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Whole genome sequencing Mycobacterium
tuberculosis directly from sputum identifies
more genetic diversity than sequencing
from culture
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Abstract

Background: Repeated culture reduces within-sample Mycobacterium tuberculosis genetic diversity due to selection
of clones suited to growth in culture and/or random loss of lineages, but it is not known to what extent omitting
the culture step altogether alters genetic diversity. We compared M. tuberculosis whole genome sequences
generated from 33 paired clinical samples using two methods. In one method DNA was extracted directly
from sputum then enriched with custom-designed SureSelect (Agilent) oligonucleotide baits and in the other
it was extracted from mycobacterial growth indicator tube (MGIT) culture.

Results: DNA directly sequenced from sputum showed significantly more within-sample diversity than that
from MGIT culture (median 5.0 vs 4.5 heterozygous alleles per sample, p = 0.04). Resistance associated variants
present as HAs occurred in four patients, and in two cases may provide a genotypic explanation for phenotypic
resistance.

Conclusions: Culture-free M. tuberculosis whole genome sequencing detects more within-sample diversity than a
leading culture-based method and may allow detection of mycobacteria that are not actively replicating.

Keywords: Mycobacterium tuberculosis, Drug-resistant tuberculosis, Whole genome sequencing, Sputum, Within-patient
diversity, Heteroresistance

Background
International efforts to reduce tuberculosis (TB) infec-
tions and mortality over the last two decades have only
been partially successful. In 2017, 10 million people de-
veloped TB and it has overtaken HIV as the infectious
disease responsible for the most deaths worldwide [1, 2].
Drug resistance is a major concern with a steady rise in
the number of reported cases globally and rapid in-
creases in some areas [1]. Patients with Mycobacterium
tuberculosis resistant to the first line drugs rifampicin
and isoniazid are classed as having multidrug-resistant
(MDR) TB and usually treated with a standardised

second line drug regimen for at least 9 months, which is
also used for rifampicin monoresistance [3, 4]. With the
emergence of resistance to fluoroquinolones and amino-
glycosides (extensively drug-resistant [XDR] TB) there is
an increasing need for individualised therapy based on
drug susceptibility testing (DST). Individualised therapy
ensures patients are treated with sufficient active drugs
which can prevent selection of additional resistance, im-
prove treatment outcomes and reduce duration of infec-
tiousness [5–8].
Traditionally, phenotypic culture-based DST was used

to identify drug resistance but this is being replaced by
rapid genetic tests that detect specific drug resistance-
conferring mutations. Next generation whole genome se-
quencing (WGS) of M. tuberculosis is being increasingly
used in research and clinical settings to comprehensively
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identify all drug resistance associated mutations [9]. M.
tuberculosis has a conserved genome with little genetic
diversity between strains and no evidence of horizontal
gene transfer [10], but more detailed analysis of individ-
ual patient samples with WGS has identified genetically
separate bacterial subpopulations in sequential sputum
samples [11–16] and across different anatomical sites
[17]. This within-patient diversity can occur as a result
of mixed infection with genetically distinct strains or
within-host evolution of a single infecting strain [18].
Bacterial subpopulations can be detected in clinical

samples after sequencing reads are mapped to a refer-
ence genome where multiple base calls are detected at a
single genomic site. These heterozygous alleles (HAs) at
sites associated with drug resistance (resistance associ-
ated variants, RAVs) may reflect heteroresistance, where
a fraction of the total bacterial population is drug sus-
ceptible while the remainder is resistant [19]. Identifica-
tion of genetic diversity within clinical samples may
improve detection of RAVs over currently available rapid
genetic tests [19] and can be achieved with freely avail-
able WGS analysis toolkits [20–22]. Identifying RAVs
could improve individualised therapy, prevent acquired
resistance [12], and give insight into bacterial adaptation
to the host.
M. tuberculosis WGS is usually performed on fresh or

stored frozen cultured isolates to obtain sufficient puri-
fied mycobacterial DNA [23, 24]. However, the culture
process can change the population structure from that
of the original sample due to genetic drift (random loss
of lineages) and/or the selection of subpopulations more
suited to growth in culture [25–27]. Repeated subculture
leads to loss of genetic diversity and heteroresistance
[28]. Additionally, in the normal course of M. tubercu-
losis infection, some bacteria exist as viable non-cultur-
able persister organisms that are hypothesised to cause
the high relapse rate seen following treatment of insuffi-
cient duration. Although these organisms may be identi-
fied in sputum by techniques such as reporter phages or
culture with resuscitation promoting factors [29, 30]
they are likely to be missed by any sequencing method
reliant on standard culture.
WGS directly from sputum without enrichment is

challenging [23]. It has recently been improved by de-
pleting human DNA during DNA extraction [31]. We
have previously reported the use of oligonucleotide en-
richment technology SureSelect (Agilent, CA, USA) to
sequence M. tuberculosis DNA directly from sputum
[32] and demonstrated its utility in determining a rapid
genetic drug resistance profile [33, 34].
It remains unclear to what extent WGS of cultured M.

