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Abstract: Uremic toxins, such as indoxyl sulfate (IS) and kynurenine, accumulate in the blood in
the event of kidney failure and contribute to further bone damage. To maintain the homeostasis of
the skeletal system, bone remodeling is a persistent process of bone formation and bone resorption
that depends on a dynamic balance of osteoblasts and osteoclasts. The aryl hydrocarbon receptor
(AhR) is a ligand-activated transcription factor that regulates the toxic effects of uremic toxins.
IS is an endogenous AhR ligand and is metabolized from tryptophan. In osteoclastogenesis, IS
affects the expression of the osteoclast precursor nuclear factor of activated T cells, cytoplasmic
1 (NFATc1) through AhR signaling. It is possible to increase osteoclast differentiation with short-
term and low-dose IS exposure and to decrease differentiation with long-term and/or high-dose IS
exposure. Coincidentally, during osteoblastogenesis, through the AhR signaling pathway, IS inhibits
the phosphorylation of ERK, and p38 reduces the expression of the transcription factor 2 (Runx2),
disturbing osteoblastogenesis. The AhR antagonist resveratrol has a protective effect on the IS/AhR
pathway. Therefore, it is necessary to understand the multifaceted role of AhR in CKD, as knowledge
of these transcription signals could provide a safe and effective method to prevent and treat CKD
mineral bone disease.

Keywords: aryl hydrocarbon receptor; bone remodeling; indoxyl sulfate; osteoblast; osteoclast

1. Introduction

Chronic kidney disease (CKD) causes CKD-MBD, which is a broad inclusion of abnor-
malities in systemic bone mineral metabolism and the cardiovascular system. The disease
comprises characteristics of laboratory abnormalities, vascular/soft tissue calcification, and
bone metabolism deterioration [1]. These disorders of the skeleton are the predominant
causes of bone loss and fractures in patients with CKD. In the case of CKD, the incidence of
fractures [2], morbidity, and mortality are higher than in the general population [3], even
among patients with adequate control of calcium, phosphate, and parathyroid hormone
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(PTH) levels with calcimimetics [4,5]. This suggests that, beyond calcitriol, PTH, calcium,
and phosphate, uremic toxins could play an important role in the modulation of bone
metabolism in CKD. Among uremic toxins, such as kynurenine (KYN) and indoxyl sulfate
(IS), the metabolites of tryptophan are elevated in uremic patients compared with healthy
population, and they may increase oxidative stress and induce inflammatory processes and
cell damage [6,7]. A growing number of studies indicate that kynurenine build-up in CKD
increases Reactive Oxygen Species (ROS) generation and oxdiative distress to suppress the
proliferation and differentiation of osteoblasts and increase the risk of bone fracture [8–10].
In another way, IS affects bone formation through decreasing the differentiation of os-
teoclasts and promoting osteoblast apoptosis, thus patients often develop adynamic or
low-turnover bone disease in the early stages of CKD [7]. Numerous studies have acknowl-
edged that the coincidence of dysregulated bone demineralisation and increased vascular
calcification provides a close relationship between CKD, bone disorders, and vascular
diseases [11–13]. IS was heavily discussed recently in the literature regarding the degen-
erating bone quantity and quality, which can be described as “uremic osteoporosis” [14].
This new concept of CKD-related bone fragility highlights the complicated relationship
between bone quality, fractures, and mortality in CKD patients [15]. In addition, at the
beginning of CKD, the production of calcitriol is reduced, and the synthesis of the Wnt
pathway inhibitors (DKK1, SOST) is increased, leading to the accumulation of uremic
toxins [16]. Therefore, the elevated levels of uremic toxins disrupt bone remodeling with
altered osteocaclastogenesis and osteoblastogenesis, both of which intensify the severity
of CKD-MBD.

Bone remodeling is correlated with bone resorption and bone formation to maintain
bone homeostasis. The rate of remodeling is influenced by several factors, such as PTH, sex
steroids, and uremic toxins [17]. IS is proven to be associated with altered bone remodeling
abnormalities [17–19]. Intriguingly, IS induces an excessive toxicity in CKD by acting as an
endogenous ligand of the aryl hydrocarbon receptor (AhR) [20,21]. However, still little is
known about the molecular mechanisms of IS on renal bone disease in patients with CKD.

