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Abstract

Background. To support proactive decision making during the COVID-19 pandemic, mathematical models have been
leveraged to identify surveillance indicator thresholds at which strengthening nonpharmaceutical interventions
(NPIs) is necessary to protect health care capacity. Understanding tradeoffs between different adaptive COVID-19
response components is important when designing strategies that balance public preference and public health goals.
Methods. We considered 3 components of an adaptive COVID-19 response: 1) the threshold at which to implement
the NPI, 2) the time needed to implement the NPI, and 3) the effectiveness of the NPI. Using a compartmental
model of SARS-CoV-2 transmission calibrated to Minnesota state data, we evaluated different adaptive policies in
terms of the peak number of hospitalizations and the time spent with the NPI in force. Scenarios were compared
with a reference strategy, in which an NPI with an 80% contact reduction was triggered when new weekly hospitali-
zations surpassed 8 per 100,000 population, with a 7-day implementation period. Assumptions were varied in sensi-
tivity analysis. Results. All adaptive response scenarios substantially reduced peak hospitalizations relative to no
response. Among adaptive response scenarios, slower NPI implementation resulted in somewhat higher peak hospi-
talization and a longer time spent under the NPIs than the reference scenario. A stronger NPI response resulted in
slightly less time with the NPIs in place and smaller hospitalization peak. A higher trigger threshold resulted in
greater peak hospitalizations with little reduction in the length of time under the NPIs. Conclusions. An adaptive
NPI response can substantially reduce infection circulation and prevent health care capacity from being exceeded.
However, population preferences as well as the feasibility and timeliness of compliance with reenacting NPIs should
inform response design.
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Highlights

� This study uses a mathematical model to compare different adaptive nonpharmaceutical intervention (NPI)
strategies for COVID-19 management across 3 dimensions: threshold when the NPI should be implemented,
time it takes to implement the NPI, and the effectiveness of the NPI.

� All adaptive NPI response scenarios considered substantially reduced peak hospitalizations compared with
no response.

� Slower NPI implementation results in a somewhat higher peak hospitalization and longer time spent with
the NPI in place but may make an adaptive strategy more feasible by allowing the population sufficient time
to prepare for changing restrictions.

� A stronger, more effective NPI response results in a modest reduction in the time spent under the NPIs and
slightly lower peak hospitalizations.

� A higher threshold for triggering the NPI delays the time at which the NPI starts but results in a higher peak
hospitalization and does not substantially reduce the time the NPI remains in force.
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Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), the virus responsible for coronavirus disease
2019 (COVID-19), has presented an ongoing public
health challenge since its emergence in December 2019.
In the early stages of the pandemic, nonpharmaceutical
interventions (NPIs), such as physical distancing and
mask wearing, represented the best available strategies
for mitigating the impact of COVID-19.1 The emergency

use authorization of the first COVID-19 vaccine in late
2020 signaled a new phase of the pandemic, with public
health strategies expanding to include vaccination.2,3

Optimism surrounding the availability of vaccines has
contributed in part to the relaxation of NPIs in many
populations.4,5 However, circulation of more transmissi-
ble variants (e.g., delta, omicron) and breakthrough cases
among vaccinated individuals underscore the necessity of
multifaceted prevention strategies.6–8 Even among highly
vaccinated populations, outbreaks amidst relaxed NPIs
and waning immunity may require renewed actions to
control transmission.

At the beginning of the pandemic, many US states
issued stay-at-home orders shortly after the first cases of
COVID-19 were detected within their borders.9 These
orders were largely intended to be short-lived with the
goal of providing health systems with time to increase
personal protection equipment supply and expand health
care capacity. However, during subsequent COVID-19
waves, measures to combat case growth were often initi-
ated only after health systems had been heavily stressed,
if not overwhelmed. To support proactive decision
making, mathematical models have been leveraged
throughout the pandemic to identify surveillance indica-
tors that may signal when strengthening NPIs is
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necessary to ensure population health care needs do not
exceed health care capacity.10–13 Indeed, this is the pre-
mise behind CDC’s ‘‘community levels,’’ which seek to
adjust recommended mitigations in a given community
based on the danger that local hospital capacity will be
overwhelmed.14

