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Abstract: Medical device technology develops rapidly, and
the life cycle of a medical device is much shorter than
drugs. It is necessary to evaluate the safety and effective-
ness of a medical device in a timely manner to keep up with
technology flux. Bayesian methods provides an efficient
approach to addressing this challenge. In this article, we
review the characteristics of the Bayesian approach and
some Bayesian designs that were commonly used in med-
ical device regulatory setting, including Bayesian adaptive
design, Bayesian diagnostic design, Bayesian multiregional
design, and Bayesian label expansion study. We illustrate
these designs with medical devices approved by the US Food
and Drug Administration (FDA). We also review several
innovative Bayesian information borrowing methods, and
briefly discuss the challenges and future directions of the
Bayesian application in medical device trials. Our objective
is to promote the use of the Bayesian approach to accelerate
the development of innovative medical devices and their
accessibility to patients for effective disease diagnoses and
treatments.

Keywords: medical device; Bayesian design; Bayesian in-
formation borrowing

Introduction

The Bayesian approach and the frequentist approach are two
mainmethodsused in clinical studydesign anddata analysis [1].
The frequentist approach has been more commonly used in
regulatory setting because of its long history and better under-
stood statistical properties [2]. The Bayesian approach provides
an alternative to the frequentist approach, which combines
prior distribution with the newly observed data through the
likelihood function to obtain the posterior distribution for the
parameter of interest (e.g., the efficacy or safety endpoint) [3].

With the rapid development of innovative medical prod-
ucts, there is an increasing interest in efficient safety and
effectiveness evaluation. Many innovative methods for design
and analysis in medical product clinical studies have been
proposed. Some of them are encouraged by the US Food and
Drug Administration (FDA), for example master protocol tri-
als [4] and complex innovative trial designs [5]. These innova-
tive methods often prefer using the Bayesian approach to the
frequentist approach [6], owing to its flexibility and ability to
borrow existing information to improve the efficiency of clin-
ical studies. In addition, compared to the frequentist approach
(e.g., p-value and confidence interval), the Bayesian approach
has better interpretation because it provides intuitive proba-
bility statements on the parameter of interest, e.g., what is the
probability that the treatment effect reaches the clinically
meaningful values [7]. Consequently, using the Bayesian
approach to improve the efficiency and accuracy of the eval-
uation of innovativemedical products has been a topic of great
interest. At present, there have been more than 200 clinical
trials using the Bayesian approach for study design and anal-
ysis at the University of Texas MD Anderson Cancer Center [8].

Bayesian methods are particularly attractive for evalu-
ating medical device clinical studies. Medical device technol-
ogy develops rapidly, and the life cycle of a medical device is
much shorter than drugs. It is necessary to evaluate the safety
and effectiveness of a medical device in a timely manner to
keep up with technology flux. Moreover, since medical de-
vices typically evolve from previous versions with a similar
action mechanism, clinical data of early versions could pro-
vide valuable experience as prior information borrowing to a
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new version device. In February 2010, FDA issued a guidance
for the use of Bayesian statistics in medical device clinical
trials [9]. There have been 47 medical devices approved by
FDA that relied on the Bayesian design or Bayesian statistics
(Table 1). However, the Bayesian approach have been under-
utilized in other countries, such as China, Japan, etc.

In addition, large-scale real-world clinical data andhigh-
quality completed medical data has been accumulated with
the development of digital collection and storage technology
in the era of modern clinical studies [10]. Numerous data
sources have been established including electronic health
records (EHRs), claims and billing data, product and disease

Table : Medical devices approved by FDA involving the Bayesian approach, –.

Number Medical devices PMA
number

Subject Approved
date

Description of the Bayesian approach

 [] Multi-frequency Impedance Breast Scanner P Radiology .. Bayesian multinomial-logistic model to
combine three clinical study results

 [] Intervertebral Body Fusion Device P Orthopedic .. Bayesian predictive probabilities
 [] Cervical Interbody Fusion System

Instrumentation
P Orthopedic .. Bayesian success criterion and Bayesian

credible intervals
 [] Implanted Mechanical/hydraulic Urinary

Continence Device
P Gastroenterology/

Urology
.. Bayesian hierarchical model

 [] Interactive Wound Dressing P General & Plastic
Surgery

.. Bayesian interim analysis

 [] Intervertebral Cervical Cage P Orthopedic .. Bayesian credible intervals
 [] Collagen Scaffold with Metal Prosthesis P Orthopedic .. Bayesian predictive probabilities
 [] Contraceptive Tubal occlusion device and

delivery System
P Obstetrics/

Gynecology
.. The effectiveness results from the two

studies were combined using Bayesian
statistics

 [] Drug-Eluting Coronary Stent System P Cardiovascular .. Bayesian statistics
 [] Replacement Heart Valve P Cardiovascular .. Bayesian approach deal with missing data
 [] Artificial Cervical Disc System P Orthopedic .. Bayesian design and Bayesian predictive

probabilities
 [] Replacement Heart Valve P/

S
Cardiovascular .. Borrowing historical data and Bayesian

hierarchical model
 [] Iliac Stent P Cardiovascular .. Bayesian non-informative prior
 [] Irrigated Diagnostic/Ablation Catheter and

Accessories
P Cardiovascular .. Bayesian predictive probabilities and pos-

terior probability
 [] Artificial Cervical Disc P Orthopedic .. Bayesian non-informative prior
 [] Bronchial Thermoplasty System P Anesthesiology .. Bayesian superiority design
 [] Intracranial Aneurysm Flow Diverter P Neurology .. Bayesian non-informative prior and

Bayesian credible intervals
 [] Electrosurgical Device P Cardiovascular .. Bayesian adaptive design with interim

monitoring, posterior probabilities, and
credible intervals

 [] Artificial Cervical Disc P Orthopedic .. Bayesian predictive probabilities and
Bayesian credible intervals

 [] Interlaminar Stabilization Device P Orthopedic .. Bayesian interim analysis, Bayesian non-
informative prior, and Bayesian credible
intervals

 [] Endovascular Graft P Cardiovascular .. Bayesian adaptive design
 [] Cardiac Resynchronization Therapy