AhR has been recognized as a receptor of environmental pollutants and a mediator of
chemical toxicity for the last 30 years. AhR, as a ligand-activated transcription factor, is
involved in different cellular courses, including cellular development, neural signals, the
functioning of the epithelial barrier, and the response to xenobiotics and antioxidants [22].
In the genomic pathway, AhR binds to a ligand and translocates into the nucleus, thereby
regulating gene expression under the control of exogenous response components. In the
non-genomic pathway, the ligand binds to AhR and activates the inflammatory response
and other transcription factors, such as nuclear factor-kappa B (NF-ÎB) and activator
protein 1 (AP-1) [23]. Recent studies have paid more attention to the effects of AhR on
the immune system and bone remodeling [24–26], and the role of AhR during CKD has
attracted more scientific interest. Although the analysis of AhR is becoming increasingly
extensive, a deeper understanding is still needed to clarify the importance of AhR in
the bone remodeling of CKD–BMD. Therefore, in this review, we focus on the impact of
AhR on bone remodeling under the influence of IS in the scenario of CKD and its related
signal pathway, therefore hoping to provide a theoretical basis on how to improve bone
remodeling in CKD patients.

2. Osteogenesis and CKD
2.1. Normal Bone Remodeling Cycle

Bone remodeling occurs in the basic multicellular unit (BMU) [27], which contains the
osteoclasts, osteoblasts, and osteocytes within the bone remodeling cavity (Figure 1). Bone
remodeling is a lifelong and persistent process of bone resorption and formation that is ini-
tiated by osteoclasts absorbing old bone, followed by mononuclear cell reversal, osteoblast
formation, osteoblast mineralization, and the quiescence stage of new bone [28,29]. A bone
remodeling cycle takes approximately four to eight months [30], and the purpose of con-
stant bone remodeling is to maintain a normal bone mass as a dynamic equilibrium [31,32]
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to secure the integrity of the skeleton, and these series are regulated by systemic and local
factors [30].
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Figure 1. The bone remodeling cycle. The purpose of constant bone remodeling is to maintain
normal bone mass as a dynamic equilibrium between resorption and formation. Mesenchymal
progenitors trigger the activation of canonical Wnt/β-catenin signaling to promote the differentiation
of osteoblasts. Osteoblasts produce runt-related transcription factor 2 (Runx2) as the earliest marker
and various extracellular matrix proteins, such as ALP, type I collagen, osteocalcin, osteopontin, and
ostenectin, to accomplish bone formation and mineralization. Mature osteoblasts produce RANKL
to achieve osteoclast differentiation. Alternatively, osteoblasts also release OPG to attenuate the
osteoclast stimulant pathway. Macrophage colony stimulation factor (M-CSF) is another modulator
of osteoclast differentiation produced by osteoblasts. Osteoclasts secrete acid and enzymes to absorb
the bone matrix and release transforming growth factor-beta (TGF-β) and insulin-like growth factors
(IGFs) to control the activity of osteoblasts. Moreover, osteoclasts express ephrin B2 ligand and
sphingosine 1-phosphate (S1P) to bind with the EphB4 receptor on osteoblasts, which can promote
osteoblast differentiation and can suppress osteoclast differentiation. Thus, there is a close link
between osteoclastic bone resorption and osteoblastic bone formation.

Osteoblasts originate from marrow mesenchymal stem cells and produce various extra-
cellular matrix proteins that control bone formation and bone resorption [17]. Mesenchymal
progenitors trigger the activation of canonical Wnt/β-catenin signaling to promote the
differentiation of osteoblasts, which leads to improved bone strength and the inhibitition of
osteoclast differentiation [33]. The runt-related transcription factor 2 (Runx2) is the earliest
osteoblast marker for the differentiation of precursor cells in the osteoblast lineage [34].
Alkaline phosphatase (ALP) and type I collagen are secreted by differentiated osteoblasts
and are required for the bone-matrix synthesis and subsequent mineralization [35]. In
addition, mature osteoblasts produce osteocalcin, osteopontin, and ostenectin to regulate
matrix mineralization and the receptor activator of nuclear factor-kappa B ligand (RANKL)
to accomplish osteoclast differentiation [30].