One of the earliest models of COVID-19 transmission
estimated peak intensive care unit demand when specific
NPIs (e.g., school closures) were implemented upon
reaching different surveillance thresholds in a simulated
population.10 Models have subsequently been used as a
tool for comparing expected COVID-19 outcomes under
longer, less restrictive periods of intervention to out-
comes expected under shorter, more restrictive periods of
intervention.11 A number of studies have also highlighted
that the timeliness with which NPIs are implemented
contributes to their effectiveness.15–17 An adaptive
COVID-19 response can thus be distilled down to 3 com-
ponents: 1) a surveillance indicator threshold at which to
implement the NPI, 2) the time needed to implement the
NPI, and 3) the effectiveness of the NPI. Previous studies
have focused on only a subset of these components in
their modeled scenarios (e.g., varying thresholds and
NPIs with fixed response time). Importantly, these com-
ponents are interdependent, and the feasibility of a given
adaptive NPI strategy is contingent on resource avail-
ability and public adherence, among other factors. In

this article, we collectively consider these variables in a
series of simulated scenarios designed to highlight perti-
nent tradeoffs. We then discuss how policy makers can
leverage the individual components of an adaptive
COVID-19 response to balance public preference and
public health goals in designing response policies.

Methods

Overview

We developed a compartmental model of SARS-CoV-2
transmission and downstream health care utilization for
the state of Minnesota. Health states in our model con-
sisted of susceptible, exposed, asymptomatically/subclini-
cally infectious, symptomatically infectious, hospitalized
without ventilation, hospitalized with ventilation, recov-
ered, and dead. Allowed transitions between health states
are depicted in Figure 1. The model was age-stratified to
capture age-related heterogeneity in contact patterns,
presentation of symptomatic infection, and severity of
infection outcomes, such as the likelihood of hospitaliza-
tion and death. The model was parameterized to reflect
the demographics of the state of Minnesota and cali-
brated to COVID-19 outcomes in Minnesota from
March 23, 2020, to August 2, 2020. A comprehensive
description of the model and input parameters is

…

…

…

Figure 1 Model state-transition diagram with susceptible (S), exposed (E1, . . . , Em), asymptomatically infectious (IA1, . . . , IAn),
symptomatically infectious (IS1, . . . , ISn), hospitalized without mechanical ventilation (H), hospitalized with mechanical
ventilation (Vent), recovered (R), and dead (D). The model includes series of m exposed states and n infectious states to reflect
incubation and infectious periods that are not exponentially distributed (see Supplementary Materials for details). In the model,
patients are stratified into H and Vent states upon admission to the hospital and do not transition between the two states.
Patients leave H and Vent states either through discharge (to the recovered R state) or by dying (to the dead D state), with rates
that vary by need for mechanical ventilation and age.
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provided in the Supplementary Materials. Using the cali-
brated parameters, the model was used to evaluate
COVID-19 outcomes under different adaptive NPI stra-
tegies, simulated from September 1, 2020, through
March 22, 2021. The model and related analyses were
implemented in R version 4.0.3.18 Model code is available
for download at https://github.com/evaenns/Adaptive-
COVID19-Mitigation-Strategies-Model.

Infection and Hospitalization Parameters

Infection progression parameters, including the mean
incubation period, mean infectious period, and age-
specific proportion of infections that are asymptomatic/
subclinical, were estimated from the published litera-
ture.19–21 The probability of hospitalization by age group
was estimated from data on the age distribution of hospi-
talized cases in Minnesota and adjusted in model calibra-
tion. The probability of requiring mechanical ventilation
if hospitalized, the probability of dying following hospi-
talization with and without mechanical ventilation, and
the length of hospital stay with and without mechanical
ventilation were estimated, by age, from Minnesota
Department of Health surveillance data on hospitalized
COVID-19 cases.22 Notably, hospitalized individuals on
a ventilator experienced a longer length of stay and a
higher probability of death as compared to hospitalized
individuals who required no ventilation, and the risks of
hospitalization and death were highest in older age
groups.

Transmission Parameters

The rate at which susceptible individuals were infected
was the product of the transmission probability per
infected contact and the total number of infected con-
tacts per time step. The per-contact probability of infec-
tion was estimated through model calibration and was
assumed to be the same for both symptomatic and
asymptomatic infections. Contact patterns that dictate
how different age groups interact with each other, and
thus the risk of SARS-CoV-2 transmission, were based
on a study that extrapolated the European POLYMOD
contact survey data to a US context, balanced to be con-
sistent with the demographics of Minnesota.23 These
contact patterns were assumed to reflect pre-pandemic
behaviors. We therefore applied a time-varying, age
group–specific set of contact reductions to baseline con-
tact rates to account for changing behavior in response
to different levels of restrictions, policies, and recommen-
dations, as described below.