Pacemaker
P Cardiovascular .. Bayesian adaptive design

 [] Cardiac Resynchronization Therapy
Defibrillator

P Cardiovascular .. Bayesian adaptive design

 [] Artificial Cervical Disc P Orthopedic .. Bayesian logistic model and Bayesian linear
model

 [] Prosthesis, Spinous Process Spacer/Plate P Orthopedic .. Bayesian adaptive design
 [] Left Atrial Appendage Closure System P Cardiovascular .. Bayesian adaptive design
 [] Hyaluronic Acid, Intra-articular P Orthopedic .. Bayesian regression analysis
 [] Sodium Hyaluronate for Injection P Orthopedic .. Bayesian longitudinal analysis
 [] Drug Eluting Coronary Stent System P Cardiovascular .. Bayesian hierarchical model
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registries, and data gathered through personal devices and
health applications. These data sources broaden the scope
for Bayesian information borrowing, bringing both oppor-
tunities and challenges to medical device clinical studies.
In recent years, various types of innovative methods for
information borrowing have been proposed [11]. One type
is concurrent borrowing, which borrows information
adaptively across multiple parallel arms. Another type is
nonconcurrent borrowing, which borrows historical infor-
mation from external data sources.

In this article, we summarize the characteristics of
Bayesian methods, and review Bayesian designs that are
commonly used in medical device regulatory setting,
including Bayesian adaptive design, Bayesian diagnostic
design, Bayesian multiregional design, and Bayesian label
expansion study. Furthermore, we review several innova-
tive Bayesian information borrowing methods in the era of

modern clinical studies and provide guidance on choosing
appropriate methods based on their characteristics (e.g.,
data exchangeability, the type of outcomes, the number of
arms/historical studies). Our objective is to promote the use
of the Bayesian approach to accelerate the development
of innovative medical devices and their accessibility to
patients.

Characteristics of the Bayesian
approach

Borrowing information

One of the most prominent characteristics for the Bayesian
approach is its ability to incorporate prior information

Table : (continued)

Number Medical devices PMA
number

Subject Approved
date

Description of the Bayesian approach

 [] Drug Eluting Coronary Stent System P Cardiovascular .. Bayesian meta-analysis
 [] Reherniation Reduction device P Orthopedic .. Bayesian superiority design
 [] Artificial Cervical Disc P Orthopedic .. Bayesian hierarchical model, Bayesian

predictive probabilities, and Bayesian
credible intervals

 [] Somatic or Germline Variant Detection
System

P Pathology .. Bayesian hierarchical model

 [] Autonomic Nerve Stimulator for Epilepsy P Neurology .. Bayesian hierarchical model
 [] Replacement Heart Valve P Cardiovascular .. Bayesian adaptive design
 [] Somatic or Germline Variant Detection

System
P Pathology .. Bayesian hierarchical model

 [] Acute Coronary Syndrome Event Detector P Cardiovascular .. Bayesian adaptive design and Bayesian
predictive probabilities

 [] Intracranial Neurovascular Stent P Neurology .. Bayesian posterior mean, posterior proba-
bility, and credible intervals

 [] Endobronchial Valve P Anesthesiology .. Bayesian superiority design and Bayesian
multiple imputation for missing data

 [] Coronary Stent P Cardiovascular .. Bayesian non-inferiority design and
Bayesian hierarchical model

 [] Implantable Impulse Generator P Cardiovascular .. Borrowing historical data
 [] Super Saturated Oxygen Therapy P Cardiovascular .. Borrowing historical data and Bayesian

hierarchical model
 [] Carotid Sinus Stimulator P Cardiovascular .. Bayesian adaptive design
 [] Lidocaine/Epinephrine Iontophoresis and

Automated Tympanostomy Tube Insertion
System

P Ear Nose & Throat .. Bayesian hierarchical model

 [] Intracranial Aneurysm Flow Diverter P Neurology .. Bayesian analysis, Bayesian non-
informative prior, and Bayesian credible
intervals

 [] Drug-Eluting Peripheral Transluminal Angio-
plasty Catheter

P Cardiovascular .. Bayesian predictive model

 [] Implant, resorbable, for articular osteochon-
dral repair

P Orthopedic .. Bayesian analysis

Based on the Summaries of Safety and Effectiveness (SSEDs) of the Premarket Approvals (PMA) Database.
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through the specification of prior distribution. If prior in-
formation is appropriately used, the Bayesian approach can
substantially reduce the sample size and study duration.
Medical devices develop more rapidly than drugs. The prior
information comes naturally from the study of previous
versions of the device with similar actionmechanisms or the
study accomplished in other regions. Borrowing information
have been particularly successful to assess effectiveness
and safety of cardiovascular devices [12], owing to their fast
update speed. There have been 3 cardiovascular devices
approved by FDA through the Bayesian information
borrowing methods (Table 1). For example, to assess the
primary effectiveness endpoint (i.e., the change in peak V02
at 24 weeks from baseline) of an implantable impulse
generator [13], a Bayesianmodel was employed to construct
prior distribution obtained from a previous study (FIX-HF-5)
229 patient subgroup. The posterior probabilities were >0.91,
meaning that there is a probability of 91 % that the device
groupwas superior to the control group. In late section, wewill
review some commonly used Bayesian information-borrowing
methods.

The likelihood principle and predictive
distribution

The likelihood principle is not only the foundation of the
frequentist approach but also the core of the Bayesian
approach. This principle says that all information about the
endpoint obtained from a clinical study is included in the
likelihood function [14, 15]. Therefore, the posterior distri-
bution, obtained by combining the prior distribution with
the likelihood, should be the basis for all Bayesian inferences
about the parameters.

