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A B S T R A C T   

Stable soft tissue integration around the implant abutment attenuates pathogen penetration, protects underlying 
bone tissue, prevents peri-implantitis and is essential in maintaining long-term implant stability. The desire for 
“metal free” and “aesthetic restoration” has favored zirconia over titanium abutments, especially for implant 
restorations in the anterior region and for patients with thin gingival biotype. Soft tissue attachment to the 
zirconia abutment surface remains a challenge. A comprehensive review of advances in zirconia surface treat-
ment (micro-design) and structural design (macro-design) affecting soft tissue attachment is presented and 
strategies and research directions are discussed. Soft tissue models for abutment research are described. 
Guidelines for development of zirconia abutment surfaces that promote soft tissue integration and evidence- 
based references to inform clinical choice of abutment structure and postoperative maintenance are presented.   

1. Introduction 

Implant therapy has been successfully used in tooth replacement, 
constituting a “third set of teeth”. The long-term success of implants 
depends on good osseointegration and the sealing quality of peri- 
implant soft tissues [1]. Decreased sealing around the implant allows 
bacterial penetration, causing peri-implantitis and loss of the implant. 
Varying reports of peri-implantitis incidence have been made. A 
meta-analysis of 47 studies gave frequencies of approximately 19.83% 
[95% confidence interval (CI): 15.38, 24.27] for subjects and 9.25% 
(95% CI: 7.57, 10.93) for implant sites [2]. The formation of an effective 
barrier by peri-implant soft tissue reduces the occurrence of complica-
tions [1,3]. 

The abutment is the primary transmucosal part of the implant and 
determines the level of soft tissue attachment around the implant. Ti-
tanium abutments have been previously regarded as the “gold standard” 
but are limited by gingival discoloration [4,5] and potential cytotoxicity 
issues [6]. Zirconia abutments are “metal free” and have excellent 
aesthetic properties [7–9], outstanding biocompatibility and favorable 
mechanical properties [10,11], producing low incidence of technical 

and biological complications and high patient satisfaction in 10–11 year 
follow-up studies [12]. 

Zirconia is bio-inert and may cause marsupialization, epithelial 
downgrowth and infection after implant placement, defects associated 
with poor integration of the implant with surrounding soft tissues [13]. 
The proliferation of soft tissue cells and epithelial closure remain infe-
rior to titanium materials [14–20] on which most pre-existing studies 
have focused. Peri-implant soft tissues lack hemidesmosome structures, 
vertical collagen fibers and an effective blood supply and zirconia sur-
face characteristics pose challenges to the improvement of biocompat-
ibility and soft tissue integration. 

Advances in micro and macro processing factors influencing soft 
tissue integration on the zirconia abutment surface are explored in the 
present review. The first section presents the physiology of peri-implant 
soft tissues and characteristics of zirconia abutments. The next section 
describes common zirconia surface treatment methods and other 
macroscopic design factors and their influence on the quality of soft 
tissues, followed by an overview of research models. The final section 
summarizes controversial issues and challenges for consideration in 
future research. 
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2. Physiology of peri-implant soft tissues 

Peri-implant soft tissue attachments, including epithelial (barrier 
epithelium) and fibrous connective tissues, result in biocontainment and 
are a consequence of wound healing [21,22]. 

The adhesion of peri-implant epithelium (PIE) to the implant is 
mediated by hemidesmosome structures [23–25], although their 
occurrence has sometimes been disputed [26,27] or reported to be 
confined to the lower area. Insufficient hemidesmosomes might result in 
weak PIE attachment [28,29]. 

Subepithelial connective tissue around the implant has a high 
collagen fiber content with a predominance of type-V collagen [30]. The 
collagen fibers are mostly parallel to the implant surface with a few 
annular and perpendicular or obliquely oriented to the rough abutment 
surfaces treated by anodic oxidation [24]. Collagen fibers are embedded 
in the natural cementum at one end and fan-shaped in gingiva at the 
other connecting the tooth with the connective tissue. Gingival con-
nective tissue is supplied by the supraperiosteal artery and periodontal 
vessels while the implant is supplied only by the branches of the superior 
periosteal artery [31]. 

The structure of peri-implant soft tissue is similar to that of natural 
periodontal tooth [32] but is actually more similar to scar tissue in terms 
of composition, collagen fiber orientation and vascular system distri-
bution [33–37]. Strong soft tissue attachment is the first barrier against 
the invasion of bacterial pathogens. However, the structure and higher 
permeability of peri-implant soft tissue increase the risk of bacterial 
adhesion [1,33,38–40], exacerbating inflammation relative to peri-
odontitis. Immune complexes in gingival tissue of the patients with 
periodontitis, who are most likely to requre implant surgery, may also 
increase peri-implantitis risk [39,41,42]. Therefore, abutment surfaces 
should be designed and optimized for better soft tissue attachment and 
sealing. 

3. Zirconia abutments 

Zirconia is a high-strength ceramic which has three crystalline pat-
terns: monoclinic, cubic and tetragonal phases. The tetragonal phase is 
stabilized at room temperature by mixing with metal oxides, such as 
MgO, CaO and Y2O3 or CeO2. Cracks may be avoided by the trans-
formation of the crystalline phase during sintering and cooling [43], 
giving high strength and wear resistance. The most significant advan-
tage of zirconia as an abutment material is its aesthetic properties with 
more natural color than titanium [4,5,7–9,44] and zirconia is recom-
mended for patients with anterior teeth and thin gingival biotype [5]. 
Fibroblast viability, adhesion and proliferation are superior on zirconia 
relative to titanium and other materials [45], resulting in stronger 
mucosal sealing [46,47], better healing of surrounding soft tissues [48] 
and higher soft tissue integrity [45]. Inflammatory infiltration of soft 
tissues is lower than that around titanium abutments [49,50]. Zirconia 
also has antimicrobial properties, and bacterial adhesion and the 
thickness of plaque biofilm are reduced compared with titanium abut-
ments, including the anaerobic biofilm responsible for peri-implantitis 
[41,51–54]. Bacteria compete with soft tissue cells for the surface [55] 
and reduced bacterial adhesion increases soft tissue adhesion, reducing 
risk of peri-implantitis [56–58]. Zirconia thus fulfils clinical re-
quirements of an implant abutment material. 

