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Chemical shift-encoded imaging (CSEI) is the most common magnetic resonance imaging fat–water separa-
tion method. However, when high spatial resolution fat fraction (FF) images are desired, CSEI might be chal-
lenging owing to the increased interecho spacing. Here, 3 T2-based methods have been assessed as alterna-
tive methods for obtaining high-resolution FF images. Images from the calf of 10 healthy volunteers were ac-
quired; FF maps were then estimated using 3 T2-based methods (2- and 3-parameter nonlinear least squares
fit and a Bayesian probability method) and CSEI for reference. In addition, simulations were conducted to
characterize the performance of various methods. Here, all T2-based methods resulted in qualitatively im-
proved high-resolution FF images compared with high-resolution CSEI. The 2-parameter fit showed best quan-
titative agreement to low-resolution CSEI, even at low FF. The estimated T2-values of fat and water, and the
estimated muscle FF of the calf, agreed well with previously published data. In conclusion, T2-based methods
can provide improved high-resolution FF images of the calf compared with the CSEI method.

INTRODUCTION
Chemical shift-encoded imaging (CSEI) is a common quantita-
tive magnetic resonance imaging (MRI) method for fat–water
separation and measurement of fat content in numerous body
parts, such as the liver and skeletal muscles (1–5). In skeletal
muscles, fatty infiltration has been related to, for example,
insulin resistance and various neuromuscular diseases (6–11).
The location of fat accumulation within the muscle has also
been shown to be important (6), as some muscle groups are more
likely to accumulate fat (12). Depending on the muscle group
involvement, the outcome of some neuromuscular diseases can
show a large variability (11, 13). In addition, different neuro-
muscular diseases show different fat infiltration patterns of the
muscle groups. By detecting these patterns, it might be easier to
identify a specific disease (11, 14). To enable and simplify the
distinction between the different muscle groups, and between
inter- and intramuscular fat, high-resolution fat fraction (FF)
images are desirable. CSEI is a validated method for fat quanti-
fication purposes (4, 15), and it has previously been used for
skeletal muscle applications (1, 2, 5).

Previously, fat quantification methods based on differences
in fat and water T2 (16) rather than chemical shifts have been
suggested for applications in skeletal muscles (17, 18). With

T2-based methods, there is a possibility of obtaining information
on FF and T2 relaxation times simultaneously (18). This would
offer more information about the status of the disease, as a
change in muscle T2-relaxation time has been shown to reflect
the activity and progress of neuromuscular diseases (13, 19),
complementing the information about the fat infiltration degree
that primarily serves as a severity indicator (14). Moreover, there
are several challenges associated with the CSEI technique, par-
ticularly when high resolution is required, which may be ad-
dressed by using T2-based methods. For example, increasing the
resolution increases the minimal achievable interecho time
which may have a negative impact on the CSEI fat quantifica-
tion accuracy (20). In addition, it is common that fat/water
swaps are present in FF images when using CSEI.

To obtain both the amplitudes and the T2-relaxation times
of the fat, as well as the water component of the signal, a
nonlinear least squares (NLLS) fitting method is commonly used
(21, 22). However, NLLS has known problems with estimating
the parameters correctly when 1 component is considerably
larger than the other (23, 24). As a consequence, it may be
difficult to measure low FFs using NLLS. In such cases, a fitting
method based on Bayesian probability theory could be an alter-
native, as it has also been shown to be more robust against noise
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compared with NLLS (25). Bayesian fitting models have been
proposed for other MRI applications such as intra-voxel inco-
herent motion imaging (26) and myelin water fraction estima-
tions (27), but have, to the best of our knowledge, not yet been
evaluated for fat quantification purposes.

The aim of this study was to examine the accuracy and noise
performance of 3 different T2-based fat quantification methods,
using high-resolution MRI for low FFs in healthy volunteers,
and compare it with CSEI. The first T2-based method uses fixed
T2-relaxation times of both water and fat as described by Kan et
al. (17). The second method uses only a fixed fat T2-relaxation
time to study the possibility of obtaining a simultaneous T2 map
of water. The third method is based on Bayesian probability
theory as described by Barbieri et al. (26), in which neither
relaxation time is fixed. In this study, the muscular FF was
measured in the calf of healthy volunteers, and simulations were
made to study possible biases in the estimation of the FF using
the T2-based methods.