The posterior distribution renders the Bayesian
approach great flexibility in study design. Under the
Bayesian paradigm, the predictive distribution of the
future observations can be generated by first sampling
model parameters from their posterior distribution and
then, conditional on the parameters, sampling the future
observations from the likelihood function. In contrast,
for the frequentist approach, the probability of the future
observations can only be obtained by fixing the model
parameters, which ignores the uncertainty associated with
the parameter estimation. Posterior and predictive distri-
butions have been widely used in Bayesian clinical studies,
such as making go/no-go decisions, and using covariates to
predict clinical outcomes [16, 17]. For example, the Bayesian
optimal phase 2 (BOP2) design [18], which makes go/no-go
decision based on posterior probabilities, have been used
in over 100 on-going clinical trials [19]. There have been 16

medical devices approved by FDA through the Bayesian
predictive distribution (Table 1). For example, a Bayesian
predictive modeling was used to estimate the 3-year mor-
tality rate and compared to a performance goal (PG) of
12.9 % in a Drug-eluting peripheral transluminal angio-
plasty catheter clinical study [20].

Exchangeability

The Bayesian approach often assumes that participants
within a study are exchangeable, and the studies are also
exchangeable with each other [21]. If the probability of
observing any set of endpoints within these participants,
subgroups, or studies is invariant to any reordering,
these participants, subgroups, or studies are considered
exchangeable. In this case, the data from these studies
could be directly combined. However, this is often not the
case in practice. Observations from different studies are
often not exchangeable due to different regions, different
centers, or different researchers, even though the protocols
seem similar with each other. Moreover, when the new
version of a device is expected to be superior to previous
versions, the current study is typically not exchangeable
with previous studies. Therefore, it is necessary to consider
conducting participants regularization, choosing appro-
priate borrowing information methods, and quantifying
the amount of borrowing. In addition, the current study
and previous studies may not be exchangeable due to dif-
ferences in baseline covariates, although they might be
exchangeable after conditioning on the covariates [22].

Bayesian designs inmedical devices

Bayesian adaptive design

The FDA guidance discussed two major approaches: one
is borrowing information from previous studies, which
is introduced in the section of “Borrowing information”;
another is to use Bayesian adaptive design [9]. Bayesian
adaptive study is usually designedwith no prior information
but rather relying on accumulating data collected within the
current study to potentially make preplanned changes dur-
ing the course of the study. For example, during a Bayesian
adaptive study, the sample size could be modified according
to accumulating data while maintaining the targeted power,
which may result in shorter study duration and smaller
sample size [23]. This sample size re-estimation can be based
on the predictive distribution, accounting for not only the
subjects already enrolled in the trial, but also the subject yet
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to be recruited. Moreover, Bayesian adaptive design could
construct likelihood predictive models to predict endpoints
at later time points (unobserved outcomes) based on the
information obtained at earlier follow-up time points
(observed outcomes). The primary outcomes using time-
dependent intermediate ones are usually modeled by
piecewise exponentials [24].

Bayesian adaptive design is particularly suitable for
cardiovascular and orthopedic device assessment [25–28].
These kinds of medical device usually have a slow accrual
rate relative to the patient follow-up so that is very expen-
sive to conduct. Therefore, there are adequate time to pre-
dict and make adaptations based on the several interim
follow-up measurements to make effort to shorten the study
duration and reduce the sample size. There have been 9
medical devices approved by FDA through the Bayesian
adaptive design (Table 1). The safety and effectiveness
assessment of an electrosurgical ablation system was a
typical Bayesian adaptive design, which fully used the
Bayesian approach to evaluate primary outcomes, including
interim analysis, sample size re-estimation, and final deci-
sion [27]. The minimum total sample size was 50 and the
maximum was 100. At each interim analysis, the predictive
probabilities ofmeeting the primary safety and effectiveness
endpoint were calculated using information from the sub-
jects with known outcomes, in combination with a beta-
binomial distribution for modeling the transition from
either baseline or 3-month outcomes to the 6-month out-
comes. Whether to stop patient accrual, stop the study for
futility, or continue enrolling subjects was decided by the
predictive probabilities.

Bayesian diagnostic design

The Bayesian approach could also be applied in the
assessment of medical diagnostic devices [29]. Under the
framework of Bayesian diagnostic design, the disease
prevalence is considered as prior probability (pre-test
probability), and the predictive value of the test is consid-
ered as posterior probability (post-test probability) [30].
The probability of the positive test results in truly positive
subjects is translated to sensitivity. Similarly, the proba-
bility of the negative test results in truly negative subjects is
translated to specificity. Furthermore, the positive predic-
tive values (PPV) and negative predictive values (NPV) of
the device could be defined by prevalence, sensitivity, and
specificity. Indeed, Bayesian diagnostic design is still based
on the theory of using prior distribution to predict poste-
rior distribution.

Bayesian multiregional design

The International Conference on Harmonization (ICH)
Guideline E5 (1998) proposed multiregional clinical trial
(MRCT) design for accelerating the development of inno-
vative drugs and medical devices [31]. MRCT design has
advantages of faster enrollment rate, less cost, and
providing an opportunity of simultaneous multiregional
registration. However, the overall effect may not be
consistent from region to region due to the variability
among regions. It is difficult to conduct statistical evalua-
tion of the safety and effectiveness for the intended popu-
lation, especially the region by treatment interaction
without statistical significance [32, 33]. Compared to drugs,
medical devices tend to be with smaller sample size. MRCT
of medical devices are often planned with sufficient sub-
jects to indicate an overall effect in the primary endpoint,
thus there may not be adequate power to indicate a sta-
tistically significant result at the usual significance level
within a specific region. The above problems in effect sta-
tistical evaluation could not be solved well by the fre-
quentist approach.

Bayesian hierarchical model could borrow information
across different layers, which is appropriate to assess the
overall and regional treatment effects and determine the
optimal sample size in multiregional medical device study.
Chen evaluated regional treatment effects in amultiregional
trial through a Bayesian approach [34]. The overall treat-
ment effect was used as prior and conditioned on the
observed regional treatment effect to construct the posterior
distribution of the regional treatment effect. Furthermore,
Bayman discussed the statistical operation and sample size
for multiregional clinical studies under a Bayesian hierar-
chical model [35]. Compared to the frequentist approach
(i.e., conventional subgroup analysis), the use of Bayesian
hierarchical model in multiregional studies is more power-
ful because of its ability of borrowing information across
different regions, especially existing regional variability.
However, the larger the variation the less is the borrowing of
information across regions [36]. In addition, the possible
underlying caused should be analyzed carefully, when the
significant differences exist across regions. The particular
regionswith large heterogeneitymight be excluded from the
total analysis.