Time-Varying Contact Reductions

Based on the timing of Minnesota’s stay-at-home order
(SAH),24 we defined 3 distinct periods of contact reduc-
tions: 1) the model start date up until the start of SAH
(March 23, 2020, to March 27, 2020), 2) the SAH order
(March 28,2020, to May 18, 2020) and 3) the end of SAH
through the end of the calibration period (May 19, 2020,
to August 2, 2020). For each time period, we allowed the
population to engage in different levels of ‘‘effective’’ con-
tact reductions, which could also differ by age group. We
assumed that this effective contact reduction was a com-
bination of behaviors that reduce transmission between
contacts (e.g., masking, physical distancing, moving inter-
actions outdoors) and behaviors that reduce the number
of daily contacts (e.g., working from home) and varied by
age group. Effective contact reductions were applied to
the average number of daily pre-pandemic contacts (e.g.,
a 50% effective contact reduction in an age group with 10
daily contacts reduced the number of daily contacts to 5).
These age-specific effective contact reductions were esti-
mated through model calibration.

Adaptive NPI Scenarios

We considered several scenarios to explore how adaptive
behavior change in response to rising hospitalizations
can affect COVID-19 outcomes in a population.
Scenarios consisted of different behavioral assumptions
about the level of effective contact reduction that could
be induced by the NPI, the trigger at which the NPI is
instituted, and the time it takes for the NPI to reach
maximum effectiveness. We evaluated scenarios by first
simulating COVID-19 outcomes using the calibrated
parameter values from March 23, 2020, to August 31,
2020 (assuming that the calibrated parameters estimated
for the May 19, 2020, to August 2, 2020, period contin-
ued through August 31, 2020) and then implementing
the adaptive policy beginning on September 1, 2020, and
continuing the simulation through March 22, 2021 (a full
year from the start of the model simulation period).

As a baseline, we established a steady-state scenario
(scenario A) in which, starting on September 1, 2020, the
population maintained an effective contact reduction
that produced a relatively constant level of prevalent
hospitalizations over time. This steady-state effective
contact reduction was estimated in model calibration.
We then defined a comparison scenario (scenario B) in
which the population experienced COVID fatigue start-
ing on September 1, 2020, represented as a sustained but
lower than the steady-state effective contact reduction
that produced a dangerously high second wave of
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prevalent hospitalizations.25 The extent of COVID fati-
gue in the population (defined as the difference in effec-
tive contact reduction from steady-state levels) was
varied in sensitivity analysis.

Scenarios A and B were intended to reflect lower and
upper bounds, respectively, of possible outcomes when
behavior is consistent over time. We then designed sev-
eral adaptive behavior change scenarios (scenarios C–F)
in which we assumed more restrictive (‘‘on’’) levels of
effective contact reduction were triggered when defined
thresholds on the number of new weekly hospitalizations
per 100,000 population were reached. The population
started each scenario at the ‘‘off’’ level of effective con-
tact reduction (defined as the COVID fatigue contact
reduction maintained in scenario B) on September 1,
2020. If the hospitalization trigger was reached, NPIs
were turned ‘‘on,’’ and the population began to move to
a more restrictive ‘‘on’’ level of effective contact reduc-
tion, with the NPI reaching its full effectiveness after
some adjustment period (varied by scenario). The dura-
tion of the ‘‘on’’ period was determined by prevalent hos-
pitalizations, with the ‘‘on’’ contact reduction being
maintained from the trigger point through the 14th day
past the peak in prevalent hospitalizations. A 14-days
delay following peak hospitalizations was used to ensure
hospital conditions would continue to improve after NPI
relaxation and to account for the time needed to identify
that hospitalizations have in fact peaked.

Once NPIs were relaxed, the population would begin
moving from behavior reflective of the stricter NPI back
to the ‘‘off’’ level of effective contact reduction over the
adjustment period (assumed to be the same as the adjust-
ment period from ‘‘off’’ to ‘‘on’’). For simplicity, we
assumed that behavior changed linearly over the adjust-
ment period. We assumed a baseline adjustment period
of 7 days but also a slower adjustment scenario (14 days;
scenario D) and varied the length of the required adjust-
ment period in sensitivity analysis.

We set the effective contact reduction during the NPI
‘‘on’’ period to 80% in the base case, which is the highest
level of contact reduction that was estimated in model
calibration for any age group in previous time periods.
We also considered a scenario with a stronger NPI
response during the ‘‘on’’ periods (90% effective contact
reduction; scenario E) and varied NPI effectiveness in
sensitivity analysis.

The baseline threshold for triggering the ‘‘on’’ contact
reduction was 8 new weekly hospitalizations per 100,000
population, which represented the high-risk threshold out-
lined by state decision makers in Minnesota.26 We also con-
sidered a higher threshold (10 new weekly hospitalizations
per 100,000 population; scenario F). Scenario descriptions
and parameter settings are summarized in Table 1.