4. Surface modification of zirconia abutments 

Surface roughness, surface micromorphology, chemical composi-
tion, hydrophilicity, surface energy and surface cleanliness affect soft 
tissue adhesion (Fig. 1). Surface modification of zirconia abutments is 
reviewed in the following section (Table 1). 

4.1. Optimization of surface micromorphology 

Formation of micron-scale surfaces (e.g., microgrooves by laser) and 
nano-scale surfaces (e.g., nano-pores, nano-tubes and nano-nets by 
anodic oxidation), airborne-particle abrasion and etching, thermal 
etching and surface oxidation have been used to modify titanium sur-
faces and affect bone integration and the quality of peri-implant soft 
tissues [59–65]. Sandblasting, acid etching, polishing and laser modifi-
cations have been used to modify zirconia surfaces. 

Laser etching has been used to form microgrooves or porous surfaces 
on zirconia abutments. Based on the results of in vivo experiments, the 
attachment of connective tissues in the surrounding soft tissues was 
found to be enhanced [66], and the expression of collagen fiber-related 
genes in the connective tissue region was up-regulated by 2 times [67]. 
Collagen fibers were embedded vertically or obliquely into the abutment 
surface [68–71] and annular fibers surrounding the abutments were 
observed in the transverse section [69]. The difference in collagen fiber 
orientation between abutments and natural teeth may lead to poor 
sealing of peri-implant soft tissues. More vertical or oblique fibers 
improve connective tissue adhesion to the abutment surface, preventing 
epithelial downgrowth and saucerization [68,69,71]. Annular fibers 
enhance the stability of soft tissue. Changes to surface morphology may 
alter expression levels of junctional epithelium-related genes to promote 
development [67]. Gingival fibroblast attachment was increased at the 
cellular level [68,72,73] and mean optical density values in MTT assays 
were increased for grooved zirconia surfaces after 48 h of HGF adhesion 
relative to smooth zirconia surfaces without microgrooves [72]. The 
microstructure (repeating nano-structure) produced by laser etching 
maximized contact area and enhanced integration of cellular pseudo-
pods and collagen micro-fibrils [73]. Changing substrate topography 
increased cell spreading and migration and decreased focal contacts 
among cells, promoting proliferation and mitosis and enhancing adhe-
sion [73]. Fibroblasts are also “rugophobic” cells, stimulated to repo-
pulate the material surface following a controlled and orientated 
geometry (microgrooves) by “contact guidance” [72,74–76]. However, 
laser etching may cause mechanical damage to zirconia abutments [77]. 

Increasing surface roughness at the microscopic level promotes 
osseointegration but excessive roughness may increase the risk of peri- 
implantitis while nano-level modification seems to facilitate soft tissue 

Fig. 1. Surface modification of zirconia abutment.  

K. Tang et al.                                                                                                                                                                                                                                    



Bioactive Materials 27 (2023) 348–361

350

Table 1 
Summary of the current micro-design of zirconia abutment surfaces.  

Study 
No. 

Investigated 
material 

Surface modification In vivo/in vitro 
study 

Bioactivity evaluation/conclusion Contact angle Roughness Ref. 

1 ZrO2 UV-A (382 nm, 25 mW cm-2) and 
UV-C (260 nm, 15 mW/cm2) 
treatment 

–  1. The hydrophilicity and wettability 
were increased.;  

2. Its efficiency was dependent on the 
specific material and surface. 

94.1 ± 2.1 (UV- 
A); 27.4 ± 8.6 
(UV–C) 

0.87 ± 0.08 
μm; 

[105] 

2 Zr1 
(compound); 

UV-light treatment for 15 min –  1. A decrease in surface carbon content 
was observed;  

2. A conversion of the hydrophilic 
status;  

3. The monoclinic content of one 
material was increased. 

Before: 
56.4◦–69◦; 

– [106] 

Zr2(Y-TZP) After: 2.5◦–14.1◦

3 Y-TZP UV-light and argon or oxygen 
plasma treatment for 12 min 

In vitro (L929 
murine fibroblast 
cells; HGFs)  

1. Cell attachment, proliferation and 
viability were improved;  

2. Minor effects on the 
cytocompatibility (argon plasma 
treatment). 

– – [100] 

4 ZrO2 (smooth 
and rough) 

UV-light treatment (17 mW/ 
cm2) for 24 h 

HGFs in vitro  1. The behavior of HGFs was affected 
(varying with surface roughness). 

Smooth: 
51.98◦–33.76◦; 

Smooth 
groups: 0.05 
± 0.01 μm; 

[102] 

Rough: 
63.87◦–36.15◦

Rough groups: 
0.19 ± 0.03 
μm. 

5 Y-TZP; 
ATZ (alumina- 
toughened 
zirconia) 

UV-light treatment (0.05 mW/ 
cm2 and 2 mW/cm2) for 12 min 

3D OMM in vitro  1. Photofunctionalization enhanced the 
soft tissue cell attachment 

– Y-TZP: 246.48 
± 27.04 nm 

[108] 

ATZ: 256.65 
± 35.59 nm 

6 Y-TZP UV-light treatment (19 mW/ 
cm2) for 20 min; 

Wistar rats in vivo  1. The area of soft-tissue attachment of 
the perpendicular collagen fibers was 
the (significantly) largest for blasted 
HF + UV implants. 