METHODOLOGY
Subjects
In total, 10 healthy volunteers, 3 males (mean age, 28 years;
range 25–30 years) and 7 females (mean age, 28 years; range,
24–32 years), were recruited and scanned with the approval
from the regional ethical board. Informed consent was obtained
from all volunteers.

MRI Data Acquisition
All measurements were acquired using a 3 T scanner (MAGNETOM
Trio, Siemens Healthineers, Erlangen, Germany) and a 6-ele-
ment body matrix coil. All data were obtained at 2 matrix sizes,
128 � 128 and 512 � 512, keeping the field of view constant at
280 � 280 mm2 and thus acquiring data at low- and high-
spatial resolution. A single 6-mm transversal slice was collected
for each acquisition, centered at the widest part of the left calf of
each volunteer.

A multi-echo gradient echo (MGRE) sequence with 6 echoes
was used for the CSEI method. To avoid T1 bias, a long repetition
time (TR � 500 milliseconds) and a small flip angle (12°) were
used. By estimating the number of signal averages as a function
of interecho spacing, echo times (TEs) were chosen to obtain as
small interecho spacing for the highest number of signal aver-
ages value as possible. The bandwidth (BW) was then set as low
as possible without affecting the interecho time. In this way, a
minimal interecho time with a high noise performance was
ensured. With the first TE set to the shortest possible, the fol-
lowing parameters were used: TE1/�TE � 1.11/1.56 millisec-
onds (low resolution), TE1/�TE � 2.57/3.92 milliseconds (high
resolution), BW � 1776 Hz/px (low resolution), and BW � 651
Hz/px (high resolution). Acquiring 1 average, the scanning
times were 1 minute 6 seconds (low resolution) and 4 minutes 18
seconds (high resolution). From 1 subject, additional high-res-
olution CSEI images were collected with 2, 3, and 9 averages that
had scanning times of 8 minutes 34 seconds, 12 minutes 50
seconds, and 38 minutes 29 seconds, respectively.

For the T2-based methods, 32 multi-echo spin echo (MESE)
images were acquired with a 180° refocusing pulse and the
following settings: TR � 2000 milliseconds, �TE � 9.2 milli-
seconds (low and high resolution), BW � 425 Hz/px (low reso-
lution), BW � 391 Hz/px (high resolution), and number of
averages � 1. To avoid long acquisition times, parallel imaging
(GRAPPA) was used with an acceleration factor of 2. The result-
ing scan times were 2 minutes 36 seconds (low resolution) and 9
minutes (high resolution).

Fat/Water-Separation Methods
The methods used in this study are summarized in Figure 1. All
calculations were performed using MATLAB (r2017a, The
MathWorks, Inc., Natick, MA).

Chemical Shift-Encoded Imaging
The FF was calculated using a complex and magnitude-based
iterative multiecho water–fat separation algorithm (28), with a

Figure 1. Schematic view over
the used methods (chemical shift-
encoded imaging [CSEI], 2-pa-
rameter fit, 3-parameter fit, and
Bayesian fit) and the correspond-
ing outputs.
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multipeak fat model (29) and a joint T*2 estimation (30). Using 6
echoes (30), the FF was calculated using the following equation:

Fat fraction � 100 · real� F

W � F
� (1)

where the complex-valued F and W are the estimated fat and
water signals, respectively. T1 bias was avoided by using a low
flip angle acquisition.