Model Calibration

The model was calibrated to prevalent hospitalizations,
overall and by age group, and cumulative deaths in
Minnesota from March 23, 2020, through August 2,
2020. Further, to estimate a contact reduction that would
achieve an approximately steady-state level of hospitali-
zations from September 1, 2020, onward (scenario A), we
included an additional calibration target that held hospi-
talizations constant from August 2, 2020, through early
December 2020. Model calibration was conducted using
an approximate Bayesian computation method, which
generated a posterior sample of parameter sets that were
used in scenario analyses.27,28 Additional details can be
found in Supplementary Materials.

Outcomes

For each scenario, we calculated the average and 95%
credible interval of outcomes of interest. These outcomes
included the cumulative proportion of the population
infected, the peak number of prevalent hospitalizations,

Table 1 Scenario Definitionsa

Scenario Description

Threshold (New Weekly
Hospitalizations

per 100,000)

‘‘On’’ Effective Contact

Reduction - %

‘‘Off’’ Effective Contact Reduction,

Mean (95% Credible Interval) - %

Adjustment

Time (days)

A Steady state N/A N/A 48.2 (24.2, 64.4) N/A
B COVID fatigue N/A N/A 38.2 (14.2, 54.4) N/A
C Trigger reference 8 80 Same as B 7
D Slower adjustment 8 80 Same as B 14
E Stronger response 8 90 Same as B 7
F Higher threshold 10 80 Same as B 7

aAll scenario simulations begin on September 1, 2020, with nonpharmaceutical interventions ‘‘off.’’
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the average duration of ‘‘on’’ and ‘‘off’’ periods, respec-
tively, and the total percentage of time spent with NPIs
‘‘on’’ over the simulated time horizon.

Sensitivity Analysis

Since the initial emergence of COVID-19, numerous var-
iants have evolved with differing levels of transmissibility
and severity. Vaccination and widespread prior infection
also influence transmission rates and severity of new var-
iants, as does a continuing progression toward pre-
pandemic norms of interaction. To gain insight into how
changing pandemic conditions might affect the perfor-
mance of the adaptive NPI scenarios, we conducted 1-
way sensitivity analysis on viral transmissibility, severity
(in terms of risk of hospitalization), and the level of pop-
ulation COVID fatigue after September 1, 2020.

While the adaptive NPI scenarios were designed to
illustrate influences of key response components on out-
comes of interest, we also conducted 1-way sensitivity
analysis on scenario specifications (level of NPI effective-
ness, trigger threshold, and adjustment time) to charac-
terize these influences more systematically.

Each 1-way sensitivity analysis was conducted by
varying the parameter of interest over a specified range
and, for each value, simulating model outcomes over the
posterior sample of calibrated parameter sets. Sensitivity
analysis results were summarized as the mean over this
posterior sample.

Results

Scenario A (Figure 2), which is not a trigger scenario,
represents a steady state in which prevalent hospitaliza-
tions remained relatively constant over time with an aver-
age maximum of 439 (95% credible interval [CI]: 131–
908) hospitalized COVID-19 patients (Table 2), which is
lower than or similar to the peak of 731 prevalent hospi-
talizations during Minnesota’s first wave. This steady
state was achieved with an average effective contact
reduction of 48.2% (95% CI: 24.2%–64.4%). In con-
trast, the COVID fatigue scenario B (Figure 2) depicts a
significant second wave of hospitalizations for most tra-
jectories that was achieved with a 10-percentage-point
absolute decrease from the steady-state effective contact
reduction. This resulted in a an average COVID-fatigue
effective contact reduction of 38.2% (95% CI: 14.2%–
54.4%). This was also the effective contact reduction
used during the ‘‘off’’ periods in the adaptative NPI sce-
narios. While the effective contact reduction in scenario
B was just 10 percentage points lower than in scenario A,

the average peak in prevalent hospitalizations in scenario
B was nearly 5 times greater at 1,968 (95% CI: 501–
5,367) hospitalizations.

Outcomes for all trigger scenarios are summarized in
Table 2. The adaptive action taken in scenario C, our
reference trigger scenario, reduced the average peak hos-
pitalizations to 544 (95% CI: 407–745), with NPI ‘‘on’’
periods lasting an average of 32 (95% CI: 27–35) days
and 23% (95% CI: 13%–35%) of the simulation period
spent with the NPI ‘‘on,’’ on average. If the adjustment
period was longer (scenario D), the average hospitaliza-
tion peak increased slightly, but with significant increases
in the required duration of the NPI ‘‘on’’ period.
Increasing the effectiveness of the NPI (scenario E) had
little effect on the peak hospitalizations but reduced the
percentage of time spent with the NPI ‘‘on’’ to 19%
(95% CI: 13%–33%). A higher threshold for triggering
the NPI (scenario F) achieved a similar reduction in
duration of NPI ‘‘on’’ periods as the stronger response
(scenario E) but at a much higher average hospitalization
peak of 658 (95% CI: 499–849) COVID-19 patients.
Similar observations can be drawn from more extensive
sensitivity analysis on scenario parameters (effectiveness,
threshold, and adjustment time) presented in
Supplementary Materials (Figure S3).