Bayesian label expansion study

There is a growing interest in leveraging real-world
data (RWD) in medical product development. Real-world
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evidence (RWE) has been used for registrations since the
FDA issued the guidance about using real-world evidence in
regulatory decisions for medical devices [37]. One of the
applications of RWE is to conduct label expansion studies.
The Bayesian approach was usually used in these studies
benefiting from its ability of borrowing safety information
from registered indication to the new indication. That is to
say, safety data from real-world use of the device for the
approved indication is used to build a prior distribution
for the safety assessment of the new indication. There have
been several successful experiences in medical device label
expansion studies by the Bayesian approach [20, 38].
For example, a drug-eluting coronary stent to the new
indications of diabetes patients borrowing information from
four real-world databases through a Bayesian hierarchical
model [20]. With the rapid speed of accumulating RWD,
Bayesian label expansion studies will be more and more
widely used in the future registration.

Bayesian FDA submission

Medical devices approved by FDA involving the Bayesian
approach from 1998 to 2022 is shown in Table 1. The list is
based on the Summaries of Safety and Effectiveness
(SSEDs) of the Premarket Approvals (PMA) Database. In
general, there have been 47 medical devices approved
by FDA which relied on the Bayesian design or Bayesian
statistics. Wherein 15 medical devices were approved
during 1998–2010. An additional 32 medical devices were
approved since FDA published the guidance about the use
of Bayesian statistics in medical device clinical trials in
2010. There were 19 (40.4 %) medical devices belonging to
cardiovascular and 15 (31.9 %) medical devices belonging
to orthopedic because the Bayesian approach could make
these medical devices with slow accrual rates and long
follow-up much more flexible. Bayesian adaptive study
(9, 19.1 %) was the most commonly used designs in medical
device clinical trials.

Bayesian information borrowing
methods in the era of modern
clinical studies

With the development of digital collection and storage
technology in the era of modern clinical studies, abundant
data sources have been formed and broaden the scope for
information borrowing in the Bayesian approach [10]. The
exchangeabilities among patients and studies are the basic

principle of Bayesian information borrowing. However, the
heterogeneity among the current study and different data
sources could not be avoided. In recent years, many inno-
vative information borrowing methods have been derived
from traditional methods to make effort to deal with the
heterogeneity. We summarize these information borrowing
methods according to the concurrent borrowing strategy
and nonconcurrent borrowing strategy (Table 2).

Concurrent borrowing methods

Concurrent borrowing is applied in the master protocol. It is
usually used in the study design with multiple parallel arms,
such as basket trial design and platform trial design, to
borrowing information within multiple sub studies. These
arms are of equal importance and are analyzed simulta-
neously without a chronologic order. Bayesian hierarchi-
cal model (BHM) and its extensions and multisource
exchangeability models (MEMs) are commonly used in
concurrent borrowing. The I-SPY2 trial was designed as a
platform trial that used a BHM to adaptively borrow infor-
mation between running arms [79].

Bayesian hierarchical model and its extensions

Bayesian hierarchical model (BHM) was first proposed by
Thall et al. [80], using variance in a hierarchical model to
control the extent of borrowing (Table 2). BHM assumes the
interested parameters in different trials comes form same
normal distribution in which the variance τ reflects the
heterogeneity. Specifically, let θj denote the interested pa-
rameters from arm j, j=1, …, J.j follows the normal distri-
bution with mean μ. A standard hierarchical model is:

θj∼N (μ, τ2)

μ∼N (0, 103)

τ∼HN(1)
HN(․) Denotes half-normal distribution. τ is the hetero-

geneity measurement parameter of different arms which
controls the amount of borrowing from all J arms. Larger τ
represents larger heterogeneity, so that the less information
would be borrowed. The posterior distribution of τ is
updated through the Bayesian approach.

The extensions of BHM focus on the specification of
τ and which arms should be included into borrowing.
Calibrated Bayesian hierarchical model (CBHM), Bayesian
hierarchical classification and information sharing (BaCIS),
Bayesian cluster hierarchical model (BCHM), and clustered
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Bayesian hierarchical model (CLBHM) are the four
commonly used extensions of BHM (Table 2).

Calibrated Bayesian hierarchical model (CBHM) was
first proposed by Chu et al. [81]. CBHM uses the heteroge-
neity measurement function to determine the extent of in-
formation borrowing, instead of specifying distribution of
variance τ. Therefore, CBHM has the advantage of control-
ling type I error inflation, especially in the studywith a small
amount of arms.

Bayesian hierarchical classification and information
sharing (BaCIS) was first proposed by Chen et al. [82].
Compared to CBHM, BaCIS clusters the arms adaptively with
bipartition instead of calculating the heterogeneity across all
arms directly. BaCIS uses a latent variable γ to divide arms
into two categories: effective cluster and ineffective cluster.
Then BHM is used to borrow informationwithin each cluster.

Bayesian cluster hierarchical model (BCHM) was first
proposed by Chen et al. [83]. Compared to BaCIS, BCHM uses

Table : Descriptions of commonly used Bayesian information borrowing methods.