Mature osteoclasts are mononuclear precursors of osteoclasts collected to form multin-
ucleated osteoclasts [36]; they contribute to bone resorption and control osteoblast differen-
tiation [37]. At the bone resorption stage, osteoclasts gathering on the surface of the bone
secrete acids and enzymes to absorb the bone matrix and release the transforming growth
factor-beta (TGF-β) and insulin-like growth factors (IGFs), which regulate the activity of
osteoblasts [38]. The ephrin B2 ligand expressed by osteoclasts binds to the EphB4 receptor,
which is found on the membrane of osteoblasts, to promote osteoblast differentiation
and to suppress osteoclast differentiation [39]. In addition, the secretion of sphingosine
1-phosphate (S1P) by osteoclasts recruits osteoblast progenitor cells to the bone resorption
sites and also stimulates these progenitor osteoblasts’ differentiation by stimulating the
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ephrin B2/EphB4 pathway [30,40]. The main regulator of osteoclast differentiation is the
RANKL/receptor activator of nuclear factor-kappa B (RANK)/osteoprotegerin (OPG) path-
way, which is based on osteoblasts generating RANKL to bind with the receptor RANK on
the surface of the osteoclast precursors. This improves the differentiation and maturation
of osteoclasts. Additionally, osteoblasts are also involved in the release of OPG to attenu-
ate the stimulant pathway [41]. Furthermore, the macrophage colony stimulation factor
(M-CSF) is another modulator of osteoclast differentiation produced by osteoblasts [41].

Thus, there is a close link between osteoclastic bone resorption and osteoblastic bone
formation. Osteoclastic differentiation and bone resorption are regulated by osteoblasts,
while osteoblastic differentiation and bone formation are controlled by osteoclasts [37]. In
normal bone remodeling, the resorbed bone is entirely replaced by the same amount of new
bone at the same location [30]. In addition, at the bone formation stage, the subsequent
remodeling of the matrix and the newly synthesized protein matrix form the new bone. As
such, bone remodeling plays an important role in maintaining healthy bone mineralization
to maintain the hardness and strength of bone [42,43].

2.2. The Impairment of Bone Remodeling during CKD

To maintain the integrity of the skeleton, the balance between bone formation and
bone resorption must be maintained [44]. The unbalanced regulation of bone remodeling
can result in a variety of bone diseases [45]. As CKD progresses, the imbalance leads to
different types of pathological bone diseases [46].

In the early stage of CKD, low-turnover bone disease is common in CKD patients
and is characterized by an extremely slow rate of bone formation (Figure 2) [47]. Low-
turnover bone diseases include adynamic bone disease, aluminum-induced bone disease,
and osteomalacia [48]. In adynamic bone disease, mostly observed in early dialysis patients
with the beginnings of bone deterioration, PTH synthesis and secretion decrease, usually
due to chronic aluminum intake and high vitamin D intake [49]. Osteomalacia entails a
very low rate of bone formation and defective bone mineralization [48]; it is associated
with metabolic acidosis and reduced active vitamin D [50]. In contrast, in the end stages
of CKD, high levels of PTH cause high-turnover bone diseases, which involve excessive
osteoclastic bone resorption and bone marrow fibrosis, such as osteitis fibrosa cystica [51].
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Figure 2. Bone disorders in CKD. When CKD occurs, the accumulation of uremic toxins (indoxyl
sulfate) can directly damage bone cells. Early on in CKD, an electrolyte imbalance and decreased
vitamin D levels cause low-turnover bone disease despite a slight increase in PTH. However, when
the renal function further deteriorates, the serum PTH levels become persistently high and vitamin D
levels may decline more, which may cause high-turnover bone disease, as this can override peripheral
PTH resistance and other bone-formation inhibitors.

As mentioned above, bone disorders in CKD patients occur due to two main reasons:
(1) an imbalance of the mineral and hormonal disruption, which reduces bone quantity,
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and (2) accumulated uremic toxins, which damage bone quality. Fukagawa et al. stated
that PTH-stimulated intracellular cyclic adenosine monophosphate (cAMP) production is
suppressed by IS, which is associated with the inhibition of PTH receptor expression and
causes oxidative stress in the bone cells of CKD patients [52]. They asserted that higher
levels of IS could induce adynamic or low-turnover bone disease due to skeletal resistance
to PTH through IS [52]. Additionally, the effects of IS on bones include a modified chemical
composition, which can involve changes to the mineral/matrix or pentosidine/matrix
ratio and increased carbonate substitution [7], which can result in greater bone quality
degradation, increasing the hip fracture rates in CKD patients [14]. These conditions affect
the quality of life of CKD patients [53] and result in huge costs to healthcare systems [54].