Before: 68.75 
(2.91)◦; 

Before: 3.23 
(1.14) nm; 

[92] 

large-grit sandblasting and 
hydrofluoric acid etching 
(blastedHF) 

UV: 12.29 (2.92) 
◦; 

UV: 3.09 
(3.65) nm; 

BlastedHF: 6.35 
(1.18) ◦; 

BlastedHF: 
351.80 
(42.44) nm; 

BlastedHF + UV: 
0.00 (0.00) ◦

BlastedHF +
UV: 322.00 
(41.91) nm 

7 TZP UV-light treatment (19 mW/ 
cm2) for 2 h; low-energy oxygen 
plasma at room temperature for 
10 min 

Human oral 
keratinocytes in 
vitro  

1. The initial attachment and migration 
capability of HOK were promoted. 

Before: 51.5 ±
2.3◦; 

Before: 0.067 
± 0.003 μm 

[110] 

After: 0◦

8 ZrO2 UV-A (365 nm, 550 μW cm− 2) 
for 15 min, 3 h, 24 h; 

–  1. The color, surface free energy, and 
surface chemistry of zirconia 
changed;  

2. UV-C (but not UV-A) irradiation 
change the aesthetic in color. 

Before: 70.7 ±
0.3◦; 

– [99] 

UV-C (243 nm, 490 μW cm− 2) 
for 15 min, 3 h, 24 h 

After: 
24 h UV-C: 17.3 
± 1.1◦; 
24 h UV-A: 58.3 
± 2.7◦

9 ZrO2 UV-light treatment (17 mW/ 
cm2) for 24 h; atmospheric room 
temperature plasma 
temperature for 60 s. 

HGFs in vitro  1. He plasma had the better effect on 
cell adhesion, proliferation, and on 
collagen synthesis than UV light 
treatment. 

Before: 78.03◦; Before: 0.05 
± 0.01 μm; 

[109] 

After plasma: 
49.94◦; 

After: no 
significant 
difference 

After UV: 35.62◦

10 Y-TZP Cold atmospheric plasma (CAP) 
treatment for 5 min 

HGFs in vitro  1. Cell surface covering was improved. Before: 97◦; 251 ± 21 nm [16] 
After: 26–36◦

11 Y-TZP Helium CAP treatment for 30 s, 
60 s or 90 s 

S. mutans and 
P. gingivalis in 
vitro  

1. The hydrophilicity was increased;  
2. The surface chemistry was altered;  
3. The surface topography was not 

affected;  
4. Bacterial adhesion and growth were 

inhibited. 

Before: 80.98 ±
0.51◦; 

– [80] 

After:90 s plasma: 
25.70 ± 2.06◦

12 ZrO2 Helium atmospheric-pressure 
dielectric-barrier-discharge 
plasmas for 30, 60 or 90 s 

HGFs in vitro  1. The biological behavior of fibroblasts 
was enhanced;  

2. The expression of attachment-related 
genes was increased;  

3. The cell density was improved;  
4. The surface morphology and 

roughness remained no change;  
5. The hydrophilicity was increased;  
6. The surface C/O ratio was decreased. 

Before: 78.31◦; 0.05 ± 0.01 
μm 

[118] 
After: 43.71◦

13 Y-TZP 
containing 5% 
HA or 5% β-TCP 

Bioactive modified HGFs in vitro  1. HGF adhesion, viability, and 
proliferation were decreased. 

Before: 70.59◦; 1.45–1.86 μm [121] 
After: 70.82◦, 
65.04◦

(continued on next page) 
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integration [76]. Anisotropic nanogeometry may be produced by elec-
trochemical anodization and the resulting nano-pores, nano-tubes and 
nano-webs regulate HGFs, resulting in increased cell adhesion, activity 
and deposition of collagen fibers [74,76]. The diameter and composition 
of nano-pores affect biological activity [76,78]. An in vitro study 
demonstrated that small nano-pores promoted cell adhesion and depo-
sition while large nano-pores induced apoptosis. The 15-nm pore has 
been deemed optimal [78] but the exact pore size remains unclear due to 
divergence in preparation and cell culture methods. New nano-pitted 
anodicfilms exhibit better mechanical properties and reproducibility 
compared to nanotubes and are not easily peeled off when applying 
lateral forces [79]. 

Effects of modified rough surfaces remain controversial. In vitro 
studies have suggested superior attachment of soft tissue cells (epithelial 
cells and gingival fibroblasts) to smooth (machined or polished) surfaces 
[80,81]. Decreased zirconia surface roughness increased proliferation, 
adhesion and migration of soft tissue cells, especially keratin-forming 
cells, and increased collagen deposition [82–84]. The rough surface 
seems to be more conducive to bacterial retention and plaque accumu-
lation [85–87]. Smooth zirconia surfaces with exposed particles 
(machined/heat-treated for 1 h) were more conducive to soft tissue cell 
attachment than completely smooth polished surfaces [88,89]. Rough 
transmucosal surfaces produced by surface micromorphology modifi-
cation appear more conducive to the formation of vertically oriented 
collagen fibers and more mature and organized connective tissue areas, 
preventing loss of marginal bone in vivo [66,68–71,90–92]. Greater 
plaque formation has been shown in vivo on rough surfaces [90] and the 
rough plasma-treated, sandblasted or acid-etched hydrophilic surface 
was more conducive to macrophage-mediated immune regulation, 
increasing release of anti-inflammatory factors, attenuating inflamma-
tory responses, promoting stem cell recruitment in vitro [93,94] and 
creating a favorable environment for soft tissue healing. A threshold 
roughness of Ra = 0.2 μm balanced bacterial adhesion with soft tissue 

attachment in clinical studies. Roughness below Ra = 0.2 μm did not 
reduce plaque accumulation or change the microbial composition but 
negatively affected epithelial sealing [89,95,96]. Surface hydrophilicity 
may influence soft tissue integration and biological behavior in vivo 
more significantly than roughness [37,61,62] but correlations between 
surface roughness and soft tissue cell proliferation and adhesion have 
not been established [97]. 