Information
borrowing

Methods Features

Concurrent borrowing
() BHM and its extensions
BHM Variance in hierarchical model reflects heterogeneity and estimate it using fully Bayesian method
CBHM Variance is a function of heterogeneity measurement
BaCIS Dichotomous cluster between arms and borrow information within each cluster
BCHM Nonparametric clustering method is used to dynamically determine the number of clusters
CLBHM Treatment arms are clustered into active and inactive clusters based on the posterior probability of the treatment

effect, and then BHM is applied to each cluster for information borrowing
() MEMs
MEMs Specify all possible pairwise exchangeability models among arms by a symmetric matrix and weight above models

Nonconcurrent borrowing
() PP and its extensions
PP Downweigh the historical trial by a prespecified power α
MPP α follows a vague prior and is estimated by combined data
CPP α is a function of heterogeneity measurement
() CP
CP Parameter in the current trial centers around the historical trial
() Elastic prior
Elastic prior Inflating variance uses an elastic function
() MAP and its extensions
MAP Parameters in historical trials and the current trial come from the same normal distribution with variance reflecting

heterogeneity
RMAP A hybrid prior is constructed by weighted non-informative prior and MAP
() SAM
SAM The mixing weight is determined by likelihood ratio test statistics to favor the informative (non-informative) prior

component
() MEMs
MEMs Specify all possible pairwise exchangeability models among trials by a vector and weight above models
() PS-integrated priors
PS-PP Trimming and stratification by PS; α is specified by a similaritymeasure between PS distributions of the patients in the

current study and the external study
PS-MAP Trimming and stratification by PS; ESS is adjusted based on a similarity measure between PS distributions of the

patients in the current study and the external study
PS-RMAP Trimming and stratification by PS; a hybrid prior is constructed by weighted non-informative prior and MAP

BHM, Bayesian hierarchical model; CBHM, calibrated Bayesian hierarchical model; CLBHM, clustered Bayesian hierarchical model; BaCIS, Bayesian
hierarchical classification and information sharing; BCHM, Bayesian cluster hierarchical model; MEMs, multisource exchangeability models; PP, power
prior; MPP, modified power prior; CPP, calibrated power prior; CP, commensurate power prior; MAP, meta-analytic-predictive prior; RMAP, robust
meta-analytic-predictive prior; SAM, self-adapting mixture prior; PS, propensity score; PS-PP, propensity score-integrated power prior; PS-MAP,
propensity score-integrated meta-analytic-predictive prior; ESS, effective sample size; PS-RMAP, propensity score-integrated robust meta-analytic-
predictive prior.
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non-parametric Dirichlet process G to adaptively and
dynamically determine the numbers of clusters instead of
fixed two clusters. Therefore, BCHMcould bring information
more flexibility.

Clustered Bayesian hierarchical model (CLBHM) was
first proposed by Jiang et al. [84]. This approach first clus-
ters treatment arms into active and inactive clusters based
on the posterior probability of the treatment effect, and
then apply BHM to each cluster for information borrowing.
CLBHM is simple to implement, and often yields better and
more robust performance than more complicated BaCIS
and BCHM methods [84].

Multisource exchangeability models

Multisource exchangeability models (MEMs) were first
proposed by Hobbs et al. in the scenario of multiple parallel
arms existing [85], which specify all possible pairwise
exchangeability models among arms by a symmetric matrix
and weight above models (Table 2). The posterior estimate is
the average of allmodels inwhich theweights are adaptively
determined according to the similarity between arms.

Nonconcurrent borrowing methods

In the era of modern clinical studies, it has become a new
trend to use large-scale real-world clinical data and high-
quality completed medical data as external data into clin-
ical studies. Nonconcurrent borrowing incorporates his-
torical information from external data into the design of
the current study, which offers the possibility of substan-
tially reducing sample size. The paradigm of nonconcur-
rent borrowing only has one primary study, and others
are considered as supplementary studies to provide his-
torical information. Historical information is extracted to
construct informative prior, which is further combined
with the likelihood function of the current data to make
inference and study decisions. Power prior (PP), commen-
surate prior (CP), elastic prior, meta-analytic-predictive
prior (MAP), self-adaptive mixture (SAM) prior, and
multisource exchangeability models (MEMs) are examples
for nonconcurrent borrowing. In addition, the innovative
propensity score (PS)-integrated priors have been pro-
posed, which are considered as an efficient method to deal
with the heterogeneity within patient-level covariates.

Power prior and its extensions

Power prior (PP) was first proposed by Ibrahim and Chen
et al. [86]. Let H denote the historical data, θ denote the

parameter of interest, and π(θ) denote a noninformative
prior before accounting for H. PP is constructed by raising
the likelihood function of historical data to the pre-specified
power α (Table 2):

π(θ|H, α)∝ L(θ|H)απ(θ)

α lies between 0 and 1 and isfixed in the PP approach, which
represents the extent of borrowing from historical data.
α=1 represents complete borrowing (no discounting), and
α=0 represents no borrowing (complete discounting). For
example, the data of 686 subjects from an approved
placental immunoassay diagnostic device for spontaneous
preterm delivery was reanalyzed by leveraging 511 prior
subjects in the PP approach [87, 88]. The posterior mean of α
was 0.216 in which 111 prior subjects was borrowed. Finally,
the posteriormean of sensitivity and specificity were similar
but more precise than the estimates without borrowing.

In practice, it is usually difficult to pre-specify an
appropriate value for α. Therefore, several extensions of PP
have been proposed to determine the value for α. Modified
power prior (MPP) and calibrated power prior (CPP) are the
two commonly used extensions of PP (Table 2).

Modified power prior (MPP) was first proposed by Duan
et al. [89]. Compared to PP, α in MPP is specified as a distri-
bution instead of a specific value. The prior distribution π(α)
is usually specified as non-informative prior or vague prior.
Therefore, the posterior distribution is mainly estimated by
combined data of historical study and current study. MPP
belongs to a data-driven approach instead of subjective
determination.

Calibrated power prior (CPP) was first proposed by Pan
et al. [90]. Compared to PP, α in CPP is specified as a function
which could measure the difference between historical
study and current study. CPP could control type I error
effectively, especially inter-study heterogeneity existing.
Indeed, CPP also belongs to a data-driven approach which
could dynamically borrow information based on similarity
of historical data and current data.

Commensurate prior and its extensions

Commensurate prior (CP) was first proposed by Hobbs
et al. [91]. Compared to PP, CP uses a commensurability
parameter τ2 to control the extent of borrowing from his-
torical data instead of α (Table 2). The interested parameter θ
of the current data is assumed following normal distribution
and centered on the corresponding parameter θ0 of histor-
ical data. Indeed, the commensurability parameter τ2 is the
variance which measures the heterogeneity between his-
torical study and current study:
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π(θ|τ)∝ N(θ
⃒⃒⃒
⃒θ0, τ2)L(θ0|D)π(θ0)

τ2 is estimated by historical data and with smaller τ2 indi-
cating more extent of borrowing from historical data.