T2-Relaxation Time-Based Imaging
Two of the T2-based methods use a fixed T2-relaxation time of
fat (T2,F), of which 1 uses a fixed T2-relaxation time of water
(T2,W) as well. To obtain these values, a monoexponential fit of the
signal decay was carried out voxel by voxel, resulting in a T2 map.
For each volunteer, individual T2,F and T2,W values were then
calculated as the mean value within corresponding regions of
interest (ROIs), which were drawn in subcutaneous fat and muscle
tissue, respectively (Figure 2). The ROI of fat was drawn to include
as much of the subcutaneous fat as possible, avoiding visible blood
vessels. In 1 volunteer, the subcutaneous fat layer was too thin for
ROI definition. For this volunteer, the mean T2,F of the rest of the
volunteers was calculated and used instead. The muscle ROI was
drawn in a small part of tibialis anterior without any visible fat to
minimize fat bias in the estimation of T2,W. Echoes 2–16 were used
for all estimations using MESE data. The first echo was excluded
owing to stimulated echo effects present in all other echoes,
whereas the last echoes were excluded to reduce noise bias.

Two-Parameter Fit—Fixed T2,F and T2,W. Using the estimated
T2,F and T2,W values from the monoexponential fit, the ampli-
tudes of water W and fat F could be calculated by a simple linear
regression, as described by Kan et al. (17). The signal model is
given by using the following equation:

S(t) � We
�

t

T2,W � Fe
�

t

T2,F (2)

where S is the measured signal at TE t, and T2,F and T2,W are kept
fixed.

Three-Parameter Fit—Fixed T2,F. Using the same signal model
[equation (2)] as in the 2-parameter fit and fixed T2,F value, T2,W,
W, and F were estimated using a trust region-based NLLS fitting
algorithm.

Bayesian Fitting Method. An alternative to exponential fitting
is using a Bayesian probability method (31). Here, all four
parameters (T2,W, T2,F, W, and F) are estimated simultaneously
using the method described by Barbieri et al. (26) using the
MATLAB function slicesample. The signal model is given by the
following equation:

S � S0�(1 � f )e
�

t

T2,W � fe
�

t

T2,F� (3)

where S0 denotes the signal at t � 0 and f denotes the FF in the
range [0, 1]. To obtain S0, linear regression was performed on
linearized data, ln(S), in each voxel. However, owing to the
biexponential form of the signal decay, ln(S) is not linear. To
compensate for this, ln(S) was weighted by the signal amplitude
S, making the fit rely mostly on the earlier echoes of the signal.
Water and fat amplitudes, W � S0(1 � f ) and F � S0 f, respec-
tively, were calculated before correcting for T1 bias and calcu-
lating FF as described by equation (4).

Fat Fraction Calculation and T1-Correction
Owing to the long T1-relaxation time of muscle tissue and the
desire to keep the acquisition times feasibly low, all the T2-based
fat quantification methods described in the above sections were
corrected for T1-relaxation bias. The T1-relaxation times T1,W �
1420 milliseconds and T1,F � 371 milliseconds (16) were used to
correct the water and fat signal amplitudes according to FT1corr �
F/[1 � exp(�TR/T1,F)] and WT1corr � W/[1 � exp(�TR/T1,W)],
respectively. Hence, the FF can be described using the fol-
lowing equation:

Fat Fraction � 100 ·
FT1corr

WT1corr � FT1corr
. (4)

Because the MGRE data were collected with a low flip angle, no
correction for T1 bias was needed for CSEI.

Data Analysis
To compare the 4 methods, 3 ROIs were drawn in the calf
muscles of all 10 volunteers following the outlines of tibialis
anterior, soleus, and gastrocnemius (Figure 2). Small areas with
fat–water swaps in the high-resolution FF images calculated
with CSEI were excluded from the ROIs. If the fat–water swap
extended over a large area covering most of the muscle such that
no swap-free ROI could be defined, the entire muscle group was
excluded from further analysis.

Mean signal-to-noise ratios (SNRs) of the collected MGRE
and MESE magnitude images were calculated as SNR � 0.655 · S/�
where 0.655 is due to the Rayleigh distribution of the noise in
magnitude images (32) and � is the standard deviation of the
background noise. The SNR of both subcutaneous fat and mus-
cle tissue was calculated. To calculate the standard deviation of
the background noise of the MESE data, the ROIs were placed
near the edge of the images where the g-factor was expected to
be close to 1.