Morphological modification of the zirconia surface at the micro or 
nano level seems to adjust the attachment of soft tissues around the 
implant but effects remain controversial. Moreover, the influence of 
salivary pellicle in the oral environment may mask the modified surface 
morphology [64] and subtractive treatment may introduce microcracks 
and defects into the zirconia surface, increasing the risk of mechanical 
complications [98]. Therefore, surface modification by additive treat-
ment, such as biomimetic coating, should be considered to customize the 
surface while preserving biofilm and salivary proteins effects [43]. 

4.2. Photofunctionalization 

Photofunctionalization or photochemical modification uses ultravi-
olet irradiation to modify the abutment surface. UV light treatment of 
zirconia may improve surface bioactivity via “biological activation” 
[99]. UV treatment reduced cytotoxicity [100], enhanced protein 
adsorption, cell proliferation, adhesion and differentiation [101–103] 
and inhibited oxidative stress (reactive oxygen species production) and 
inflammatory responses [104]. UV treatment requires simple equipment 
and procedure, is easy to implement, has a low cost and is not restricted 
by type of abutment material, including titanium, zirconia and polyether 
ether ketone (PEEK) [100–103,105,106]. 

Zirconia has semiconductor and photocatalytic activities [107]. UV 
irradiation increases surface oxygen vacancy at the bridging sites and 
photocatalytic reactions transform Zr4+ to Zr3+ sites with increased 
wettability. UV light excites an electron from the valence to the 

Table 1 (continued ) 

Study 
No. 

Investigated 
material 

Surface modification In vivo/in vitro 
study 

Bioactivity evaluation/conclusion Contact angle Roughness Ref. 

14 Y-TZP; 
NANOZR 

Coated with silk fibroin in vitro  1. A silk fibroin electrogel coating had 
sufficient bonding strength  

2. The biocompatibility of zirconia was 
improved.   

[132] 

15 ZrO2 Coated with polydopamine 
(PDA) 

HGFs in vitro  1. Cell attachment and proliferation 
were increased;  

2. Bacterial adhesion was reduced. 

Before: 78 ± 4◦; Before: 0.065 
± 0.022 μm; 

[137] 

After: 64 ± 1◦; After: 0.071 
± 0.026 μm 

16 ZrO2 Coated with chitosan HGFs in vitro  1. HGF-1 cells were shown to attach and 
proliferate well 

– – [143] 

17 Y-TZP Coated by RGD-containing 
peptide 

in vitro  1. Cell adhesion was significantly 
enhanced. 

– – [150] 

18 Y-TZP RGD peptidic 
biofunctionalization and laser 
micro-patterns 

in vitro  1. Migration was greatly enhanced 
along the grooves;  

2. No effects on cell migration were 
found for the peptidic platform;  

3. Cell number and area were increased 
after biofunctionalization. 

– – [151] 

19 ZrO2 A multi-step research cleaning 
method 

HGFs in vitro  1. Surface contact angle was reduced; 2. 
HGF viability was enhanced. 

Before: 98.7 ±
4.5◦; 

After: 0.079 
± 0.017 μm 

[154] 

After: 69.9 ± 6.4◦

20 ZrO2 Reagent (PK) and vacuum 
plasma cleaning 

HGFs in vitro  1. Initial HGF attachment was affected;  
2. Gene expression of type I collagen 

was increased. 

– – [155] 

21 CAD/CAM ZrO2 Ultrasonic cleaning –  1. Surface contamination was reduced. – – [153] 
22 ZrO2 Coated with sol–gel derived TiO2 

or ZrO2 

HGFs in vitro  1. Fibroblast proliferation was reduced 
in ZrO2-coated specimens. 

– – [164] 

23 ZrO2 Coated with a sol-gel–derived 
TiO2 

HGK in vitro  1. Epithelial cell attachment and 
proliferation were improved. 

– – [107] 

24 ZrO2 Polished/polished and heat- 
treated/machined/machined 
and heat-treated/sandblasted, 
etched and heat-treated 

HGF-1 in vitro  1. A smooth surface with exposed grains 
might be suggested as the optimal 
substrate for human gingival 
fibroblasts. 

– – [88]  
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conduction band, resulting in negative-electron (e− ) and positive-hole 
(h+) pairs. The positive holes on the zirconia surface increase surface 
free energy, making it more electropositive and favorable for attaching 
to negatively charged cells and proteins [106,108]. Surface character-
ization revealed that UV treatment did not change either surface 
morphology [106] or crystalline phase [99,109] but changed the 
elemental composition, decreasing carbon, increasing oxygen and 
decreasing C/O and C/Zr ratios. Contamination with carbon may hinder 
protein and cell adhesion and photolysis of carbon by UV light results 
from the photocatalytic properties of zirconia [109]. 

UV-treated zirconium oxide surface has increased wettability with a 
water contact angle approaching 0◦, producing a superhydrophilic sur-
face. Generally, the more hydrophilic the surface, the more proteins and 
other macromolecules may attach, promoting cell adhesion, spreading, 
proliferation and differentiation [92,110]. Hydrophilic surfaces also 
create an anti-inflammatory microenvironment, promoting stem cell 
recruitment, reducing inflammatory factor secretion [94,111–113] and 
provide conditions for soft tissue healing [114]. In addition, hydro-
phobic surfaces can partially deform proteins by disrupting their tertiary 
structure, leading to a decrease in cell adhesion [115]. This process is 
also known as “surface conditioning” [116]. The hydrophilic surface is 
not retained for long and “rehydrophobic” phenomena may occur in air 
[88]. However, the UV-induced superhydrophilic surface is more du-
rable [117]. Thus, the bioactivity enhancement of zirconia produced by 
photofunctionalization may augment the superhydrophilic surface and 
decrease surface carbon. 