The extensions of CP could also incorporate dynamic
borrowing, which is usually used to optimize the number of
subjects randomized to a current control group by assess-
ing the similarity of current control with the historical
control [92].

Elastic prior

Elastic prior was first proposed by Jiang et al. [93]. In this
approach, a full-information prior is first constructed as the
posterior distribution of θ based on historical data H as
follows,

π(θ|H)∝ L(θ|H)π(θ).
The elastic prior is obtained by discounting π(θ|H), via

inflating its variance, by an elastic function g(T ) such that
more/less information will be borrowed when the current
data andhistorical data are similar/dissimilar. The similarity
measure T can be t-test statistic for continuous endpoints
and chi-squared test statistic for binary endpoints. Through
the use of the elastic function, the elastic prior proactively
controls the information borrowing based on the similarity
between the current data andhistorical data, thus it achieves
more accurate dynamic borrowing with better type I error
control than PP and CP.

Meta-analytic-predictive prior and its extensions

Meta-analytic-predictive prior (MAP) was first proposed by
Neuenschwandera et al. [94], which uses the basic idea of
meta-analysis (Table 2). MAP assumes parameters from
multiple historical studies and the current study following
the same normal distribution:

π(θ, θ1,…, θH |H)∝ N(μ, τ2)L(μ, τ2
⃒⃒⃒
⃒H)π(μ)π(τ2)

τ2 is the common variance of total studies, including all
historical studies and the current study. Therefore, the
posterior estimation is sensitive to the heterogeneity
between studies when the number of historical studies is
small.

Robust meta-analytic-predictive prior (RMAP) is the
commonly used extension of MAP (Table 2), which was first
proposed by Schmidli et al. [95]. Compared to MAP, RMAP
leads into a non-informative prior to construct a hybrid
prior, so that the posterior estimation ismore robust. Indeed,

RMAP is the weighted average of non-informative prior and
MAP.

Self-adapting mixture prior

One major limitation of RMAP is that it requires the speci-
fication of the mixture weight to represent how likely that
the historical data are exchangeable to the current study
data, which unfortunately is typically unknown at the study
design phase. Yang et al. proposed the self-adapting mixture
(SAM) prior to address this issue [96], which takes the form a
mixture of informative prior π(θ|H) and noninformative
prior π(θ):

πSAM(θ) = wπ(θ|H) + (1 − w)π(θ).
The SAM prior determines the mixing weight w using

likelihood ratio test statistics to favor the informative (non-
informative) prior component when there is little (sub-
stantial) evidence of prior-data conflict. Thus, it achieves
more accurate and robust dynamic information borrowing
than RMAP. SAM priors are data-driven, avoiding selection
bias and potential data dredging inherent in fixed-weight
mixture priors, thereby lowering the barrier for regulatory
acceptance of borrowing external historical data. In addi-
tion, it seamlessly handles one or multiple external studies.

Multisource exchangeability models

Multisource exchangeability models (MEMs) were first
proposed by Kaizer et al. in the scenario of multiple het-
erogeneous studies existing [21], which cold adaptively
select homogeneous trials and borrow information form
them among multiple studies. MEMs assume several
exchangeable models between historical studies and the
current study, and posterior distribution is estimated by
model averaging.

Propensity score-integrated priors

In the era of modern clinical studies, the abundant data
sources bring both opportunities and challenges. On the one
hand, these data sources could support numerous clinical
studies both as main data and external prior data to accel-
erate research progress. On the other hand, the heteroge-
neity within study-level and patient-level makes evidence
synthetize and assess difficultly. The Bayesian approach has
gained more attention due to its flexibility in calibrating
uncertainty and handling data heterogeneity, and its
inherent updating process. We have already summarized
commonly used Bayesian information borrowing methods
in the previous part of this paper. However, the above
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methods almost focus on dealing with the heterogeneity
within study-level. In practice, patient-level covariates are
different among different data sources leading to heteroge-
neity in efficacy, especially in nonconcurrent scenarios with
a large time span. Propensity score (PS) is considered as
a powerful tool in causal inference which is used as a
balancing score in various ways to adjust for covariates [97].
PS methodology combines Bayesian priors has been pro-
posed and become a new emerging external control
borrowing strategy in a regulatory setting. Theoretically,
PS-integrated prior could not only exert the advantages from
various Bayesian models but also minimize bias from the
external data. Examples in previous studies and FDA’s point
of view indicated that PS-integrated prior have the potential
to share information among data sources, evaluate the un-
certainty of model, provide more reliable estimates in the
scenarios of small sample size, and improve the efficiency of
effect estimation compared with commonly used noncur-
rent borrowingmethods [98–101]. PS-integrated power prior
(PS-PP), PS-integrated meta-analytic-predictive prior
(PS-MAP), and PS-integrated robust meta-analytic-predictive
prior (PS-RMAP) are the three innovative methods proposed
under the framework of PS combining with Bayesian
(Table 2).

PS-integrated power prior (PS-PP) was first proposed by
Wang et al. for a single-arm study to leverage external
RWD [102]. PS is used to pre-select a subset of RWD con-
taining patients that are similar to those in the current study
according to covariates, and to stratify the selected patients
together with those in the current study into more homo-
geneous strata. This process is called “trimming”. Then the
power prior is applied in which the power parameter α is
specified for each strata derived from a similarity measure
between PS distributions of the patients in the current study
and the external data. Finally, stratum-specific posteriors
are combined to obtain the posterior distribution for the
parameters of interest. It is worth noting that the PS-PP
approach could be applied in the two-stage outcome-free
design in a regulatory setting. In the design stage, PS
modeling, PS estimation, trimming, stratification, and the
specification of α should be completedwithout outcome data
in sight. In the analysis stage, the PS-PP is constructed and
the posterior distribution is derived from the PS-PP and the
outcome data in the current study. This two-stage outcome-
free design ensures the validity and integrity of the clinical
study [103].