One-way sensitivity analyses on epidemiological fea-
tures of COVID-19, including transmissibility and sever-
ity, are presented in Figure 3 for average outcomes of
peak prevalent hospitalizations and percentage of time
spent with the NPI ‘‘on’’ under scenarios C–F. Higher
transmissibility resulted in higher peak hospitalizations
and percentage of time spent with the NPI ‘‘on’’ for all
scenarios; however, the increase in these outcomes was
less pronounced with a more effective NPI response
(scenario E). At lower levels of transmissibility, a higher
threshold scenario (scenario F) resulted in the highest
peak hospitalizations, while at sufficiently high levels of
transmissibility, a longer adjustment time (scenario D)
resulted in the highest peak, even with the more conser-
vative trigger threshold. Changes in disease severity,
reflected in the relative risk of hospitalization compared
to the base case, had comparatively little impact on
simulated outcomes over the range of values considered,
though peak hospitalizations and percentage time with
the NPI ‘‘on’’ did increase with increasing hospitalization
risks. We also varied the extent to which the population
experienced COVID fatigue during the ‘‘off’’ periods. If
there was less COVID fatigue from steady state (a 20.05
change in effective contact reduction), all scenarios
resulted in similar levels of peak hospitalizations and
time spent under the NPI. As COVID fatigue increased
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Table 2 Model Outcomes from September 1, 2020, through March 22, 2021, for Each Scenario, Averaged over Postcalibration
Posterior Parameter Distributions with 95% Credible Intervals Shown in Parentheses

Scenario Description

Cumulative Percentage

of Population Infected

Peak Prevalent

Hospitalizations

Average ‘‘on’’

Duration
a
(days)

Average ‘‘off’’

Duration
a
(days)

Percentage Time

with NPI ‘‘on’’

A Steady state 11.5 (3.6, 26.5) 439 (131, 908) N/A N/A N/A
B COVID fatigue 25.4 (10.0, 44.4) 1,968 (501, 5,367) N/A N/A N/A
C Trigger reference 11.2 (4.9, 22.0) 544 (407, 745) 32 (27, 35) 79 (43, 174) 23 (13, 35)
D Slower adjustment 11.2 (4.8, 21.1) 566 (412, 803) 43 (41, 46) 81 (37, 160) 28 (20, 45)
E Stronger response 10.1 (4.2, 20.7) 538 (407, 715) 31 (27, 34) 92 (45, 174) 19 (13, 33)
F Higher threshold 12.3 (5.6, 22.5) 658 (499, 849) 30 (0, 35) 81 (44, 201) 21 (0, 35)

aAveraged only over fully observed ‘‘on’’ or ‘‘off’’ periods.

Figure 2 Prevalent hospitalization trajectories reflecting 95% credible region of postcalibration posterior parameter distributions
for nontrigger scenarios. Scenario A reflects a sustained level of contact reduction from September 1, 2020 (MMWR week 36)
through the end of the simulated time horizon that maintains a relatively stead level of hospitalizations. Scenario B reflects a
COVID fatigue scenario where the population sustains a contact reduction that 0.10 less than the steady-state contact reduction
of scenario A.
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(to 20.15 or 20.20 change in effective contact reduc-
tion), peak hospitalizations and time spent with the NPI
‘‘on’’ increased for all scenarios, but there was also a
greater divergence in outcomes between scenarios, with a
more effective NPI scenario (scenario E) resulting in the
least increase in both outcomes. Time spent with the
NPI ‘‘on’’ increased the most for the slower adjustment
scenario (scenario D), while peak hospitalizations was
highest for the higher threshold scenario (scenario F).

Discussion

We used a compartmental model of SARS-CoV-2 trans-
mission in Minnesota to simulate various adaptive NPI
responses to regulate COVID-19 hospitalizations.
Specifically, we examined how the threshold of a surveil-
lance indicator, the time needed to implement an NPI
response, and the effectiveness of an increased NPI
response collectively affect our ability to manage peak
hospitalizations and the duration of time under more
restrictive interventions. In theory, the steady-state

scenario presents the simplest approach to avoiding an
overwhelming number of COVID-19 hospitalizations, as
behaviors do not require adjustment over time. However,
we illustrate that if a population cannot maintain the
level of effective contact reduction needed to create a
steady state (i.e., COVID fatigue), failing to trigger beha-
vioral adjustments as hospitalizations rise can result in
dangerous exponential growth. We also demonstrate that
hospitalizations can be contained by a variety of adaptive
NPI strategies and that having a feasible response strat-
egy with which a population will comply is more impor-
tant than the specific features of that response, at least
among the scenario specifications considered in base-case
and sensitivity analyses.