3. Aryl hydrocarbon Receptor (AhR) and CKD
3.1. AhR Signaling Pathway

AhR is a ligand-activated transcription factor belonging to the Per-Arnt-Sim protein
superfamily. In the cytoplasm, AhR is in an inactive form that bonds with several proteins,
e.g., Hsp90, ARA9, and p23 [55]. After being exposed and binding to its ligand/agonist, the
configuration of AhR transforms and the nuclear transcription site is exposed, which allows
AhR to translocate into the nucleus and heterodimerize with the aryl hydrocarbon receptor
nuclear transfer protein (ARNT) [56]. In the nucleus, the heterodimer of AhR/ARNT
can induce a xenobiotic response element (XRE) sequence to stimulate gene transcription,
resulting in various biological effects, such as on toxicity, immune response [57], and bone
remodeling [58]. In addition, AhR regulates downstream gene expression, such as cy-
tochrome P450, family 1, member 1A (CYP1A1), CYP1A2, CYP1B1, and the AhR repressor
(AhRR) [59,60]. Sometimes, AhR, even without XRE, experiences other transcriptional
factor interactions [61].

AhR also controls the metabolism of certain transcription factors and their compo-
nents. In fact, AhR has been labeled as an E3 ubiquitin protein ligase and can induce the
degradation and proteasome-controlled ubiquitination of target proteins. For example,
ligand-bound AhR combines with the Cullin 4B (CUL4B)-based E3 ubiquitous ligament to
form a CUL4B–AhR complex, whose goal is to degrade the ESR [62]. The activity of the
transcription factor or the ubiquitin function of the AhR E3 ligase depends on the availabil-
ity and function of ARNT. ARNT is an AhR transcription factor that controls the level of
AhR; thus, ARNT is reduced or inhibited and AhR E3 ligase activity is enhanced [63]. In
addition, the ARNT isolated from AhR stimulates hypoxia-inducible factor 1 subunit alpha
(HIF1α) degradation and inhibits HIF1α-driven transcriptional programs, which control T
cell function and metabolism [64].

Furthermore, as with the activation of some transcription factors, AhR indirectly
regulates NF-ÎB as the suppressor of cytokine signaling 2 (SOCS2)-dependent mechanisms
and directly interacts with other components of RelA, RelB, and other NF-ÎB signaling
complexes [65,66].

3.2. AhR Ligands

AhR possesses numerous exogenous ligands, such as 2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD) [67], 3-methylcholanthrene (3-MC) [68], and benzo[a]pyrene (BaP) of poly-
cyclic aromatic hydrocarbons (PAHs) [69], as well as various endogenous ligands, such
as IS, indole-3-acid-acetic (IAA) [70], KYN [71], and kynurenine’s metabolites: kynurenic
acid [72] and quinolinic acid [73].

Among the uremic toxins, those derived from tryptophan metabolism are of particular
importance because they are associated with cardiovascular toxicity; moreover, they are
shown to be potent AhR ligands [74]. For patients with CKD, the essential amino acid
tryptophan is metabolized via the gastrointestinal tract into three main groups: (1) indole,
(2) KYN, and (3) tryptamine [75]. These are explained separately as follows: (1) Indoles are
the intestinal microorganisms which directly transform tryptophan into such molecules
as IS, IAA, indole-3-aldehyde, indole-3-acetaldehyde, and indole-3-propionic acid [76,77].
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(2) The rate-limiting enzyme indoleamine 2,3-dioxygenase 1 (IDO1) produces KYN and
downstream products, such as kynurenic acid and quinolinic acid [78,79]. Wang et al.
found that kynurenic acid controlled the level of inflammation [80], and Kalaska et al.
pointed out that the accumulation of KYN metabolites in the blood leads to neurological
diseases and susceptibility to infectious diseases, anemia, lipid metabolism disorders, and
hypertension in CKD [71,81]. (3) Tryptophan is decarboxylated to tryptamine, which is
upstream of serotonin and melatonin [82].