Wilcoxon signed-rank tests and Bland–Altman analysis
were performed to compare the estimated FFs within the ROIs

Figure 2. The regions of interest (ROIs) used for
calculating T2,W and T2,F (dashed line), and the
fat fraction (FF) in 3 calf muscles (solid line): gas-
trocnemius, soleus, and tibialis anterior.
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using the 2-parameter fit, 3-parameter fit, Bayesian fit, and
high-resolution CSEI, to the FFs calculated with low-resolution
CSEI.

Simulations
Simulations were conducted to investigate the effects of incor-
rect T2 estimations, of incorrect signal amplitude, and of noise
on the calculated FF. In all simulations, a biexponential model
[equation (2)] was used to describe the signal decay using T2,W �
40 milliseconds and T2,F � 160 milliseconds as true T2-relax-
ation times. Signals from 5 different FFs (2%, 5%, 10%, 30%,
and 95%) were simulated, each with 20 echoes. The signal
amplitude at t � 0 was set to 1.

To study the effect of inaccurate T2-relaxation times, sim-
ulations were performed by using incorrect T2,W and T2,F in the
2-parameter fit method and incorrect T2,F in the 3-parameter fit
method. T2,W was set to vary between 22 and 42 milliseconds
and T2,F was set to vary between 70 and 260 milliseconds. No
noise was added to the signal.

In the Bayesian fitting method, the effect of using an inac-
curate S0 value was studied by varying the S0 value between 0.8
and 1.2. No noise was added, and each calculation was carried
out 1000 times.

The effect of noise was studied in all 3 T2-based methods by
altering the SNR of the simulated signal. The true T2-relaxation
times were used to generate a noise-free signal. Complex Gauss-

ian noise was then added to the signal before calculating the
magnitude value. The effect was studied at 5 different SNR levels
(20, 50, 150, 300, and 600), defined at t � 0. Each simulation
was carried out 1000 times.

RESULTS
Volunteer Study
The estimated mean T2-relaxation times and standard devia-
tions of muscle (tibialis anterior) and fat (subcutaneous fat),
using the monoexponential fit, the 3-parameter fit, and the
Bayesian fit are presented in Figure 3. The 3-parameter fit
estimated a lower value of T2,W compared with the monoexpo-
nential fit and the Bayesian fit. The estimated T2,W from all three
methods were independent of matrix size.

Example FF images of all 4 methods can be seen in Figure 4.
In contrast to the T2-based methods, the high-resolution CSEI
produced an FF image with a noise level that concealed the
anatomy of the calf. Although all 3 T2-based methods produced
FF images in which the different muscles were distinguishable,
the estimated FFs were different between the methods. Because
the high-resolution CSEI images with a single average (Figure 4)
had a low SNR, additional high-resolution MGRE images were
acquired with more averages from 1 volunteer (data not shown).
Although SNR naturally increased with the number of averages,
the noise level was still obscuring the anatomy of the muscles
when using 9 averages.

Figure 3. The mean and stan-
dard deviation of T2,W (A) within
an ROI placed in tibialis anterior
and T2,F (B) within an ROI placed
in the subcutaneous fat, of all vol-
unteers (except one in the mono-
exponential fit) at high- and low-
resolution imaging.

Figure 4. Fat fraction maps of a calf calculated at low and high resolution, using four methods: CSEI, 2-parameter fit,
3-parameter fit, and Bayesian fit.
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Scatter plots and Bland–Altman plots of the methods are
presented in Figure 5. The linear regression parameters and
corresponding confidence intervals are shown in Table 1. Owing
to fat–water swaps in the estimated FF images using high-
resolution CSEI, results from 3 volunteers were excluded. Com-
pared with the low-resolution CSEI method as reference, the
2-parameter fit was able to estimate the muscle FF accurately,
showing only a small overestimation of FFs �3%. High-resolu-

tion CSEI overestimated the lower FFs and underestimated the
higher FFs of the muscles, whereas the 3-parameter fit consistently
overestimated the FF. The Bayesian fitting method showed an
underestimation that increased with the FF. In Table 1, the mean
values and the standard deviations of the estimated FFs of
gastrocnemius, soleus, and tibialis anterior and the correspond-
ing P-values of all volunteers and image resolutions are pre-
sented. All calculated mean FFs obtained from the 3-parameter
fit, at both high and low resolution, significantly (P � .05)
overestimated the FFs obtained from the reference method in
comparison with the 2-parameter fit in which no significant
differences were found.