Zirconia surface roughness seems to affect UV treatment, unlike ti-
tanium [101]. HGF differentiation and formation of denser vertically 
oriented collagen fibers were improved on hydrophilic surfaces [76,92] 
but UV treatment of the smooth polished surface may produce the 
opposite in vitro result [102,109], probably due to the larger rough 
surface (after air-abrasion) area for UV light absorbance and the greater 
smooth surface hydrophilicity and wettability. Surface roughness and 
hydrophilicity may be synergistic in vitro [93], although differences in 
surface morphology, material properties, surface chemical composition, 
UV irradiation wavelength, treatment timing and mode have led to 
varied results [101,105]. However, it is unclear why zirconia surface 
roughness varies by UV treatment effects and there is no consensus on 
wavelength and time of UV irradiation. Zirconia also differs from tita-
nium in UV irradiation requirements. Zirconia requires UV energy 
greater than 5.82 eV to induce photocatalytic activity, to excite electrons 
from the valence to the conduction band while titanium has a forbidden 
bandwidth of 3.2 eV, implying that more energy is required to induce 
photocatalytic activity on zirconia surfaces [110]. 

UV-C treatment of zirconia for 24 h results in optimal biological 
properties but a visible color change is found in UV-C irradiated 
compared with UV-A irradiated zirconia [99]. Such discoloration may 
affect aesthetic properties. Nevertheless, photochemical modification by 
UV irradiation is promising for enhancing soft tissue integration. 

4.3. Plasma processing 

Plasma treatment improves surface wettability and promotes protein 
and cell interactions [100,101]. The plasma-treated surface is more 
conducive to HGF adhesion and collagen release [109] and facilitates 
the initial adhesion of oral keratin-forming cells [110] while UV treat-
ment results in better zirconia surface wettability. Plasma is a partially 
or fully ionized gas appropriate for treatment of heat-sensitive surfaces. 
Free electrons and ions interact with molecules on the treated surface, 
producing nitric oxide and reactive oxygen species [16]. Plasma treat-
ment of the zirconia surface alters its chemistry and the peak value of 
surface hydroxide is detected by X-ray photoelectron spectroscopy [80, 
109]. Most proteins are negatively charged in a neutral environment and 
positively charged hydroxyl groups on the zirconia influence protein 
adsorption and cell attachment [110], indicating the greater impact of 
hydroxide or hydroxyl groups produced by plasma treatment over the 

decreased carbon content caused by UV treatment. Hence, changes in 
surface chemistry play a more significant role in improving cell behavior 
than the enhancement of wettability. 

Plasma treatment technology has been widely used in food pack-
aging and biomedicine. The operating gas temperature is similar to that 
of the oral environment, saving time and labor and conferring disin-
fection. Residual cuttings and colonized microorganisms on the surface 
of factory-finished abutments may interfere with soft tissue healing. 
Plasma treatment may remove these low-energy surface contaminants, 
cleaning and increasing surface free energy and improving cell adhesion 
kinetics [16,22]. HGF adhesion is promoted [22] and bacterial adhesion, 
growth and number decreased [22]. Helium low temperature plasma 
treatment for 60 s enhanced HGF behavior in vitro while 90 s inhibited it 
[118]. Therefore, treatment conditions should be optimized. Differences 
in plasma generation devices, gases used, experimental conditions, cell 
strains and material surfaces make it difficult to draw a firm conclusion. 
Plasma treatment may be performed under atmospheric pressure or 
vacuum conditions and air, nitrogen, oxygen and argon may be used. 
Helium generates more stable, mild and uniform glow discharges at 
atmospheric pressure than other gases [80,118] but is expensive. Thus, 
more cost-effective gases that produce stable glow discharge plasma 
should be developed in the future. 

4.4. Construction of biomimetic coating and biofunctionalization 

Bionic surface coatings, such as hydroxyapatite (HA), β-tricalcium 
phosphate (β-TCP), collagen and chitosan, may promote soft tissue 
formation around zirconia abutments. However, soft tissues reacted 
inconsistently towards these coatings [46,119–124] and they gave 
desirable results on titanium surfaces but not on zirconia [121]. Bio-
mimetics, silk protein and polydopamine (PDA), have also been inves-
tigated to construct surface coatings [125]. 

Silk is composed of fibroin and sericin [126]. Fibroin accounts for 
70–80% and has been widely used due to good biocompatibility, me-
chanical properties, controlled degradation rate, easy accessibility, 
ability to promote cell adhesion, spreading, proliferation and inherent 
antibacterial properties [127–131]. Fibroin has been introduced as a 
carrier for dental implants and provides amino acid side chains that can 
functionally be modified. Qu et al. [132] applied silk fibroin gel to the 
zirconia surface in 2019 with no toxic effects in vitro, indicating its 
feasibility. Silk fibroin coating modified with bone morphogenetic 
peptides accelerated osteogenic differentiation and maturation of 
osteoblast-like cells [129] and promoted cell adhesion and reduced 
bacterial retention [133]. The slow degradation of silk fibroin ensures its 
continuous action, giving sufficient time for soft and hard tissue healing 
[132]. The weak basic and acidic groups of the fibroin membrane allow 
it to act as an amphoteric ion exchanger. Molecules passing through the 
membrane may be controlled by pH adjustment and alkaline pH regu-
lates peri-implant disease [87]. Therefore, silk fibroin is a pH-sensitive 
drug delivery material for drug release in the peri-implantitis environ-
ment [130]. Sericin is a hydrophilic “glue” component of silk proteins 
[134] and promotes proliferation, migration and adhesion of keratino-
cytes and fibroblasts, increases collagen production and accelerates 
wound healing around dental implants [135,136]. Sericin is used for 
fabricating hydrogels in tissue engineering and shows promise for the 
optimization of zirconia surfaces. Osseointegration has been investi-
gated but promotion of soft tissue healing requires further attention. 

