monitoring system composed of an FBG-based acceleration sensor, wind speed sensor, analyzer,
and monitoring center is designed. The system measures the vibration acceleration of a conductor
and wind speed and then calculates the natural frequencies of the conductor. Finally, the monitoring
system is tested on a 105 m transmission line span at Xi’an Polytechnic University, and the short time
Fourier transform (STFT) method and the stochastic subspace identification (SSI) method are used
to identify the natural frequencies of vibration of the conductor. The experimental results show that
SSI analysis providers a higher precision than does STFT and can extract the natural frequency under
various wind speeds.

2. Broken Strands and Natural Frequencies

2.1. Principle

An overhead transmission line suspended between two towers has a certain sag caused by the
combined effect of tension and gravity. The vibration mode of the wire is usually a sinusoidal wave,
similar to the vibration of a string. The natural frequency for the vibration of a string can be calculated
by the following equation:

ωn =
n · π

l

√
T
m

(1)

where ω is the natural frequency, l is the length of the conductor, T is the tension of the conductor, m is
the conductor mass per unit length, and n is the nth mode.

Equation (1) calculates the approximate value of the natural frequency of the transmission line
but ignores the effect of stiffness on the natural frequency. In fact, the wire is more similar to a beam
fixed at both ends and subjected to tension. A model of the wire’s transverse vibration is shown in
Figure 1, and its natural frequency can be calculated by Equation (2):

ωn = (
n · π

l
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where EI is the stiffness of the wire. Because of the unique properties of a given wire structure,
the stiffness cannot be accurately calculated. However, the approximate stiffness of the transmission
line can be obtained through the share-based calculation:

EI =
π

64

n

∑
i=1

Eid4
i (3)

where Ei is the elastic modulus of the strands, d is the diameter of the strand, and n is the total number
of strands.
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where ω is the natural frequency, l is the length of the conductor, T is the tension of the conductor, m 
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Equation (1) calculates the approximate value of the natural frequency of the transmission line 
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Figure 1. Model of the transverse vibration of a transmission line. Figure 1. Model of the transverse vibration of a transmission line.

Figure 2 shows a cross-sectional view of a transmission line. According to Figure 2, as well as
Equations (2) and (3), when the strands break, the stiffness of the transmission line will decrease,
and the natural frequency will decrease as the rigidity decreases.
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Figure 2. Cross-sectional view of a transmission line: (a) Before strands are broken; (b) After strands 
are broken. 

2.2. Experimental Setup 

A vibration experiment was conducted to prove that modal identification can be used to 
identify broken strands. 

Figure 3a shows a schematic of the experimental platform. The two ends of the conductor were 
fixed, and the initial tension was provided by the hoister. The tension sensor measured the tension 
value, and the two ends of the conductor were pressed by the pressure plate. For a conductor length 
of approximately 10 m, an LGJ-95/15 ACSR was used. In order to minimize the measurement error 
caused by temperature change, the indoor temperature was kept at 24 °C, with an error of not more 
than 1 degree Celsius. This type of ACSR had two layers of aluminum strands and two layers of steel 
cores. A vibrator was installed two-thirds along the length of the conductor, and the table of the 
vibrator was connected to the conductor. 

Figure 2. Cross-sectional view of a transmission line: (a) Before strands are broken; (b) After strands
are broken.

In addition, due to the change of temperature, the length and the stiffness of the conductor will
change. The length of the conductor as a function of temperature can be expressed as:

lT = l0 · (1 + αT) (4)

where lT is the length of the conductor when the temperature is T ◦C, l0 is the length of the conductor
when the temperature is 0 ◦C, α is the coefficient of linear expansion (18.9 × 10−6/◦C for LGJ-95/15).

The stiffness of the wire as a function of temperature can be expressed as:

EI =
π

64

n

∑
i=1

Ei · (1 − ηT) · d4 (5)

where η is the temperature coefficient of the modulus of elasticity (4.72 × 10−4/◦C for LGJ-95/15).