In summary, diet, host metabolism, and environmental substances offer multiple
AhR ligands that are likely to affect the cell growth process and inflammation. The fol-
lowing sections discuss the associations between AhR ligands and bone development in
CKD patients.

3.3. Activation of AhR through Is Worsens Renal Damage in CKD

CKD patients are exposed to various uremic toxins that are the endogenous ligands of
AhR. Lu et al. stated that AhR activation has a pathogenic effect in nephrectomy rats and
that there is a positive relationship between renal AhR expression and CKD severity [83].
Moreover, Ichii et al. provided evidence of in vivo and in vitro studies showing IS-activated
AhR to induce renal pro-inflammatory phenotypes, podocytes injury, and progressive
glomerular damage [84]. Dou et al. found that elevated serum AhR-activating potential
was closely related to the IS concentration and the estimated glomerular filtration rate
(eGFR) in CKD patients and 5/6 nephrectomy mice [23]. During the analysis of endothelial
cells under IS and IAA stimulation, Gondouin et al. proved that the genes of AhR, such as
CYP1A1 and CYP1B1, were upregulated [85].

In addition, Ng et al. found that IS downregulated the expression of the Mas receptor
through the organic anion transporter (OAT) 3/AhR/signal transducer [86]. The binding of
IS with the AhR complex enhances oxidative stress, inflammation, and the synthesis of the
renin-angiotensin system (RAS) proteins to ultimately promote renal fibrosis [87]. Thereby,
upregulating the transforming growth factor-beta 1 (TGF- β1) in proximal renal tubular
cells aggravates CKD [86]. Lu et al. demonstrated that IS activated AhR to contribute
to renal tubulotoxicity via upregulating arachidonate 12-lipoxygenase (ALOX12) with
the endovanilloid 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE) synthesis pathway to
induce the transient receptor potential vanilloid 1 (TRPV1) hyperfunction [88]. Lee et al.
applied AhR-knockout and pharmacological-inhibitor α-naphthoflavone models to explore
the role of AhR in diabetic nephropathy. They discovered that the kidneys of diabetic mice
presented signs of oxidative stress, such as extracellular matrix accumulation, macrophage
infiltration, and mesangial cell activation because of the elevation of AhR. Therefore, uremic
toxins/the AhR signaling pathway result in harmful effects, most of which are related
to CKD and have an impact on the cardiovascular system [89]. Therefore, the IS/AhR
pathways affect renal function as a vicious circle in CKD patients.

3.4. Oxidative Stress Accentuated by the IS/AhR Pathway

It is well known that IS enhances the response of oxidative stress and induces the
production of ROS through the activation of nicotinamide adenine dinucleotide phosphate
(NADPH) oxidases [90]. Sun et al. stated that a high level of serum IS enhances the
production of free radicals, promotes oxidative stress, and induces inflammatory gene
expression in the kidneys [91].

Several studies showed that IS promoted the damage of renal tubulointerstitial cells
in CKD patients by inducing oxidative stress and activating the NF-ÎB pathway, which
produced various cytokines and inflammatory mediators to enhance kidney damage [92].
Furthermore, in the study of Stockler-Pinto et al., they stated that the IS induced monocyte-
mediated inflammation and adipocytes to secrete tumor necrosis factor-α (TNF-α) and
interleukin (IL)-6 by oxidative stress in CKD patients [93]. In fact, Borges et al. discovered
that CKD patients had a potential possibility of developing cardiovascular disease; one
of the reasons for this was an increased expression of IL-6 and monocyte chemoattractant
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protein-1 (MCP-1) connected to higher IS and IAA [94]. Additionally, in renal bone dis-
orders, Kim et al. pointed out that IS acted as a bone toxin to induce oxidative stress in
primary osteoblast cell cultures [95]. The accumulation of uremic toxins in CKD is corre-
lated with complications, such as cardiovascular disease, muscle wasting, renal anemia,
and CKD–MBD [96–99]. These studies assumed that IS-induced oxidative stress facilitated
a variety of mechanisms of CKD-related complications.

4. The Impairment of Bone Metabolism through the IS/AhR Pathway

Recent documents have shown that AhR has brought more scientific attention to the
effects of bone remodeling [24,25]. As we know, AhR is expressed in bone cells, including
osteoblasts and osteoclasts [100]. We explore the role of AhR and its associated signaling
pathways in bone remodeling in order to provide a new treatment concept.