The PS-PP approach has supported an approval of a
new indication for an already approved cardiovascular
device [102]. The data from the patient registries could be
used as an external source of RWD in view of off-label usage
for the targeted indication in the real world. The outcome is

the incidence of adverse events (AE) θ in a year. If the pos-
terior probability of θ<36 % was greater than 0.95, the study
would be determined as successful. In the design stage, PS
was calculated using the study indicator and 17 baseline
covariates from 290 patients in the current study and 987
external patients. After trimming, 290 current patients and
941 external patients were included and divided into five PS
strata. The similarity between current patients and external
patients in each strata was evaluated through the over-
lapping of their PS distribution. In the analysis stage, the
posterior distribution was derived combining the outcome
of the current study. The posterior probability of θ<36 % is
96.9 %, which indicated meeting the success criterion.

Furthermore, Lu et al. extended the PS-PP approach to
augment the control arm by incorporating multiple external
data sources instead of single-arm study design [104]. In
addition, Liu et al. proposed the PS-integratedmeta-analytic-
predictive prior (PS-MAP) approach to deal with large
number of external data sources borrowing [105], which has
the similar process with the PS-PP approach. Compared to
PS-PP, the similarity measure between PS distributions of
the current patients and external patients dynamically
adjusts the prior effective sample size (ESS) in PS-MAP
instead of the power α. However, the PS-PP and PS-MAP
approach mainly deal with the heterogeneity between the
current study and the external data sources. The heteroge-
neity between different external data sources is ignored. Zhu
et al. used PS to stratify within each data sources instead of
stratifying within combined data in the PS-PP and PS-MAP
approach, and added non-informative prior into MAP to
establish the PS-integrated robust meta-analytic-predictive
prior (PS-RMAP) approach [106]. Simulation assessments
indicated that the PS-RMAP approach was more efficient
and less biased than the currently available information
borrowing methods.

Application scenarios of information
borrowing methods

Application scenarios of information borrowing methods
have been the hot topic discussed by researchers all over the
world. The recommendation for application scenarios on
borrowing information methods are shown in Figure 1.

Concurrent borrowing methods are useful for appli-
cations involvingmultiple parallel arms, such as basket and
platform trials. To choose an appropriate concurrent
borrowing method, we should consider exchangeability,
statistical performance, types of outcomes, and the number
of effective arms. When all arms are homogeneous, the
BHM approach is recommended because it shows greater
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power than other methods. In practice, it is more common
that arms are heterogenous or could not be determine the
exchangeability. CBHM with a function of heterogeneity
measurement, and CLBHM, BaCIS and BCHMwith dynamic
clustering are recommended. CBHM shows better perfor-
mance in controlling type I error, whereas CLBHM, BaCIS
and BCHM often yield higher power. In addition, when the
outcome is ordinal, BCHM tends to gain greater power.
MEMs are recommended when the majority of arms are
expected to be effective. In terms of balancing type I error
and power gain, CLBHM often outperforms BaCIS, BCHM
and MEMs, and also is much easier to implement.

Nonconcurrent borrowing methods are appropriate for
applications intended to borrow information from external
data or supplementary trials. Again, to choose an appro-
priate method, we should consider exchangeability, statis-
tical performance, and the number of historical trials. When
heterogeneity exists, PP and MAP lead to substantial type I
error inflation. In this case, their extensions should be
considered to obtain better type I error control. For example,

CPP provides a stricter criterion for controlling type I error
which is recommended to apply in bioequivalence trial. CP
and RMAP placemore weight on power gains. SAM prior has
the best overall performance in improving power and con-
trolling type I error, due to its ability to adaptively adjust the
mixture weight based on the prior-data conflict. In addition,
when the number of historical trials is small, it is not
appropriated to apply MAP and RMAP, and MEMs should be
considered.

Moreover, when patient-level covariates are different
among different data sources, the PS-integrated priors
approach are recommended. PS-MAP and PS-RMAP are
recommended to deal with multiple external data sources
because of the ability of type I error controlling [16, 17].
In particular, PS-RMAP considers heterogeneity not only
between the current study and the external data sources
but also between the external data sources themselves.
However, the simulation study of Lu et al. showed that their
extended PS-PP approach could have better performance
than others in type I error controlling when multiple

Figure 1: Application scenarios of the Bayesian information borrowing methods. BHM, Bayesian hierarchical model; CBHM, calibrated Bayesian
hierarchical model; CLBHM, clustered Bayesian hierarchical model; BaCIS, Bayesian hierarchical classification and information sharing; BCHM, Bayesian
cluster hierarchical model; MEMs, multisource exchangeability models; PP, power prior; MPP, modified power prior; CPP, calibrated power prior;
CP, commensurate power prior; MAP, meta-analytic-predictive prior; RMAP, robust meta-analytic-predictive prior.
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external data sources exist [102]. Therefore, the more
comprehensive simulation studies are needed to assess the
application scenarios of these available PS-integrated
approaches.

Finally, to choose and use any borrowing information
method,we should conduct comprehensive simulation study
to evaluate its operating characteristics, e.g., the type I and
type II error rates [8]. It is critical to balance power gain and
type I error control. Justifying the choice of the borrowing
information also requires a great deal of communication
between the medical device sponsors and the regulatory
agency.

Bayesian statistical software

Bayesian statistical software includes R, Stan, SAS,WinBUGS,
Python and et al. R is more available and updates more
timely than other software. Moreover, R has the interface to
Stan and WinBUGS that provides more comprehensive and
friendly operation to researchers. Therefore, R has become
the most commonly used software in practice. Table 3
summarizes the available R packages and their functions.
Stan is for Bayesian modeling and inference that primarily
uses the No-U-Turn sampler (NUTS) to obtain posterior
simulations. The R package RStan provides the function of
Stan allowing one to conveniently fit Stanmodels fromR and
access the output, including posterior inferences and inter-
mediate quantities such as evaluations of the log posterior
density and its gradients [107]. The R package SAMprior can
be used to dynamically borrow information from single to

multiple external RWDs based on the SAM prior
method [96]. The R package psrwe [112] and RBesT [113]
focus on the PS-integrated methods for incorporating
external RWD in clinical studies and synthesize the
evidence.