In Figure 6, the acquired signal decay of 3 voxels of low-
and high-resolution MESE images and the fitted curves of the 3
T2-methods are depicted. All 3 methods performed equal at high
FF, whereas at lower FFs (�17% and 3%), the estimated signals
differ. The 3-parameter fit results in a slower decaying signal
compared with the other 2 methods, whereas the Bayesian
method results in a faster decaying signal.

The mean SNRs of the single average MESE (second echo)/
MGRE (first echo) images of all volunteers were 919/250 (low
resolution, muscle), 2048/208 (low resolution, fat), 214/71 (high
resolution, muscle), and 449/63 (high resolution, fat). Because
the SNR varies over the MESE images owing to parallel imaging,
these values represent SNR when the g-factor is close to 1.

Simulations
The simulated effect on the estimation of FF when using incor-
rect T2,W and T2,F, respectively, is shown in Figure 7. In both
cases, an underestimation of T2-relaxation time resulted in an
overestimation of the FF, whereas an overestimation of T2-
relaxation time resulted in an underestimation of FF. The 3-pa-
rameter fit was more sensitive to errors in T2,F compared with the
2-parameter fit. At higher FFs, it was more important that T2,F

was estimated correctly, whereas a correct T2,W was more im-
portant at low FFs. For the Bayesian fit, the effect of using an
incorrect S0 value, as well as the standard deviation of the
estimated FF, is shown in Figure 8. Using an underestimated S0

value resulted in an underestimation of the FF, and an overes-
timated S0 value resulted in an overestimated FF. However, the
effect of using an overestimated S0 value was greater than that
using an underestimated one. Lower FFs (2%–5%) were less
sensitive for incorrect S0 compared with higher FFs (10%–30%).
This can also be seen by looking at the standard deviation that
was larger for higher FFs.

In Figure 9, the simulated effect of noise is shown as the
difference between the estimated and true FFs and the standard
deviation of the estimated FF of each of the 3 T2-based methods.
The accuracy of both the 2- and 3-parameter fits increased with
SNR (except for FF � 95% using the 3-parameter fit). The
2-parameter fit was less sensitive to noise than the 3-parameter
fit. The Bayesian fit was more affected by noise at higher SNR
compared with the NLLS-based methods. As the SNR increased,
the standard deviation decreased for all methods and FFs.

DISCUSSION
In this work, 3 T2-based approaches (2-parameter fit, 3-param-
eter fit, and a Bayesian probability method) have been studied

Figure 5. To the left: Scatter plots showing the
estimated FF of high-resolution CSEI (A), 2-param-
eter fit (B), 3-parameter fit (C), and Bayesian fit
(D). Each plot shows data points that represent the
mean FF within an ROI (3 muscles measured for
each volunteer), the linear regression fit (dashed),
and the identity line (solid). To the right: Bland–
Altman plots of high-resolution CSEI (E), 2-parame-
ter fit (F), 3-parameter fit (G), and Bayesian fit (H),
showing the mean difference (solid) and 1.96
standard deviations (dashed).
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and compared with CSEI in terms of their capability to correctly
estimate low FFs using high-resolution images. This was carried
out through a study on healthy volunteers and by simulations.
All T2-based methods provided high-resolution FF images in
which it was possible to delineate the different muscles of the
calf. With respect to the estimated FFs, the 2-parameter fit
showed best agreement to the reference method.

Even though the measured mean FF of high-resolution CSEI
in vivo corresponded well with the low-resolution CSEI, the high
noise level of the images made it impossible to differentiate any
anatomy within the muscle fascia, and therefore, it was difficult
to locate potential fat accumulations of the muscles. After ac-
quiring 9 averages, thus increasing SNR, it was still not possible
to separate the different muscles of the calf. Using an even larger

number of averages to increase SNR further could increase the
possibility of differentiating the different muscles groups, but
this would result in infeasibly long acquisition times. SNR may
also be increased by using a larger flip angle (33). This would,
however, require a correction for the T1-bias, including an
estimation of the true flip angle map, and it would therefore
introduce an additional source of error. As low-resolution CSEI
was used as a reference method, this approach was thus not
used. Another way to increase SNR is to acquire 3D MGRE
data. In this study, we chose to collect 2D MGRE images for
comparison with 2D MESE images. Because only 1 slice was
needed, a 2D acquisition allowed for a longer TR and a larger
flip angle compared with a 3D acquisition of the same total
scan time.