Polydopamine (PDA) is a synthetic polymer inspired by the inver-
tebrate mussel and adheres to different substrates with high bonding 
strength even under wet conditions. PDA coatings on the hydrophobic 
and biologically inert surface of implant materials improve hydrophi-
licity, promoting protein adsorption, cell adhesion, spreading and pro-
liferation. An in vitro study by Liu et al. [137] demonstrated that 
PDA-modified zirconia promoted adhesion, proliferation and differen-
tiation of HGFs and reduced bacterial adhesion, showing promise for 
clinical applications in improving soft tissue integration around zirconia 
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abutments. 
PDA coatings have many advantages: 1). simple and efficient prep-

aration by impregnating zirconia into alkaline dopamine solution; 2). 
non-toxic, good biocompatibility; 3). enriched in catechol and amino 
groups for secondary surface-mediated reactions via Michael addition or 
Schiff base chemistry [137]; 4). not limited by the substrate material, 
regardless of shape and size [138]. PDA coating may be achieved by 
simple dip treatment [139–141]. However, PDA coatings formed by 
conventional polymerization under alkaline conditions are unstable and 
inhomogeneous and the high local pH in the vicinity of vesicular 
self-assemblies formed by a series of acetal-based cationic amphiphiles 
may be conveniently used to form more uniform and stable nano-
structured PDA coating in a gradual manner [142]. 

Chitosan coating (CS) is produced by partial deacetylation of the 
natural polysaccharide, chitin, and promotes cell attachment and pro-
liferation [127]. However, some in vitro studies have shown that 
alumina appears to be more suitable as a CS-coating material than zir-
conia [143]. In addition, CS has a high degree of cell selectivity, since 
osteoblasts and osteocytes adhere strongly and whereas fibroblasts 
adhere weakly [144]. 

Biofunctionalization, or biomimetic surface modification, anchors 
organic components, such as proteins and peptides, onto the material 
surface to modify biochemical and biological responses [43]. Collagen 
[138], adhesion-related proteins [145], fibroblast growth factor (FGF) 
[146] and RGD peptide sequences [147,148] have been investigated. 

However, biomimetic surface modification of zirconia surfaces has 
received little attention. The Arginine-Glycine-Aspartic (RGD) tripep-
tide exists in the extracellular matrix (ECM) and regulates cell adhesion 
by binding to integrins. Covalently immobilized RGD peptides on acti-
vated zirconia surfaces promote cell adhesion and spreading with 
improved mucosal closure [149–151]. This biomimetic coating may also 
act as a carrier. Yang et al. [152] immobilized RGD on the zirconia 
surface by PDA coating and improved the biological activity of HGFs and 
reduced adhesion of Porphyromonas gingivalis and Streptococcus mutans in 
vitro. Biomimetic coating-assisted immobilization (indirectly) can 
effectively improve the anchoring of biomolecules compared with the 
conventional immobilization (directly) [152]. 

Biomimetic coatings are rapidly developing [125]. Subtracted zir-
conia treatment by preparation of grooves or porous surfaces may have a 
negative impact on mechanical properties but additional treatments 
(overcoating) do not [121]. However, zirconia is biologically inert and 
some coatings have exhibited poor adhesion [43,137]. Therefore, 
further research on long-term stability and in vivo effect is required. 

4.5. Zirconia abutment surface decontamination 

Wear particles, debris, organic and inorganic contaminants occur on 
the surface of laboratory-fabricated zirconia abutments [153] and their 
location between implant and soft tissue may stimulate soft tissue and 
facilitate bacterial adhesion. Surface decontamination increases surface 
energy for HGF attachment and biological sealing [154,155]. Indeed, 
the removal of low-energy contaminants implies increased cell adhesion 
kinetics [22]. Cleaning approaches for zirconia abutments include im-
mersion in antiseptic solutions (chlorhexidine, octreotide and ethanol), 
steam cleaning, ultrasonic cleaning, plasma cleaning and other newly 
developed cleaning reagents. Matthes et al. found that preservatives 
used in traditional cleaning can be retained on the implant surface 
which leads to a negative impact on cell metabolism, viability and 
spreading in vitro [16]. Ultrasonic cleaning is more effective in decon-
taminating zirconia surfaces than steam cleaning [153]. 

The choice of cleaning solution depends on abutment material. 
Plasma cleaning of zirconia surfaces has no effect on cell adhesion but 
combination with proteinase K reagent seems to be more effective [16, 
155]. 

4.6. Anti-bacterial adhesion 

Gristina has described the challenge for advanced surface modifi-
cation as the “race for the surface” between soft tissue integration and 
bacterial colonization [55]. However, whereas soft tissue cell adhesion 
must be promoted, bacterial adhesion and proliferation must be 
inhibited [46] and research on this area continues. 

Zirconia abutment surface properties, such as roughness, free energy 
and charge density affect bacterial adhesion [52,117,156]. In general, 
higher roughness (Ra) increases and hydrophobicity is usually the main 
driver of bacterial adhesion [117]. Bacteria may contribute or gain 
electrons from the substrate, the former adhering more successfully [52] 
but bacterial adhesion to zirconia abutments remains controversial 
[157,158]. Zirconia exhibits lower bacterial adhesion, plaque biofilm 
density and thickness than titanium in vitro. Moreover, anaerobic bio-
films of Porphyromonas gingivalis and Clostridium nucleatum, responsible 
for peri-implantitis, are also significantly reduced [41,51–54]. Some 
studies have shown no significant advantage of zirconia abutments in 
bacterial adhesion [159,160]. Diverse results may stem from differences 
in measurement metrics, such as total amount of plaque biofilm for-
mation, thickness or percentage surface area covered, implying that the 
degree of bacterial coverage on the material surface only represents the 
initial bacterial adhesion event and does not evaluate plaque accumu-
lation [52]. Secondly, different experimental conditions, including dif-
ferences in strains, presence or absence of experimental protein films 
and saliva conditions, may also have an impact. Additionally, differ-
ences in zirconia storage conditions may affect results [88]. 