2.2. Experimental Setup

A vibration experiment was conducted to prove that modal identification can be used to identify
broken strands.

Figure 3a shows a schematic of the experimental platform. The two ends of the conductor were
fixed, and the initial tension was provided by the hoister. The tension sensor measured the tension
value, and the two ends of the conductor were pressed by the pressure plate. For a conductor length
of approximately 10 m, an LGJ-95/15 ACSR was used. In order to minimize the measurement error
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caused by temperature change, the indoor temperature was kept at 24 ◦C, with an error of not more
than 1 degree Celsius. This type of ACSR had two layers of aluminum strands and two layers of
steel cores. A vibrator was installed two-thirds along the length of the conductor, and the table of the
vibrator was connected to the conductor.
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Figure 3. Experiment platform: (a) Schematic of the experimental platform; (b) Photograph of the
experimental platform. ACSR = aluminum conductor steel reinforced.

According to Equation (2), changes in the stiffness, length, tension, and mass per unit length of
the conductor will cause changes in the natural frequency. To ensure that the natural frequency of
the experimental wire was close to the natural frequency of the field wire, according to Equation (3),
the conductor through the hoister exert tension was approximately 1200 N. One acceleration sensor
was located 500 mm from an end of the conductor, while the other acceleration sensor was located
at the table of the vibrator. The sampling frequency was set to 1 kHz. Although the frequency range
of Aeolian vibration is theoretically 5–120 Hz, actual statistics show that the vibration frequency is
less than 100 Hz. Therefore, the vibrator began to generate sinusoidal vibrations in a swept frequency
mode with an amplitude of 0.5 g over a frequency range of 5–100 Hz. To ensure the accuracy of the
measurement, each group was swept 2 times, and the experiment was repeated 4 times. Subsequently,
the outer layer was cut off, and the sweep experiment was carried out again. For overhead transmission
lines, strand breaking usually occurs at the last point of conductor contact with the clamp (the fixed
end of the conductor). Thus, in this experiment, we cut the strand at the fixed end position, as can be
seen in Figure 4.
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Figure 5 shows the time-domain waveform of the acceleration of the conductor and the shaker
before and after a strand was broken. There is no clear difference in the acceleration signals in the
diagram. Although the vibration amplitude of the shaker remains nearly unchanged, the acceleration
amplitude of the conductor vibration is not constant; however, many peak points appear in the
curves of the conductor, where resonance may occur. For a conductor, an elastic object whose mass
is continuously distributed has multiple natural frequencies. Thus, the frequencies corresponding to
the peak points in Figure 5a,b are the natural frequencies; however, the frequency values cannot be
easily identified.
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Typically, the frequency response function can intuitively reflect the modal parameters of a wire.
The frequency response function is the self-power spectral density of excitation divided by the
cross-spectral density of the wire and excitation, given by:

H(ω) =

..
x(s)
f (s)

(6)

where H(ω) is the frequency response function,
..
x(s) is the conductor vibration acceleration after

Fourier transformation, and f (s) is the vibrator exciting force after Fourier transformation.
Figure 6 shows the frequency response function waveform of the intact wire (i.e., no strands

broken). The frequencies marked in the image are the natural frequencies. Figure 7 shows five
frequency response function curves, each of which represents the frequency response function for
a different number of broken strands. All the waveforms are similar, but the natural frequencies of all
mode are different, and the modal frequency decreases considerably with an increasing number of
broken strands.

To further verify the relationship between the number of broken strands and the natural frequency,
an experiment was conducted with a maximum of four broken strands. When the number of broken
strands was constant, the peak value of the frequency response function varied slightly, but the
corresponding frequency values of the peak value were the same. Table 1 shows the values of the
natural frequencies for a set of experiments. The modal frequency decreased with an increasing number
of broken strands. Table 2 presents the absolute change (AC) and relative change (RC) in multiple
natural frequencies with an increasing number of broken strands. The modal frequencies decreased
significantly, especially when comparing intact strands with a single broken strand. The maximum
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absolute change was 2.67 Hz, and the maximum relative change was 3.9%. These results indicate that
strand breakage can be effectively monitored by monitoring the change in natural frequency.Sensors 2018, 18, x FOR PEER REVIEW  6 of 14 
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Table 1. Change in natural frequency with the number of broken strands.