4.1. Activated AhR Destroys Bone Remodeling

AhR ligands can suppress osteoblast differentiation, as demonstrated in many toxico-
logical studies [101,102]. Nguyen et al. confirmed that activated AhR by TCDD blocked
the differentiation of osteoblasts from bone-marrow-derived stem cells [103]. Herlin et al.
described that TCDD, via the AhR pathway, might cause thin cortical bones, a hard bone
matrix, and mechanically weak bones and might raise trabecular bone volume fraction [58].
TCDD changes the structure of the AhR transcription activation domain to disturb bone
remodeling and to decrease bone strength [104]. Moreover, AhR antagonists, such as resver-
atrol (RSV), increased the bone mineral density (BMD) and bone mass in mice, in the study
by Yu et al. [105]. Further, Kharouf et al. stated that RSV enhanced the activity of osteoblasts
and decreased the activity of osteoclasts in the treatment of orthodontics [106]. In other
studies, Jameel Iqbala et al. demonstrated that the smoke toxins, BaP and TCDD, interacted
with AhR to induce osteoclastic bone resorption through the activation of CYP1 fami-
lies [107]. However, Voronov et al. reported that BaP directly suppressed the differentiation
and function of osteoclasts, which were dependent on the AhR–RANKL pathway [108].

It is worth mentioning that KYN inhibits the proliferation and differentiation of
osteoblasts through the stimulation of AhR via the activation of the ERK signaling pathway
in a collagen-induced arthritis mouse model [24,71]. At the same time, KYN promoted
the expression of the AhR target gene CYP1A1 in osteoclasts and enhanced the osteoclast
activity and exacerbation of the bone resorption issue [109]. These various research works
illustrate that the different ligands bound with AhR play diverse roles. The reasons
may depend on different capacities and concentrations of ligands or the duration of
the ligand stimulation.

4.2. The IS/AhR Pathway Impairs Osteoclastogenesis

In an in vivo study, Mozar et al. stated that IS blocked the differentiation/function
of osteoclasts and the activity of bone resorption in a dose-dependent manner after being
cultured for five days with more than 200 µM of IS with 3 mM of NaH2PO4 salt [110].
Their results suggested that osteoclast and osteoblast function was inhibited by IS through
the mitogen-activated protein kinase (MAPK) ERK1/2, p38, JNK, and Akt pathways,
which result in bone remodeling being destroyed in patients with CKD [110]. Addition-
ally, 30–300 µM of IS inhibited the development of Raw 264.7 cells, osteoclast precursors,
and bone-marrow-derived macrophages, as well as blocking RANKL-induced differen-
tiation into mature osteoclasts after culturing for five days, according to the study by
Watanabe et al. [19].

In the differentiation stage of osteoclast precursors, the nuclear factor of activated
cytoplasmic T lymphocytes 1 (NFATc1) plays a dominant role [111]. However, NFATc1
is not only a significant transcription factor during the genesis of osteoclasts [112] but is
also an AhR target protein that could be influenced by IS. In our previous study, we found
that IS, through AhR signaling in dose- and time-dependent manners, affected NFATc1
and osteoclastogenesis. Through the IS/AhR/NFATc1 pathway in the Raw 264.7 cell line,
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low concentrations (less than 100 µM) and short durations (three days) of IS stimulation
enhance osteoclastogenesis; in contrast, high concentrations (higher than 500 µM) and long
durations (five days) of IS stimulation suppress osteoclastogenesis [113]. Therefore, the
effects of IS on osteoclastogenesis can cause promotion or inhibition (Figure 3).
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Figure 3. Time and dose dependent of IS on osteoclastogenesis. Short-term exposure in a low IS
dose and ARNT are available, and AhR works as a ligand-activated transcription factor, increasing
NFATc1 expression, and thus increasing osteoclastogenesis. On the contrary, long-term exposure in
high doses of IS and ARNT are inaccessible, and AhR functions as an E3 ubiquitin ligase, leading to
the proteasomic degradation of NFATc1 and thereby inhibiting osteoclastogenesis.