tuberculosis samples underestimates the genetic diversity
of the population in sputum samples. One previous
study of 16 patients did not identify increased genetic

diversity in M. tuberculosis DNA sequenced directly
from sputum compared to DNA from culture [31],
whereas another study of mostly drug susceptible pa-
tients showed sequencing directly from sputum identi-
fied a slight excess of HAs relative to culture [33]. Here
we reanalyse heterozygous alleles (HAs) for the 12 avail-
able paired sequences with > 60-fold mean genome
coverage from that study [33] in addition to 21 newly
collected samples from patients with MDR-TB and
further explore the genomic location of the additional
diversity identified.

Results
Patient characteristics and drug susceptibility testing
Whole genome sequences were obtained for 33 patients
from both mycobacterial growth indicator tube (MGIT)
culture and direct sputum sequencing. The patients were
predominantly of black African ethnicity (83%) and 50%
were HIV positive. First line phenotypic drug suscepti-
bility testing (DST) results identified 20 patients with
MDR-TB and one with rifampicin monoresistance. In
addition there were two isoniazid monoresistant patients
and ethambutol resistance was detected in 7 patients.
Second-line phenotypic DST was performed for patients
with rifampicin-resistant or MDR-TB and identified one
case of kanamycin resistance (Table 1).
All samples had mean genome coverage of 60x or

above with at least 85% of the genome covered at 20x
(Additional file 1: Table S1). We observed greater mean
coverage depth in sputum-derived sequences than MGIT
sequences (median 173.7 vs 142.4, p = 0.03, Additional
file 1: Table S1), and so mapped reads were randomly
downsampled to give equal mean coverage depth in
each pair. A genotypic susceptibility profile was deter-
mined by evaluating MGIT WGS for consensus-level
RAVs using a modified version of publicly available
lists [22, 35]. Genotypic RAVs predicted all rifampicin
phenotypic resistance and > 95% of isoniazid phenotypic
resistance. Ethambutol genotypic RAVs were poorly pre-
dictive of phenotypic resistance in line with findings from
other studies [36] (Table 1). The patient with kanamycin
phenotypic resistance was correctly identified by an rrs
a1401g RAV. No full phenotypic fluoroquinolone pheno-
typic resistance was identified, but several colonies from
patient F1013 did grow in the presence of ofloxacin
(although not enough to be classified as resistant). The
consensus sequences from this patient harboured a gyrB
E501D mutation which is believed to confer resistance to
moxifloxacin but not other fluoroquinolones, which may
explain the borderline phenotypic DST result [37].

Genetic diversity
To compare consensus sequences from sputum and
MGIT, a WGS consensus sequence-level maximum likelihood
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phylogenetic tree was constructed (Additional file 1:
Figure S1). As expected, all paired sequences were
closely related, with a median difference of 0.0 (range
0–1) single nucleotide polymorphisms (SNPs). Sam-
ples from patients F1066 and F1067 were closely re-
lated with only one consensus-level SNP separating
all four consensus sequences. There was no obvious
epidemiological link between these patients (although
this study was not designed to collect comprehensive
epidemiological information) and they lived 20 km
apart in Durban. However, both patients were admit-
ted contemporaneously to an MDR treatment facility
and sampled on the same day. DNA extraction and
sequencing occurred on different runs. Therefore the
close genetic linkage may represent direct transmis-
sion within a hospital setting, a community transmis-
sion chain or an unlikely cross-contamination during
sample collection.
Having established congruence between sputum and