0 Strand 1 Strand 2 Strands 3 Strands 4 Strands

1st mode 13.206 12.825 12.634 12.629 12.625
2nd mode 19.882 19.119 19.024 18.929 18.916
3rd mode 26.844 25.890 25.699 25.604 25.509
4th mode 34.092 32.757 32.471 32.375 32.280
5th mode 41.721 40.196 39.814 39.718 39.623
6th mode 49.446 47.824 47.443 47.253 47.062
7th mode 57.552 55.740 55.168 55.072 54.977
8th mode 65.659 63.656 63.274 63.083 62.988
9th mode 69.569 68.710 68.614 68.424 68.424

10th mode 77.293 75.291 74.719 74.432 74.337
11th mode 86.067 83.587 82.824 82.816 82.538
12th mode 96.844 94.173 93.601 93.595 93.315
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Table 2. Change in natural frequency with the number of broken strands.

0 to 1 Strand 1 to 2 Strands 2 to 3 Strands 3 to 4 Strands

AC 1 RC AC RC AC RC AC RC

1st mode 0.381 2.89% 0.191 1.49% 0.005 0.04% 0.004 0.03%
2nd mode 0.763 3.84% 0.095 0.50% 0.095 0.50% 0.013 0.07%
3rd mode 0.954 3.55% 0.191 0.74% 0.095 0.37% 0.095 0.37%
4th mode 1.335 3.92% 0.286 0.87% 0.096 0.30% 0.095 0.29%
5th mode 1.525 3.66% 0.382 0.95% 0.096 0.24% 0.095 0.24%
6th mode 1.622 3.28% 0.381 0.80% 0.190 0.40% 0.191 0.40%
7th mode 1.812 3.15% 0.572 1.03% 0.096 0.17% 0.095 0.17%
8th mode 2.003 3.05% 0.382 0.60% 0.191 0.30% 0.095 0.15%
9th mode 0.859 1.23% 0.096 0.14% 0.190 0.28% 0.000 0.00%
10th mode 2.002 2.59% 0.572 0.76% 0.287 0.38% 0.095 0.13%
11th mode 2.480 2.88% 0.763 0.91% 0.008 0.01% 0.278 0.34%
12th mode 2.671 2.76% 0.572 0.61% 0.006 0.01% 0.280 0.30%

1 AC stands for absolute change and RC stands for relative change.

3. FBG-Based Monitoring System

A type of broken strand monitoring system for conductors is designed in this paper. The design
is composed of an FBG-based accelerometer, analyzer, and monitoring center, as shown in Figure 8.
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The FBG-based acceleration sensor is mounted on the conductor, which is designed to measure the
acceleration of the conductor vibration. The FBG sensor model is SA-1201AF2D; the sensor measures
40 mm × 20 mm × 10 mm and has a measurement range of ±5 g. The mass of the sensor is less
than 0.2 kg and thus has only a slight effect on the conductor. The acceleration sensor used in this
paper contains a compensation grating fiber, which only measures temperature and does not measure
acceleration. This compensation optical fiber is used to measure the wavelength change caused by
temperature and considers this factor in Central Processing Unit (CPU) to reduce the error caused
by temperature.

The wind speed sensor is installed on the tower to measure both wind speed and wind
direction [17].