As stated by Luecke-Johansson et al., the E3 ubiquitin ligase function competed
with the AHR transcription factor function, which depends on the ARNT. Higher ARNT
levels promote AhR/ARNT combinations, while lower ARNT levels enhance AhR E3
ligase activity [63]. Our study also demonstrated the different levels and durations of IS
stimulation, switching the role of AhR from a ligand-activated transcription factor to an
E3 ubiquitin ligase; ARNT may be a key factor in the regulation of these dual functions of
AhR under IS treatment [113] (Figure 2).

As there is still no effective treatment to improve osteoclast functioning in most CKD
patients, the IS/AhR/NFATc1 pathway could demonstrate that excessive uremic toxin
elimination may correct abnormal osteoclast development. In addition, AhR antagonists
can serve as new drugs against renal osteodystrophy to prevent the deterioration of bone
metabolism associated with CKD.

4.3. The IS/AhR Pathway Damages Osteoblastogenesis

The first study describing IS accumulation in serum in connection with the suppression
of osteoblast function was by Fukagawa et al. in 2006 [114,115]. They found that IS
induced skeletal resistance to PTH in cultured osteoblast cells and that the production of
free radicals from osteoblasts was positively correlated with the concentration of IS [52].
Watanabe et al. continued to study the direct effect of IS on bone turnover in adult rats
with parathyroidectomy (PTX). As PTX decreased bone turnover, they found that IS further
exacerbated low bone renewal by inhibiting bone formation, even without PTH [116].

Several research works have explored the effects of IS on different maturation stages
of osteoblasts based on various markers, such as ALP, type I collagen, Osterix and Runx2
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in early stage of osteoblast differentiation [117], and osteocalcin (OCN), OPG, bone mor-
phogenetic protein 2 (BMP2), and RANKL in the late stage [118] [19,95,119]. In particular,
Runx2 is an important transcribing factor for osteoblast differentiation and is a crucial reg-
ulator of bone formation [120]. There are also some studies of the AhR signaling pathway
and multiple transductions to detect cell development in a uremic scenario, especially the
MAPK pathway [121]. An understanding of the MAPK pathway in osteoblasts is important
in order to recognize the physiological control of bone formation [122]. There have been
many in vivo and in vitro studies on this topic [123]. In our recent study, we proved that
the phosphorylation of ERK and p38 MAPK through the AhR pathway could be inhibited
by IS in osteoblasts, which then reduced the expression of Runx2 to impede osteoblast
differentiation [119]. This showed that damaged osteoblasts and damage to bone texture
can be obtained through IS/AhR/ERK and p38 MAPK/Runx2 [119]. In addition, Yu et al.
showed that TCDD also stimulated AhR to inhibit osteoblast development through the
signaling pathway of ERK/MAPK [24] (Figure 4).
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Figure 4. Resveratrol (RSV) restores the reduction in ERK and p38 MAPK phosphorylation caused by
IS in osteoblasts. IS inhibits the phosphorylation of ERK and p38 MAPK through the AhR pathway
in the osteoblast cytoplasm, which then reduces the expression of Runx2 to impede osteoblast differ-
entiation. RSV, an AhR antagonist, restores the reduction in ERK and p38 MAPK phosphorylation
due to IS and then improves the expression of Runx2 to promote osteoblast differentiation.

Recently, a number of reports have suggested that IS itself could be a bone toxin [110].
In the study of Kim et al., they believed IS directly inhibited osteoblast differentiation and
induced osteoblast apoptosis through the caspase activity, which is mediated by IS-induced
free radical production to cause apoptosis [95].

4.4. The AhR Antagonist Ameliorates IS-Induced Worsening of Bone Remodeling

Similar to AhR agonists/ligands, there are also several AhR antagonists [61], such
as RSV (3,5,49-trihydroxystilbene) [124] and 6,2′,4′,-trimethoxyflavone [125], which can
reverse the effect of AhR ligands. RSV, the most discussed antagonist, is a molecule found
in red wine that blocks the induction of CYP1A1 by preventing the binding of AhR to
promoter sequences [126]. In our recent study of osteoblasts, RSV was shown to restore
the reduction in ERK and p38 MAPK phosphorylation caused by IS and then improve
the expression of Runx2 to promote osteoblast differentiation [119] (Figure 3). In another
in vitro study on osteoblasts, Dai et al. proved that RSV enhanced the proliferation of
human mesenchymal stem cells (MSCs) and the differentiation of osteoblasts in a time-
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and dose-dependent manner through ERK1/2 activation, thereby increasing the activity of
alkaline phosphatase and calcium deposited in human MSC cultures [127].