Antibacterial surfaces include antibiotic, nano-silver, photocatalytic, 
nano-, bionic and smart bioresponsive antibacterial coatings [86,161] 
which produce different antibacterial effects [161]. Research on the 
construction of antimicrobial surfaces for zirconia abutments is still 
lacking. Zirconia surfaces with active oxygen or nitrogen components 
produced by plasma treatment inhibit the growth of Porphyromonas 
gingivalis and Streptococcus pyogenes [80]. PDA coatings are also used and 
have been demonstrated to inhibit Escherichia coli [142,162] Staphylo-
coccus aureus [142] and Streptococcus in vitro [163]. “Bifunctional 
abutment” surfaces would have antibacterial function in addition to 
promoting soft tissue adhesion, such as enzyme-functionalized bifunc-
tional silk fibroin to reduce biological complications after implantation, 
promote cell adhesion and reduce bacterial (e.g., Staphylococcus aureus) 
damage [133]. 

Further research on bacterial inhibition by zirconia abutments is 
required. 

4.7. Other approaches 

The introduction of titanium dioxide coating on zirconia does not 
affect the flexural strength of zirconia [164] but promotes adhesion and 
viability of epithelial cells [107]. Nanostructured titanium dioxide 
layers are prepared by surface modification, enriched with more anatase 
crystalline phases compared with those naturally formed, and have 
enhanced adhesion capacity, attachment strength and cellular activity of 
HGFs [63,165]. Both animal and clinical studies have confirmed the 
advantages for increased soft tissue attachment and reduced bone 
resorption [65,166]. Nano-porous titanium dioxide coatings reduced 
oral bacterial adhesion on the surface of zirconia abutments [63,64] but 
HGF proliferation may be reduced relative to titanium surfaces [164]. 

5. Structure design of zirconia abutments 

The implant-abutment connection and the abutment geometry can 
affect soft tissue healing. Zirconia abutments have higher fracture rates 
due to the difference in mechanical properties between zirconia and 
metal. The internal connection method reduces the center of rotation, 
improving mechanical stability, sealing, reducing the occurrence of 
technical problems, such as fracture [167,168], and attenuating 

K. Tang et al.                                                                                                                                                                                                                                    



Bioactive Materials 27 (2023) 348–361

354

marginal bone loss over a short-to-medium duration [168]. The internal 
connection method may be an ideal approach for zirconia abutments. 

Implant-abutment marginal adaptation must be considered. Mar-
ginal adaptation refers to the size of the microgap between the implant- 
abutment interface. The microgap allows blood, saliva, toxic by- 
products and bacterial pathogens to leak into the implant cavity and 
lubricate the components [169] and micro-movements, including 
microabrasion, microshift and microrotation, of the superstructure may 
occur when subjected to masticatory forces. Micromovements may in-
crease the microgap size, increasing the risk of microbial leakage. The 
three negative concepts, microgap, microleakage and micromovement, 
work together to increase the risk of microbial growth and accumula-
tion. Microgaps also interfere with attachment of soft tissues and their 
stability, resulting in peri-implantitis (Fig. 2) [86]. Microgap formation 
may be affected by surface machining defects, fabricating methods 
(prefabricated or customed abutments, conventional fabrication tech-
nique and CAD/CAM technique), mismatch between the mechanical 
properties of abutments and implant materials and loading. Marginal 
adaptation or microgap may be assessed qualitatively and quantitatively 
using silicone impressions, scanning electron microscopy or micro-CT 
techniques [170–172]. 

The mechanical load is concentrated on the implant-abutment 
interface [167] and the inconsistent stiffness of titanium and zirconia 
means that deformation energy is distributed to the material with the 
lower Young’s modulus, resulting in wear at the implant interface. The 
zirconia abutment-titanium implant interface has been shown to form a 
3-7-fold larger gap than the titanium abutment-titanium implant inter-
face [139,171]. Masticatory forces lead to greater wear of the titanium 
implant than the zirconia abutment [170] and the manufacturing pro-
cess of CAD/CAM zirconia abutment has not yet been standardized. 
CAD/CAM zirconia abutments appear to produce a larger microgap than 
prefabricated abutments [172] and should be carefully considered when 
selecting abutments for clinical purposes. 

In order to improve marginal adaptation, clinicians recommend:  

1. a “hybrid abutment” protocol that uses a titanium base to ensure the 
adaptation between the abutment and the implant, combined with a 
customed zirconia abutment to meet aesthetic needs [172].  

2. avoidance of zirconia abutments with a hexagonal connection which 
is more likely to cause wear at the zirconia abutment interface [170]. 

6. Models and evaluation methods related to soft tissue 
adhesion around abutments 

Research models may be divided into in vitro and in vivo (Fig. 3). In 
vitro research models are mainly 2D cellular models [17,46,100, 
173–175] while in vivo approaches rely on animal models [18,19,35,71, 
176]. 3D reconstructed human gingival models (RHG) have enabled the 
same evaluation parameters to be applied to in vitro, animal and clinical 
studies [177–179]. 3D RHG consists of several layers of epithelial cells 
and an underlying connective tissue component, into which the target 
implant abutment is inserted [180–182]. 

Soft tissue adhesion to the surface of modified abutments may be 
evaluated by three criteria: cell adhesion-related protein levels, soft 
tissue cell function and tissue level. Assessment of tissue level involves 
dimensions, proportion of connective tissue, direction of collagen fiber 
formation [92,183] and soft tissue closure analysis [18,176,184]. Soft 
tissue adhesion strength is the most clinically relevant indicator to 
evaluate integration of soft tissue with the implant and assess abutment 
surface modifications, although deficiencies remain [181]. Most studies 
have focused on HGFs but the relation of fibroblast adhesion to histo-
logical results has been questioned [54,155], as rapid cell attachment 
does not necessarily lead to the induction of differentiation and inverse 
relationships between cell proliferation and differentiation have been 
implied [185]. HGFs may impede soft tissue attachment to the implant 
surface and loss of keratinocyte colonization may lead to the formation 
of parafunctional junction epithelium [169]. The gap between in vitro 
and in vivo experiments appears greater for fibroblasts than for epithelial 
cells. However, in vitro data does not always translate to the clinic [83]. 
Therefore, modified zirconia abutments must be validated by in vivo 
histological experiments. 