The analyzer is installed on a tower to receive the data returned by the FBG and the wind speed
sensor, and the natural frequency is calculated using those data; the data are then sent to the monitoring
center via 3G. Because the data returned by the FBG are optical signals, the data must be converted
into electrical signals before they can be processed. Figure 9 shows the hardware composition of
the analyzer.
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The light emitted by the broadband light source reaches the tunable Fabry-Perot (F-P) filter and
the CPU output trigonometric wave through the digital-to-analog (DA) converter at the same time.
Next, a tunable F-P filter carries out periodic scanning under a triangular wave voltage. The light
wave that meets the peak transmission condition of the tunable F-P filter is transmitted, passes the
coupler and reaches the FBG-based acceleration sensor. A beam of narrow band light, whose varied
central wavelength reacts with the change in acceleration, reflects from the FBG. The reflected light is
converted to an analog voltage signal by the photodetector (PD); then, the voltage signal is transformed
into a digital signal via analog-to-digital (A/D) to the CPU. The STM32F407 chip, as the CPU of the
analyzer, first receives both the acceleration signal and wind speed signal. Next, the chip calculates the
natural frequency of the wire. Finally, the measured result is sent to the monitoring center through
the 3G module. Two photovoltaic panels and a lead-acid battery are used in this system as the
power supply.

4. Field Test and Discussion

4.1. Field Test

The performance of the FBG-based monitoring system was evaluated using a 105 m long
transmission line span at Xi’an Polytechnic University. In this test, the voltage level of the transmission
line was 110 kV, and the height of the conductor suspension point was 14 m. A wind speed sensor,
the analyzer, and Photovoltaic (PV) panels were installed on the cross arm of the tower to measure
wind speed, as shown in Figure 10a. The FBG-based acceleration sensor was mounted on one of the
conductors, as shown in Figure 10b.
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4.2. Discussion

The field test recorded the response of conductor vibration on 23 May 2018 for wind speeds of 1.5,
2.2, 3.7, and 4.5 m/s, as shown in Figure 11a. The vibration was very weak when the wind speed was
low, whereas the vibration became more distinct when the wind speed reached 4.5 m/s. Figure 11b
shows the root mean square (RMS) of the acceleration. The vibration of the conductor increased with
increasing wind speed.
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Figure 11. Acceleration responses of the conductor. (a) Vertical acceleration of the conductor; (b) root
mean square (RMS) of the acceleration.

In the field test, no vibrator provided sweeping frequency excitation, and the excitation source
was replaced by wind. In this case, modal parameter identification is usually called modal analysis
under ambient excitation. Because of variations the wind speed, the dynamic response of the conductor
is unstable. Therefore, time-varying analysis should be applied to analyze the vibration signals of the
conductor. In this paper, STFT and SSI are used.

For the known time series of wire vibration, the STFT at time n can be expressed as:

A(n, ω) =
∞

∑
m=−∞

a[m] · w[n − m] · e−jωm (7)

where ω is the frequency and w[n] is the window function. A rectangular window with a length of
128 was used for the STFT. Figure 12 shows the STFT analyses of the conductor’s vibration responses
at a wind velocity of 1.5 m/s. Figure 12a–d show the natural frequencies of the 1st, 2nd, 3rd, and 4th
modes, respectively. Figures 13–15 show the STFT analyses under wind speeds of 2.2, 3.7, and 4.5 m/s,
respectively. In these figures, the abscissa represents time, the ordinate represents frequency, and the
depth of color indicates the intensity of vibration.
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Figure 15. STFT analysis of the conductor’s vibration responses at a wind velocity of 4.5 m/s. (a) 1st
Mode; (b) 2nd Mode; (c) 3rd Mode; (d) 4th Mode.

The deepest part in the figure represents the strongest vibration, and the corresponding frequency
is natural frequency. Table 3 lists the natural frequencies obtained using the STFT method. As the wind
speed changes, the absolute error of the natural frequency obtained by the STFT reaches as high as
3.33 Hz. Compared with the conclusion of the second section, the error of this method is excessively
high and thus is not suitable for detecting broken strands.
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Table 3. Natural frequencies calculated by short-time Fourier transform (STFT).