In their studies on osteoclastic cells, Naruse et al. [128] and Voronov et al. [108] stated
that RSV did not control osteoclastogenesis but could lift the blockage of osteoclastic re-
sorption induced by AhR antagonists. In contrast, He et al. found that RSV decreased
RANKL-induced osteoclast differentiation and increased differentiated osteoclast apop-
tosis at non-toxic, dose-dependent concentrations by suppressing RANKL-induced ROS
generation [129].

5. Conclusions

In patients with CKD, the accumulation of uremic toxins, such as IS and KYN, can
increase the overexpression of AhR, thus inducing harmful signaling and triggering the
deterioration of bone remodeling. In fact, bone remodeling is a continuous process and a
dynamic equilibrium between osteoblasts’ bone formation and osteoclasts’ bone resorption.
Though the different ligands of AhR have inconstant effects on bone remodeling, it has
been verified that AhR plays an important role in bone formation and bone resorption
and is the key signal pathway of bone remodeling. Thus, the correction of the production
of oxidative stress and inflammatory cells triggered by IS provides potential therapeutic
options against the many complications of CKD.

The uncertainty of clinical application merits further investigation; particularly with
respect to the effects of high and low IS concentrations on osteoclasts and osteoblasts.
There are various impacts and responses from sequential stages of CKD with different IS
levels. Additionally, different levels of PTH can also affect the toxic effects of IS on bones.
Therefore, in clinical practice, there should be more experiments designed to achieve the
safest and most appropriate level of IS in patients with CKD.
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Abbreviations

AchE Acetylcholinesterase
AhR Aryl Hydrocarbon Receptor
AhRR AhR Repressor
ALOX12 Arachidonate 12-Lipoxygenase
ALP Alkaline Phosphatase
AP-1 Activator Protein 1
ARNT Aromatic hydrocarbon Receptor Nuclear Transfer Protein
BaP Benzo[a]pyrene
BMD Bone Mineral Density
BMU Basic Multicellular Unit
cAMP cyclic Adenosine Monophosphate
CKD-MBD Chronic Kidney Disease-Mineral and Bone Disorder
CTLs Cytotoxic T Lymphocytes
CUL4B Cullin 4B
CYP1A1 Cytochrome P450, family 1, member 1A
DCs Dendritic Cells
eGFR estimated Glomerular Filtration Rate
EPO Erythropoietin
FGF23 Fibroblast Growth Factor 23
HIF1α Hypoxia Inducible Factor 1 Subunit Alpha
HUVECs Human Umbilical Vein Endothelial Cells
IAA Indole-3-Acid-Acetic
IDO1 Indoleamine 2,3-Dioxygenase 1
IGFs Insulin-like Growth Factors
iPTH intact PTH
IS Indoxyl Sulfate
KYN Kynurenine
MAPK Mitogen-activated Protein Kinase
3-MC 3-Methylcholanthrene
M-CSF Macrophage Colony Stimulation Factor
MSCs Mesenchymal Stem Cells
NADPH Nicotinamide Adenine Dinucleotide Phosphate
NFATc1 Nuclear Factor of Activated T-cells, Cytoplasmic 1
NF-ÎB Nuclear Factor-kappa B
OAT Organic Anion Transporter
OPG Osteoprotegerin
PAHs Polycyclic Aromatic Hydrocarbons
PTH Parathyroid Hormone
PTX Parathyroidectomy
RANK Receptor Activator of Nuclear factor-kappa B
RANKL Receptor Activator of Nuclear factor-kappa B Ligand
RAS Renin-Angiotensin System
ROS Reactive Oxygen Species
RSV Resveratrol
Runx2 Runt-related Transcription Factor 2
S1P Sphingosine 1-Phosphate
SOCS2 Suppressor of Cytokine Signaling 2
STAT3 Signal Transducer and Activator of Transcription 3
12(S)-HETE 12(S)-Hydroxyeicosatetraenoic Acid
TCDD 2,3,7,8-Tetrachlorodibenzo-p-Dioxin
TGF-β Transforming Growth Factor-beta
Th17 T helper 17
TRPV1 Transient Receptor Potential Vanilloid 1
XRE Xenobiotic Response Element
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