Discussion

Current situations

The FDA and Bayesian statisticians have been working
collaboratively to develop Bayesian methodologies for
medical device clinical studies since 1998. Nowadays, the
Bayesian approach for design and analysis of medical
device clinical studies has increased dramatically. This
paper summarizes Bayesian designs which are commonly
used in the medical device regulatory setting, and reviews
several Bayesian information borrowing methods in the
era of modern clinical studies and discusses their appro-
priate application scenarios.

The Bayesian approach provides greater flexibility in
study designs compared to the frequentist approach.
Bayesian adaptive study design could adjust design elements
(e.g., go/no-go, sample size, and population) based on the
accumulating data. There have been 9 medical devices with
the Bayesian adaptive design acquiring the FDA approval
according to the PMA Database since 1998, mainly in car-
diovascular and orthopedic regions [25–27, 57–59, 61, 68, 74].
They tended to have slow accrual rate but need long follow-
up, which is particularly suitable to use the Bayesian adap-
tive design to reduce sample size and shorten the length of
studies. Moreover, the Bayesian approach also has great
potential in multiregional studies. The regional variability
could be captured by the Bayesian hierarchical model, while
allowing information borrowing across regions. This might
be difficult to achieve by the frequentist approach. In addi-
tion, with the rapid accumulation of RWD in the era of
modern clinical studies, the Bayesian approach has been
used for label expansion benefiting from its borrowing
safety information from registered indication [20, 38]. The
above applications in the Bayesian approach have unprec-
edentedly facilitated medical device registrations.

With the establishment of large cohorts and databases
in the era of modern clinical studies, abundant data sources
provide opportunities to borrow information to improve
trial efficiency. In this paper, we discuss several commonly
used information borrowing methods in both concurrent
and nonconcurrent borrowing and their appropriate appli-
cation scenarios. The specification of the borrowing strength
parameter is challenging for many information borrowing

Table : Description of the available R packages and their functions.

R packages Functions Access

RStan Interface to software Stan Stan development
Team []

RWinBUGS Interface to BUGS Gelman et al. []
mcmc Simulating continuous distributions of

random vectors using Markov chain
Monte Carlo (MCMC)

Geyer et al. []

MCMCpack Containing functions to perform
Bayesian inference using posterior
simulation for a number of statistical
models

Martin et al. []

CODA Output analysis and diagnostics for
MCMC

Plummer et al. []

SAMprior Dynamical borrowing information
from single to multiple external RWDs
based on the SAM prior method

Yang et al. []

psrwe PS-integrated methods for incorpo-
rating external RWDs in clinical studies

Wang et al. []

RBesT Bayesian evidence synthesis tools Weber et al. []
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methods. Numerous researchers are developing innovative
methods to achieve more dynamic or adaptive information
borrowing to offer better bias and type I error control. From
the point of view of regulator, empirically specifying and
data driven are the two common ways to determine the
borrowing strength parameter. In the empirically specifying
approach, communication with clinical investigators and
regulator or reference to published studies could obtain the
recommended values. In the data driven approach, estima-
tion according to the heterogeneity [85] or model averaging/
selection to fit the value [114] may be considered. As for the
choice of information borrowing methods, though we
discuss their recommended application scenarios, sufficient
simulations are also needed to examine the statistical per-
formance to provide the methodology basis for the discus-
sion with regulator.

There are several limitations in the Bayesian approach.
The pure Bayesian statistics do not include frequentist
operating characteristics, such as type I error and power.
Therefore, it is challenging to justify a Bayesian study in the
regulatory setting. In practice, the Bayesian approach is used
as an expansion tool for the frequentist approach in most
cases. Hybrid Bayesian is based on the principles of Bayesian
statistics, and combined with the evaluation of frequentist
statistical operating characteristics. It could realize flexible
design and analysis, and ensure more patients receiving
effective treatments from an ethical perspective without
sacrificing the integrity of clinical studies and the necessary
statistical operating characteristics.

Future and challenges

With the rapid development of medical devices, there has
been an increase in the use of Bayesian designs and analysis
for regulatory purposes.

The Bayesian approach integrated with propensity
score (PS) will play an important role in real-world evidence
(RWE) synthesis. It is very common that patient covariates
are different in different studies or databases. PS-integrated
prior could not only exert the advantages of information
borrowing from Bayesian models but also minimize bias
frommultisource external data. Researchers are developing
various methods that integrated PS appropriately into
informative prior based on the available methods [14]. With
the development of real-world study (RWD) in the era of
modern clinical studies, the role of the Bayesian approach
integrated with PS on the bias controlling will receive more
and more attention.

The Bayesian approach has the potential use in themock
trial design under the virtual patient framework. In 2015, the
Medical Device Innovation Consortium (MDIC) virtual pa-
tientworking group cooperatedwith FDA stating themethod
of assessing fatigue fracture in a hypothetical new ICD lead
by a mock trial design. Virtual patients were generated from
in-silico models of lead failures [115], and prior information
was provided by phantoms [116].

Another potential use of the Bayesian approach is
incorporating with artificial intelligence (AI)/machine
learning (ML) in diagnostic device clinical studies. Compared
to almost non-Bayesian ML models, Bayesian ML models
could automatically provide uncertainty quantification of
model output through the posterior distribution [117].
However, the current computational algorithms for fitting
fully Bayesian ML models have not been satisfactory [118].
Thiswill be the next research direction of the relative region.

The National Institutes of Health (NIH) issued the
Adaptive Designs Accelerating Promising Trials into
Treatments (ADAPT-IT) funding to encourage the Bayesian
medical device studies [119]. The National Science Foun-
dation also considered nonparametric Bayesian methods
as a great development and Bayesian computation with
complex modeling as useful in a wide range of applica-
tions [120]. Moreover, the Bayesian approach in evidence-
based medicine (EBM) are mentioned and emphasized in
medical student teaching [121].

The future for the Bayesian approach in total medicine
and medical devices is bright. Using the Bayesian approach
has great potential to accelerate the development of inno-
vative medical devices and their accessibility to patients for
disease diagnoses and treatments.
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