Intuitively, if a higher threshold for a surveillance
indicator is adopted as a trigger for strengthening NPIs,
health systems should be prepared for higher peaks in
prevalent hospitalizations. With a maximum hospitaliza-
tion capacity defined for a population, this kind of analy-
sis can be used to back into scenarios that would prevent
this capacity from being exceeded. The preferences of a
population in terms of the strength versus the duration

Figure 3 Sensitivity analysis on epidemiological model parameters after September 1, 2020: (a) variant transmissibility, varied
from 0.83 to 2.03 the baseline per-contact probability of infection; (b) variant severity, varied from 0.53 to 1.23 the risk of
hospitalization; (c) extent of population COVID fatigue, varied as a 20.20 to 20.05 absolute change in contact reduction from
steady-state behavior (baseline was 20.10). Plotted outcomes are averaged over the postcalibration posterior distribution of
calibrated parameters.
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of a period of stricter NPIs as well as the feasibility of
reaching specified levels of effective contact reductions
should be considered under such trigger scenarios.

When a surveillance indicator signals the need
for behavioral changes to reduce effective contacts, time-
liness in implementing NPIs can decrease their necessary
duration. Certain individuals and businesses, however,
may find it preferable to have more time to prepare for
impending changes (longer adjustment period) at the
expense of extending the duration of the strengthened
intervention (longer ‘‘on’’ period). For example, parents
may need time to arrange for childcare in the event of
school closures, and restaurants may wish to exhaust
perishable inventory before the onset of indoor dining
restrictions.29 For populations in which adjusting to dif-
ferent levels of NPIs presents logistical or other chal-
lenges (e.g., confusion over changing recommendations),
periods of more restrictive interventions may be consid-
ered tolerable when they can reduce the total number of
adjustments needed. Schools, for example, may welcome
a period of complete online learning (stronger ‘‘on’’
period) if it means that in-person learning can resume
uninterrupted for a longer period of time (longer ‘‘off’’
period).30 The baseline effective contact reduction of the
population during ‘‘off’’ periods also influences how
often and how long NPIs are needed. While maintaining
high levels of individual-level mitigations may be infeasi-
ble, effective contact reductions can also be achieved
through structural changes to indoor environments, such
as improved ventilation and filtration. Structural changes
are likely more sustainable than individual behavior
change, and, in practice, they can be quite effective.31,32

Importantly, designing COVID-19 response strategies
with consideration to population preferences may lead to
increased adherence to NPIs.33 Establishing transparent
surveillance indicators that trigger defined NPI responses
can provide individuals, businesses, and schools with lead
time for planning while encouraging more cautious per-
sonal behaviors when a threshold is neared.

The effective contact reduction parameter used in our
analyses is a combination of physical distance, mask use,
air ventilation, and a variety of other factors that are not
directly observable as a single estimate. Consequently, a
challenge to interpreting our trigger scenarios is the
inability to directly translate model effective contact
reductions to specific population-wide behavior or policy
changes. Mobility data and contact surveys can supple-
ment historically calibrated effective contact reductions
to provide insight on this relationship.34 Model estimates
derived from calibration to historical data serve as a
point of reference for effective contact reductions

assumed in model scenarios. Of note, we also simulated
a trigger scenario in which effective contact reduction
was assumed to be more restrictive (90%) than any effec-
tive contact reduction calibrated in previous time periods
in Minnesota. We also acknowledge that the level of
effective contact reduction that can be achieved within a
population is neither definitive nor universal. We simu-
lated NPIs that induced a certain level of contact reduc-
tion on average in the population; understanding the
influence of differential behavioral responses among the
different age groups and/or subpopulations may be
important in designing the specifics of an adaptive NPI
policy. Although the model results are not directly trans-
latable into concrete policies, the modeling environment
allows us to explore various NPI responses and provide
insight on the expected direction and magnitude of
changes that could be generalized to other populations.

It is important to emphasize that the model used in
these analyses is necessarily a simplification of reality.
Model scenarios are hypothetical and are intended to be
interpreted relative to each other; they are not forecasts.
Although we reflect hospitalization outcomes at a popu-
lation level, the model did not include detailed patient-
specific hospitalization dynamics, nor did it include other
types of health care utilization, such as emergency
department visits or ambulatory clinic visits, which may
also be overburdened during surges. Limited capacity for
mechanical ventilation was included in the model, but
limitations on other resources, such as hospital beds and
staffing, were not accounted for.