Table 1. Mean Estimated Fat Fraction and Standard Deviation Between Volunteers, Using All 4 Methods,
in Gastrocnemius, Soleus, and Tibialis Anterior Muscles

CSEI 2-Parameter Fit 3-Parameter Fit Bayesian Fit

128 � 128

Fat fraction (%)

Gastrocnemius 3.39 	 0.97 2.70 	 1.95 5.13 	 1.60 1.99 	 0.59

— (P � 0.43) (P � 9.1 · 10�3) (P � 1.3 · 10�3)

Soleus 4.15 	 1.16 4.48 	 1.03 6.22 	 0.98 2.32 	 0.37

— (P � 0.38) (P � 1.0 · 10�3) (P � 2.2 · 10�3)

Tibialis anterior 1.80 	 0.65 1.32 	 0.67 4.02 	 0.44 1.5 	 0.15

— (P � 0.19) (P � 1.8 · 10�4) (P � 0.62)

Linear regression parameters

Intercept — �0.62 2.1 0.91

(CI � �1.7–0.45) (CI � 1.4–2.8) (CI � 0.65–1.2)

Slope — 1.1 0.92 0.33

(CI � 0.78–1.4) (CI � 0.71–1.1) (CI � 0.26–0.41)

R2 — 0.64 0.75 0.74

Bland–Altman

Mean (limits of agreement) — �0.32 (�2.5, 1.9) 1.9 (0.44, 3.3) �1.2 (�3.0, 0.68)

512 � 512

Fat fraction (%)

Gastrocnemius 3.30 	 0.58 4.00 	 2.03 6.75 	 1.52 2.51 	 0.60

(P � 0.63) (P � 0.52) (P � 2.5 · 10�4) (P � 9.1 · 10�3)

Soleus 3.38 	 0.56 4.42 	 1.20 6.81 	 0.95 2.51 	 0.39

(P � 0.38) (P � 0.43) (P � 3.3 · 10�4) (P � 2.2 · 10�3)

Tibialis anterior 2.54 	 0.62 1.71 	 0.68 4.79 	 0.56 1.68 	 0.21

(P � 5.8 · 10�4) (P � 0.73) (P � 1.8 · 10�4) (P � 0.68)

Linear regression parameters

Intercept 2.2 �0.19 3.4 1.1

(CI � 1.6–2.9) (CI � �0.95–0.58) (CI � 2.8–4.0) (CI � 0.82–1.4)

Slope 0.29 1.1 0.87 0.35

(CI � 0.09–0.48) (CI � 0.91–1.4) (CI � 0.68–1.1) (CI � 0.27–0.44)

R2 0.34 0.79 0.76 0.73

Bland–Altman

Mean (limits of agreement) 0.18 (�2.0, 2.4) 0.24 (�1.3, 1.8) 3.0 (1.7, 4.3) �0.91 (�2.7, 0.90)

P-values are given for the comparison against low resolution CSEI. Confidence intervals (CI) are given at a significance level of 0.05.
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Problems with fat–water swaps occurred in some of the
estimated FF images of the high-resolution CSEI owing to the
long TE needed. All high-resolution CSEI data from 3 subjects
had to be excluded because of this. The interecho time of high-
resolution CSEI may be reduced by means of bipolar or inter-
leaved data acquisition. However, these approaches are associ-
ated with problems with phase errors (28, 34–37). Thus, a single
acquisition monopolar readout was chosen to avoid any bias of
our reference method.