Wind Speed (m/s) Mode V1 (Hz) Mode V2 (Hz) Mode V3 (Hz) Mode V4 (Hz)

1.5 8.575 23.05 42.18 58.69
2.2 8.453 22.92 41.11 55.36
3.7 8.026 20.51 40.68 58.14
4.5 8.026 20.63 40.25 57.83

Maximum absolute error 0.549 2.54 1.93 3.33

The SSI method was also used to analyze the vibration modes of four wind speeds. Figure 16
shows the stability chart analysis under four wind speeds. When the wind speed is 1.5, 2.2, and 3.7 m/s,
even if the power spectrum density function (PSD) was not prominent, the natural frequencies of four
vertical modes were extracted. At wind speed of 4.5 m/s, the fifth vertical mode could be extracted.
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Figure 16. Stability chart and power spectrum density function (PSD) response of stochastic subspace
identification (SSI) for modal identification of the conductor at wind velocities of (a) 1.5 m/s; (b) 2.2 m/s;
(c) 3.7 m/s; (d) 4.5 m/s.

Table 4 shows the natural frequencies calculated using the SSI method. The absolute error is
considerably smaller than that obtained using the STFT method. Compared with the conclusion of the
second section, the maximum absolute error of this method is considerably smaller than the absolute
variation of frequencies caused by the broken strands. Therefore, significant changes in the natural
frequency calculated by the SSI method indicate that the strand structure is broken and requires
on-site maintenance.

Table 4. Natural frequencies calculated by stochastic subspace identification (SSI).

Wind Speed (m/s) Mode V1 (Hz) Mode V2 (Hz) Mode V3 (Hz) Mode V4 (Hz) Mode V5 (Hz)

1.5 8.131 21.9 42.09 58.42 -
2.2 8.08 21.87 41.90 58.6 -
3.7 8.146 21.69 42.04 58.54 -
4.5 8.08 21.56 42.32 58.22 69.53

Maximum absolute error 0.066 0.34 0.42 0.38 -

As can be seen in the tables, the maximum absolute errors of the 3rd and 4th modes of the SSI
method under the four wind speeds are 0.42 and 0.38 respectively, and they are much smaller than
those of STFT. To further illustrate the accuracy of the two methods, more experimental data are
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analyzed in this paper. We used 10 sets of measured data for statistical analysis, with wind speeds
ranging from 1.3 m/s to 5 m/s. The analysis results are shown in Table 5. The Standard Deviation (SD)
of STFT method is much higher than that of SSI method.

Table 5. Statistical analysis results.

STFT SSI

Mode V1 Mode V2 Mode V3 Mode V4 Mode V1 Mode V2 Mode V3 Mode V4

Maximum 8.575 23.05 42.63 58.93 8.228 22.07 42.32 58.69
Minimum 7.965 20.51 40.25 55.36 7.923 21.56 41.69 58.22

RSD 1 8.242 21.864 41.656 57.456 8.083 21.873 41.977 58.443
SD 0.184 0.985 0.754 1.242 0.079 0.156 0.201 0.151

1 RSD is the abbreviation of “relative standard deviation”.

5. Conclusions

In this paper, a new method for detecting broken strands of a transmission line conductor using
modal parameter identification was proposed based on decreases in stiffness and natural frequency
after strands break. The theory was verified by a frequency sweep test of a vibrator. The experimental
results showed that the natural frequencies of the transmission lines will decrease after a strand is
broken, and the natural frequency will decline further with increases in the number of broken strands.
Based on the results, the maximum absolute change was 2.67 Hz, and the maximum relative change
was 3.9%. Therefore, this method is feasible.

According to the feasibility experiment of this method, an FBG-based monitoring system was
designed considering the special electromagnetic environment of the transmission line. The system has
the advantages of anti-electromagnetic interference and light weight. The system was implemented
on a 105 m long transmission line span at Xi’an Polytechnic University, with four types of vibration
signals under different wind speeds collected and the modal parameters identified. The STFT method
and SSI method were used to analyze the measured data. The results showed that the maximum
absolute errors of the 3rd and 4th modes of the SSI method under the four wind speeds were 0.42 and
0.38, respectively. In addition, the absolute errors were considerably smaller than those obtained using
the STFT method; thus, the SSI method can be used to extract natural frequencies in the field.
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