Reflective of the time frame over which this analysis
took place, our model scenarios did not explicitly con-
sider COVID-19 variants or vaccinations. Instead, we
considered how our conclusion might change if the
transmissibility and severity of the circulating fall strain
were different from base-case estimates, which could
reflect a combination of the emergence of a new var-
iant35,36 and changes in the underlying immunity of the
population due to vaccination and/or previous infection.
We note that a more effective NPI is the most robust in
maintaining lower peak hospitalizations and also less time
spent with the NPI ‘‘on’’ across different transmissibility
and severity assumptions. Although using a higher thresh-
old to trigger the NPI generally leads to higher peak hospi-
talizations, we also noted that for highly transmissible
variants, a slower adjustment time may be worse. Decision
makers may wish to invest in infrastructure to facilitate
the rapid adoption of NPIs and/or consider more conser-
vative trigger thresholds for populations that cannot
respond quickly to changing policies. More generally,
model scenarios such as the ones explored in this study
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have the flexibility to be designed to reflect the epidemiolo-
gical conditions expected at the time decisions need to be
made. In anticipation of additional waves, this approach
can serve as a tool to estimate immunity thresholds that
could allow for delayed and/or less restrictive NPIs.

Although it was posited that reaching herd immunity
through vaccine uptake and infection could prevent
future exponential growth of SARS-CoV-2 infections,
waning immunity and the immune-escape capabilities of
new variants have compromised the level of control that
can be achieved with vaccination alone.37 The limitations
of a vaccine-only strategy highlight the need for adaptive
mitigation efforts. The triggering of an NPI response
upon reaching a defined surveillance threshold thus
remains a relevant strategy to combat future waves of
COVID-19. Notably, the methods described here are not
limited to COVID-19, as they have the potential to be
applied to outbreaks of other emerging infectious dis-
eases. The tradeoffs illustrated in our model scenarios
provide policy makers a set of considerations when
implementing adaptive NPI responses in the face of new
threats posed by COVID-19 or other infectious diseases.
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13. Yang H, Sürer Ö, Duque D, et al. Design of COVID-19

staged alert systems to ensure healthcare capacity with

minimal closures. Nat Commun. 2021;12(1):3767. DOI:

10.1038/s41467-021-23989-x
14. US Centers for Disease Control and Prevention. Indicators

for monitoring COVID-19 community levels and making

public health recommendations. 2022 February 25. Avail-

able from: https://www.cdc.gov/coronavirus/2019-ncov/sci

ence/science-briefs/indicators-monitoring-community-levels

.html [Accessed 30 April, 2023].
15. Gevertz JL, Greene JM, Sanchez-Tapia CH, et al. A novel

COVID-19 epidemiological model with explicit susceptible

and asymptomatic isolation compartments reveals unex-

pected consequence of timing social distancing. J Theor

Biol. 2020;510:e110539. DOI: 10.1016/j.jtbi.2020.110539

10 MDM Policy & Practice 8(2)

https://orcid.org/0000-0001-5470-866X
https://orcid.org/0000-0003-0693-7358
https://doi.org/10.1177/23814683231202716
https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-achieve-first-authorization-world
https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-achieve-first-authorization-world
https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-achieve-first-authorization-world
https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/indicators-monitoring-community-levels.html
https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/indicators-monitoring-community-levels.html
https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/indicators-monitoring-community-levels.html


16. Alagoz O, Sethi AK, Patterson B, Churpek M, Safdar N.
Effect of timing and adherence to social distancing mea-
sures on COVID-19 burden in the United States. Ann

Intern Med. 2021;174(1):50–7. DOI: 10.7326/M20-4096
17. Pei S, Kandula S, Shaman J. Differential effects of inter-

vention timing on COVID-19 spread in the United States.
Sci Adv. 2020;6(49):eabd6370. DOI: 10.1126/sciadv
.abd6370

18. R Core Team. R: a language and environment for statisti-
cal computing. R Foundation for Statistical Computing,
Vienna, Austria; 2021. Available from: https://www.R-pro
ject.org/.

19. Li Q, Guan X, We P, et al. Early transmission dynamics in
Wuhan, China, of novel coronavirus–infected pneumonia.
N Engl J Med. 2020;382(13):1199–207. DOI: 10.1056/
nejmoa2001316

20. Garg S, Kim L, Whitaker M, et al. Hospitalization rates

and characteristics of patients hospitalized with laboratory-
confirmed coronavirus disease 2019 — COVIDNET, 14
States, March 1–30, 2020. MMWR Morb Mortal Wkly

Rep. 2020;69(15):458–64. DOI: 10.15585/mmwr.mm6915e3
21. Poletti P, Tirani M, Cereda D, et al. Probability of symp-

toms and critical disease after SARS- CoV-2 infection.
Available from: https://arxiv.org/ftp/arxiv/papers/2006/
2006.08471.pdf

22. Minnesota Department of Health. Situation update for
COVID-19. Available from: https://www.health.state
.mn.us/diseases/coronavirus/situation.html#overview2
[Accessed 10 March, 2021].