The estimated T2-relaxation times of muscle tissue and
subcutaneous fat in this study correspond well with T2-relax-
ation values of healthy volunteers from literature [T2,W �
32�40 milliseconds and T2,F � 133-154 milliseconds (16, 17,
38–40)], although the Bayesian fitting model results in a slightly
overestimated T2,F. The measured FFs also agree with previously
published data, that is, measured FFs ranging between 1.2% and
3.6% (tibialis anterior), 2.5% and 3.3% (soleus), and 0.91% and
5.0% (gastrocnemius) by using MRI and magnetic resonance
spectroscopy fat quantification methods (40–43). Estimation of
FF using T2-based techniques has been conducted in previous
studies (17, 18). However, these studies have studied higher FFs
(�5%) not comparable with the results of this study.

The importance of high SNR in the estimation of T2-relax-
ation times has been studied previously (44). Here, we simulated
the effect of noise on fat quantification using T2-based methods
and found that the 2- and 3-parameter fit overestimated the FF
at lower SNRs. This could be explained by the fact that the
presence of noise might be interpreted by the 3-parameter fit as
fat signal, as T2,F � T2,W. Using correct T2-values was also
shown to be of importance when using the 2- or 3-parameter fit,
particularly for water, to measure low FFs correctly. Owing to a
high lowest SNR (�200) of the acquired MESE data, SNR may
not be the main issue for the 2- and 3-parameter fit at low and
intermediate FFs. Instead, incorrect T2 values are a more prob-
able cause of bias. Like the NLLS-based methods, the Bayesian
fit performed better as SNR increased. Simulations also showed
that using a correct S0 value is important for obtaining an
accurate estimation of the FF, particularly for intermediate FFs.
The simulated Bayesian fit resulted in a larger standard devia-
tion compared with the NLLS-based methods, suggesting that
the Bayesian fitting method, using the slicesample algorithm as
described in this work, might be less robust. Although this
contradicts previous results (25), the used Bayesian probability
approaches are not identical and might therefore not be com-

Figure 6. The acquired and fit-
ted signal decay of 3 voxels with
different FFs are shown for the
low-resolution (A–C) and high-
resolution (D–F) MESE images.

Figure 7. The difference between
the true and estimated FFs when
using incorrect T2,W (A) and incor-
rect T2,F (B) in the 2-parameter fit
and when using incorrect T2,F (C) in
the 3-parameter fit. The true T2,W

and T2,F are 40 milliseconds and
160 milliseconds, respectively.

High-Resolution Imaging of Muscular Fat Fraction

TOMOGRAPHY.ORG | VOLUME 3 NUMBER 3 | SEPTEMBER 2017 159



parable. In addition, the number of estimated parameters is
larger in the Bayesian fit compared with the 2-parameter fit
which affects the robustness.

Although the 2-parameter fit resulted in accurate FFs com-
pared with low-resolution CSEI, it depends on whether it is
possible to obtain both T2,F and T2,W without any contamina-
tion, that is, fluid accumulation due to edema or extramyocel-
lular and intramyocellular fat. It has also been reported that T2,W

varies between muscle groups (40). Using a T2,W calculated from
an ROI placed in 1 muscle group could therefore result in
incorrect FFs in other muscles. In this study, one volunteer had
too little available subcutaneous fat, making it impossible to
draw a ROI to obtain an individual T2,F. Alternatively, one could
use T2-relaxation times obtained from literature. However, sim-
ulations in this study suggest that it is important to use correct

T2-relaxation times to avoid biases. A fat quantification method
without the need of ROIs, like the Bayesian method, might
therefore be preferred.

Owing to varying T2-values between the muscles, one might
expect that keeping T2,W fixed would result in less accurate FF
calculation compared with estimating T2,W together with W and
F. Both the in vivo results and the simulations suggested that
this was not the case, as the 3-parameter fit overestimated the
FF, and was more sensitive to incorrect T2-relaxation times. A
recent paper instead described the fat signal decay using a
biexponential model, that is, a triexponential model for the total
(water and fat) signal (18). It is possible that a biexponential
description of the fat signal could improve the results of the
NLLS methods in this study. For the Bayesian method, a triex-
ponential signal model has also been studied for intravoxel

Figure 8. The simulated effect of
using an incorrect S0 value in the
Bayesian fitting method showing
the difference between the esti-
mated and true FF (left), and the
standard deviation of 1000 esti-
mations (right).