MGIT sequences at the consensus level we then com-
pared genetic diversity by DNA source. We first defined
a threshold for calling variants present as heterozygous
alleles (HAs) in our entire dataset by using a range of
minimum read count frequencies as described in the
methods (Fig. 1). Below a minimum of three supporting
reads there was an exponential increase in the number
of HAs identified, which may be indicative of the inclu-
sion of sequencing errors. To reduce this risk, we used a
threshold of a minimum of four supporting reads.
Genetic diversity may occur because of within-host

evolution or mixed infection. To identify mixed infection
we used a SNP-based barcode [38] to scan all HAs for a
panel of 413 robust phylogenetically informative SNPs
that can resolve M. tuberculosis into one of seven line-
ages and 55 sub-lineages. We found three phylogenetic
SNPs among the HAs. In all cases the heterozygous
phylogenetic SNP originated from the same sublineage
as other SNPs present at 100% frequency, and there
were no cases of HAs indicating the presence of more

than one lineage or sublineage. We tested for mixed in-
fection with the same sublineage by screening samples
by HA frequency and then using Bayseian model based
clustering in samples with >10 HAs as described previ-
ously [39]. This identified mixed infection in the sputum
sample from patient F1096, which had 261 heterozygous
alleles, greater than 10 times that in any other sample.
This patient was therefore excluded from further
analyses.
As a first step to comparing diversity between sputum

and MGIT sequenced samples we looked at the location
of genetic diversity within the M. tuberculosis genome.
HAs were widely dispersed across the genome at similar
sites in both sputum and MGIT samples. The genes with
the greatest density of HAs are shown in Table 2.
Notably, genetic diversity was found in the ribosomal

RNA (rRNA) genes (rrs and rrl) uniquely in sputum
samples, compared to other genes where distribution of
diversity between MGIT and sputum was more balanced.
As rRNA contains regions that are highly conserved
across bacteria [40], we considered the possibility that

Table 1 Phenotypic and genotypic drug susceptibility testing (DST) results and sensitivity and specificity of genotypic DST relative
to phenotypic DST

Drug Resistance by phenotypic DST Resistance by genotypic DST Genotypic DST sensitivity Genotypic DST specificity

First line drugs

Rifampicin 21/32 (65.6%) 21/33 (63.6%) 21/21 (100%)a 21/21 (100%)

Isoniazid 22/32 (68.8%) 24/36 (66.7%) 21/22 (95.5%) 23/24 (95.8%)

Ethambutol 7/31 (22.6%) 15/34 (44.1%) 7/7 (100%) 7/15 (46.7%)

Second line drugs

Ofloxacin 0/22 (0.0%) 1/22 (4.5%) N/A 0/1 (0%)b

Kanamycin 1/22 (4.5%) 1/22 (4.5%) 1/1 (100%) 1/1 (100%)

Phenotypic DST available for first line drugs for 32 of the 33 patients, and for second line drugs for 22 patients who demonstrated rifampicin drug resistance
aIn one directly-sequenced sputum samples rifampicin RAVs were missed due to low coverage, although they were identified in the corresponding MGIT sample
bThis sample had < 1% of colonies grow in the presence of ofloxacin, so is categorised as susceptible but may have low-level or heteroresistance to
fluoroquinolones (see main text)

Fig. 1 Variation in total number of heterozygous alleles (HAs) identified
across all 33 patients in sequences generated from sputum and MGIT
depending on minimum supporting read count threshold
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SureSelect baits targeting rRNA genes were capturing
both M. tuberculosis and other bacterial species. To
evaluate this, metagenomic taxonomic assignment was
performed on all reads by sampling reads that were not
assigned to M. tuberculosis (i.e. presumed contaminants
from other bacteria). We then performed a BLAST
search against the most diverse genes listed in Table 2
which indicated that a sizeable proportion of non-M. tu-
berculosis reads from directly sequenced sputum had a
BLAST hit of at least 30 bases to M. tuberculosis rrs and
rrl genes that encode rRNA (330 BLAST hits from spu-
tum sequences vs 4 BLAST hits from MGIT sequences,
median 8.5% vs 0.0%, p < 0.01, Additional file 1: Fig-
ure S2). There were no BLAST hits against any of
the other genes with ≥2 sputum HAs apart from
rpoC, for which there were 3 BLAST hits from spu-
tum sequences but none from MGIT sequences (me-
dian 0.0% for both sputum and MGIT sequences),
indicating that this issue appears largely specific to
rRNA. To determine if contaminating reads were
contributing to HAs identified in intergenic regions,
we repeated this analysis for all intergenic regions
with ≥2 sputum HAs (Additional file 1: Table S2).
There were no BLAST hits to any of these regions,
suggesting that this is not the case. The taxonomic
assignment of these contaminating reads were typical
of genera composing the oral flora, with a high representa-
tion of Actinomyces, Fusobacterium, Prevotella, and Strepto-
coccus (Additional file 1: Figure S3).
This supported the hypothesis that the baits may en-