Furthermore, modification of zirconia by sandblasting or acid 
etching treatment may alter mechanical properties or lead to micro-
cracking, increasing the risk of mechanical complications after implant 
surgery [121]. Hence, evaluation of the mechanical properties should be 
undertaken. Zirconia is too brittle for tensile tests and compression or 
bending tests must be performed to evaluate fracture toughness, flexural 
strength, hardness and modulus of elasticity [11,43,98]. 

The inert zirconia surface is difficult to modify and bond strengths of 
the functionalized coating must be measured by shear and tensile 
bonding strengths. The two coating samples are stacked together with 

Fig. 2. The relationship between microgap, microleakage and micromovement and their harmful effects on soft tissue integration.  
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wet-coating surfaces facing each other and bond strengths are measured 
at room temperature using a material testing machine in shear and 
tensile modes until complete separation occurs. Debonding modes may 
be divided into adhesive (peeling occurs at the coating-substrate inter-
face) and cohesive (peeling occurs inside the coating). The adhesive/ 
cohesive ratio is usually determined by measuring adhesive and cohe-
sive areas. A lower ratio of adhesive failure indicates more fragments 

located inside the coating rather than at the interface, thus reflecting 
higher adhesion of the coating to the surface of implant material [132]. 

7. Conclusions and future perspectives 

Zirconia abutments increasingly represent a preferable aesthetic 
alternative. The quality of soft tissue integration is crucial for prognosis 

Fig. 3. Schematic of models and evaluation levels related to soft tissue adhesion around abutments.  

Table 2 
Factors affecting the soft tissue integration of zirconia abutments and the corresponding optimization strategies.  

Factors Recommendation strategies Results 

Surface 
modification 

Surface roughness (still in 
dispute) 

Smooth zirconia surfaces with exposed 
particles 

Soft tissue cell attachment was enhanced.   

Rough surfaces More vertically oriented collagen fibers formation and embedment.  
Surface chemical 
composition 

UV treatment (photofunctionalization) The wettability was increased, surface C/O and C/Zr ratios were decreased, 
and soft tissue cell attachment was enhanced.   

Plasma processing The wettability was increased, hydroxyl (OH) groups were increased, and 
soft tissue cell attachment was enhanced.  

Surface coating Silk fibrorin coating Cell attachment was enhanced, and it served as a versatile platform.   
Polydopamine coating Cell attachment was enhanced, bacterial adhesion was reduced, and it served 

as a versatile platform.  
Surface decontamination Plasma cleaning Surface energy was increased, cell tissue integration was enhanced, and 

bacterial adhesion was reduced.  
Biofunctionalization Fixed RGD tripeptide Cell adhesion was promoted. 

Structure design Connection structure The internal connection methods Mechanical stability was improved and the occurrence of technical problems 
was reduced.  

Geometric form Custom zirconia abutments for simulating soft 
tissue contours 

Biological width and stable Pink Esthetic Score were maintained.  

Marginal adaption Selection of abutments matching with 
implants 

Microgap was reduced.   

Selection of “hybrid abutment” Microgap was reduced.   
Avoidance of abutments with a hexagonal 
connection 

Wearing at the zirconia abutment interface was avoided.  
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and analysis of influencing factors and optimization strategies is of great 
clinical interest. Surface modifications of zirconia abutments focus on 
morphology, wettability and roughness, taking into account surface 
coating construction. Macroscopic design of the connection, geometry 
and marginal adaptation are also influential factors (Table 2)The design 
of zirconia abutment surfaces to promote soft tissue adhesion can be 
considered from the following aspects (Fig. 4):  

1. Promoting the adhesion of HGFs to deposit more collagen; 
2. Improving the adhesion and spreading of keratinocytes by hemi-

desmosome promotion;  
3. Enhancing the quality of soft tissue adhesion by promoting the 

expression of adhesion-related proteins; 
4. Increasing PIE adhesion or the proportion of peri-abutment con-

nective tissues;  
5. Promoting the burial of collagen fibers in the abutment surface in 

vertical and oblique directions to form “rings” to stabilize soft 
tissues;  

6. Blocking inflammatory pathways, decreasing release of pro- 
inflammatory factors, reducing bacterial adhesion and inhibiting 
bacterial growth. 

Current trends are:  

1. Improving the soft tissue integration properties of zirconia surfaces 
through bifunctional or multifunctional coating constructions 
(especially biomimetic coatings);  

2. Use of 3D OMM as a preclinical model instead of monolayer 2D cell 
culture to mimic the soft tissue response to different surfaces through 
interfacial soft tissue morphology analysis. 

Current obstacles to clinical translation are:  

1. Subtractive treatment and cutting processes cause microcracks and 
defects on the zirconia surface;  

2. Modification of the inert zirconia surface to ensure long-term 
stability;  

3. Zirconia fatigue or aging with decreased wettability with storage in 
air [88] and crystalline phase and cellular reaction changes [17, 
186]; 

4. Mismatching of non-standardized custom CAD/CAM zirconia abut-
ments with titanium implants. 

Optimization of the macroscopic and microscopic design of zirconia 
abutment surfaces has great potential to promote soft tissue integration 
but studies are in their infancy and fall short of clinical applications. 
Thus, soft tissue integration around zirconia abutments with variability 
of bacterial plaque biofilm, oral saliva and immune cell microenviron-
ment should be considered in future experimental studies. In addition, 
the question of whether improved adhesion of epithelial cells and fi-
broblasts represents an increase in soft tissue integration on the zirconia 
surface should be clarified. It is hoped that the aesthetic zirconia abut-
ment will have good soft tissue confinement and resist the adhesion of 
plaque biofilm, allowing soft tissue cells to win the race, thus supporting 
the clinical development of zirconia abutments. 
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