Figure 9. The difference between estimated FF and true FF equal to 2%, 5%, 10%, 30%, and 95% at different signal-
to-noise ratios (SNRs) (20, 50, 150, 300, and 600) using the 2-parameter fit (A), the 3-parameter fit (B), and the Bayes-
ian fit (C). The corresponding standard deviations of 1000 estimations using the 2-parameter fit (D), the 3-parameter fit
(E), and the Bayesian fit (F) are also shown. The mean SNR of the collected MESE images (512 � 512) in muscle and
fat is shown in the first plot (A). At low FF, all 3 methods overestimate the FF in the presence of a high noise level. The
difference between estimated and true FF, of the 3-parameter fit outside the shown interval in (B) are: �40.9% (SNR �

20) and �27.8% (SNR � 50). The corresponding standard deviation not shown in (E) is 	41.4% and 	39.0%,
respectively.
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incoherent motion applications (45), which could be adapted for
fat quantification purposes. Another source of error might be the
use of only 1 T2-relaxation time to describe the fat signal decay,
although it consists of several composites, each with an individ-
ual T2-relaxation time (29).

Although the Bayesian fit slightly underestimated the FF
compared with low-resolution CSEI, there are numerous ad-
vantages with the method. For example, all volunteers could
be evaluated independent of the amount of subcutaneous fat,
as the method is not dependent on the ROI definition. Addi-
tional advantages are the possibility of obtaining T2,W maps
and that no user input is needed. Further investigations to
improve the performance of the Bayesian fit using slicesa-
mple are needed, including the choice of the number of
echoes to include in the calculations, estimation of S0,
smoothing level of the parameter probability density func-
tions, and number of generated samples and burn-in factor in
the slicesample algorithm.

Several drawbacks with the T2-based methods that were
used in this study were found. First, the effect of B1-inhomoge-
neties was not accounted for, assuming perfect T2 decay of the
signal over the course of the MESE acquisition. Methods sug-
gested in previous studies include dismissing voxels where large
B1-inhomogeneites are present by obtaining a B1-map by an
additional data acquisition (18) and using a method based on
extended phase graphs (46). Second, owing to the long T1-
relaxation time of muscle tissue, an impractically long TR (�4
seconds) is needed to avoid T1 bias. Alternatively, as was done
here, a T1-correction can be performed in the postprocessing
steps. In this study, T1-relaxation times obtained from the liter-
ature were used to correct for T1 bias. This can introduce errors

if the true T1-relaxation times are different from the ones ob-
tained from the literature. Using individual T1-relaxation times
could possibly improve the correction, but it will require addi-
tional data acquisition. Third, owing to the long acquisition
times of MESE images, parallel imaging had to be used to reduce
the scan time. This caused varying noise levels and therefore
varying SNR over the images.

Several other drawbacks and limitations of the study
were identified during this work. The study was conducted in
healthy subjects only, and no pathological fat accumulation was
seen. Thus, the range of FFs investigated was likely to be lower than
that of a patient group. Phantom studies are not included, as it was
not possible to construct a phantom which worked for all methods
simultaneously. A completely fair comparison of the precision of
the various methods was not possible, as they were acquired using
different acquisition times and the number of estimated parameters
differed between the methods. However, the effect of increasing the
acquisition time of high-resolution MGRE images to that of MESE
was investigated in 1 subject and it was found to still result in a
high noise level and inferior image quality.

In conclusion, all the T2-based methods could produce high-
resolution FF images of the calves of healthy volunteers, where the
FF was 1%–6%. The 2-parameter fit showed the best quantitative
agreement to low-resolution CSEI. The method can thus be an
alternative to CSEI when the latter method fails to produce high-
resolution FF images owing to low SNR or fat–water swaps. How-
ever, the NLLS-based methods are sensitive to incorrect T2-values,
particularly T2,W for low FFs. Although the Bayesian fit avoids this
particular limitation, further development is needed before it can be
used for accurate fat quantification.
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