23. Prem K, Cook AR, Jit M. Projecting social contact
matrices in 152 countries using contact surveys and demo-
graphic data. PLoS Comput Biol. 2017;13(9):e1005697.
DOI: 10.1371/journal.pcbi.1005697

24. Office of Governor Tim Walz. Executive orders from Gov-
ernor Walz. Available from: https://mn.gov/governor/
news/executiveorders.jsp [Accessed 10 March, 2021].

25. Minnesota COVID-19 Response. Response capacity.
Available from: https://mn.gov/covid19/data/response-
prep/response-capacity.jsp [Accessed 10 March, 2021].

26. Minnesota COVID-19 Response. Public health risk mea-
sures. https://mn.gov/covid19/data/response-prep/public-
health-risk-measures.jsp [Accessed 10 March, 2021].

27. Jabot F, Faure T, Dumoulin N, Albert C. EasyABC: a R
package to perform efficient approximate Bayesian

computation sampling schemes. Available from: https://

easyabc.r-forge.r-project.org/
28. Lenormand M, Jabot F, Deffuant G. Adaptive approxi-

mate Bayesian computation for complex models. Comput

Stat. 2013;28(6):2777–96. DOI: 10.1007/s00180-013-0428-3
29. Hupkau C, Petrongolo B. Work, care and gender during

the COVID-19 crisis. Fisc Stud. 2020;41(3):623–51. DOI:

10.1111/1475-5890.12245
30. Limbers C. Factors associated with caregiver preferences

for children’s return to school during the COVID-19 pan-

demic. J Sch Health. 2021;91(1):3–8. DOI: 10.1111/

josh.12971
31. Gettings J, Czarnik M, Morris E, et al. Mask use and ven-

tilation improvements to reduce COVID-19 incidence in

elementary schools - Georgia, November 16-December 11,

2020. MMWR Morb Mortal Wkly Rep. 2021;70(21):

779–84. DOI: 10.15585/mmwr.mm7021e1
32. Buonanno G, Ricolfi L, Morawska L, Stabile L. Increasing

ventilation reduces SARS-CoV-2 airborne transmission in

schools: a retrospective cohort study in Italy’s Marche

region. Front Public Health. 2022;10:1087087. DOI:

10.3389/fpubh.2022.1087087
33. Doogan C, Buntine W, Linger H, Brunt S. Public percep-

tions and attitudes toward COVID-19 nonpharmaceutical

interventions across six countries: a topic modeling analy-

sis of twitter data. J Med Internet Res. 2020;22(9):e21419.

DOI: 10.2196/21419

34. Buckee C, Balsari S, Chan J, et al. Aggregated mobility

data could help fight COVID-19. Science. 2020;368(6487):

145–6. DOI: 10.1126/science.abb8021/
35. Challen R, Brooks-Pollock E, Read JM, Dyson L,

Tsaneva-Atanasova K, Danon L. Risk of mortality in

patients infected with SARS-CoV-2 variant of concern

202012/1: matched cohort study. BMJ. 2021;372:n579.

DOI: 10.1136/bmj.n579
36. Leung K, Shum MH, Leung GM, Lam TT, Wu JT. Early

transmissibility assessment of the N501Y mutants strains

of SARS-CoV-2 in the United Kingdom, October to

November 2020. Euro Surveill. 2021;26(1):2002106. DOI:

10.2807/1560-7917.ES.2020.26.1.2002106
37. Wang P, Nair MS, Liu L, et al. Antibody resistance of

SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature.

2021;593:130–5. DOI: 10.1038/s41586-021-03398-2

Sanstead et al. 11

https://www.R-project.org/
https://www.R-project.org/
https://arxiv.org/ftp/arxiv/papers/2006/2006.08471.pdf
https://arxiv.org/ftp/arxiv/papers/2006/2006.08471.pdf
https://www.health.state.mn.us/diseases/coronavirus/situation.html#overview2
https://www.health.state.mn.us/diseases/coronavirus/situation.html#overview2
https://mn.gov/governor/news/executiveorders.jsp
https://mn.gov/governor/news/executiveorders.jsp
https://mn.gov/covid19/data/response-prep/response-capacity.jsp
https://mn.gov/covid19/data/response-prep/response-capacity.jsp
https://mn.gov/covid19/data/response-prep/public-health-risk-measures.jsp
https://mn.gov/covid19/data/response-prep/public-health-risk-measures.jsp