rich rRNA from other organisms so rRNA genes were
excluded from further analysis. The difference in diver-
sity between sputum and MGIT sequences can be

explained by the selective nature of MGIT media which
will enrich M. tuberculosis sequences and the decontam-
ination step used to kill non-mycobacteria prior to cul-
ture inoculation. Importantly the frequency of HAs in
other highly diverse genes between sequencing strategies
was more balanced (Table 2) in addition to the lack of
BLAST hits of contaminating reads to these genes.
After excluding the sample with mixed infection and

removing rRNA gene sequences we compared the fre-
quency of HAs in sputum and MGIT. There were 265
HAs identified across all sputum samples compared to
200 in MGIT samples (median 5.0 vs 4.5, p = 0.04,
Additional file 1: Table S1). In both sputum and MGIT
samples, the majority of HAs were indels, and non-syn-
onymous mutations were more commonly frameshift than
missense mutations (Table 3). The distribution of HAs by
patient is shown in Fig. 2.

Genetic diversity in drug resistance genes
HAs in drug resistance associated regions, including
promoters and intergenic regions, were individually
assessed. Four of the 32 patients with single strain infec-
tion had RAVs present as HAs in at least one gene,
which are shown in Table 4. Patient F1002 had three
compensatory mutations in rpoC present at HAs in both
sequences. As described above, the strains from patients
F1066 and F1067 were highly related with only one con-
sensus SNP difference between all four sequences. Both
had phenotypic high level isoniazid resistance with no
consensus-level katG or inhA mutation, but had frame-
shift katG mutations present as HAs which have the po-
tential to cause resistance [43]. F1066 and RF021 had
Rv1979c and pncA mutations respectively at low

Table 2 Genes with ≥2 heterozygous alleles (HAs) across all sputum samples, ordered by greatest number of HAs per base

Gene Heterozygous alleles per base Total number of heterozygous alleles Functional category

Sputum MGIT Sputum MGIT

rv1319c 0.021 0.021 33 33 Metabolism and respiration

rrs 0.016 0.000 25 0 16S ribosomal RNA

rrl 0.006 0.000 19 0 23S ribosomal RNA

ppsA 0.003 0.001 15 4 Lipid metabolism

rv2082 0.006 0.006 13 14 Unknown function

accE5 0.006 0.000 3 0 Lipid metabolism

lppB 0.005 0.005 3 3 Probable surface lipoprotein

pks12 0.000 0.001 3 10 Lipid metabolism

rv2319c 0.003 0.005 3 4 Stress protein

lppA 0.003 0.002 2 1 Probable surface lipoprotein

rpoC 0.001 0.001 2 3 RNA polymerase beta’ subunit

rv3888c 0.002 0.001 2 1 Probable membrane protein

vapC25 0.005 0.000 2 0 Possible toxin

vapC31 0.005 0.002 2 1 Possible toxin
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frequency in sputum only which have the potential to
confer phenotypic resistance to clofazimine (Rv1979c)
and pyrazinamide (pncA), although no phenotypic test-
ing was performed for these drugs.

Discussion
In this study we performed whole genome sequencing
using DNA from sputum and MGIT culture in paired
samples from 33 patients and compared within-patient

genetic diversity between methods. All paired sequences
were closely related at the consensus level, and WGS
predicted phenotypic drug susceptibility with over 95%
sensitivity and specificity for rifampicin and isoniazid in
line with published data [44].
We find that the rRNA genes have high levels of diver-

sity in sputum samples, but believe this is due to
non-mycobacterial DNA hybridising to the capture baits.
This conclusion is borne out by the taxonomic assign-
ment of reads aligning to these genes in common oral
bacteria. We therefore excluded these from further ana-
lysis, and recommend others using enrichment from
sputum do similarly. We find more diversity when se-
quencing directly from sputum with significantly more
unique heterozygous alleles (HAs) than sequencing from
MGIT culture (p = 0.04).
The understanding of within-patient M. tuberculosis

genetic diversity is becoming increasingly important as
the detection of rare variants has been shown to im-
prove the correlation between phenotypic and genotypic
drug resistance profiles [19] and can identify emerging
drug resistance [11, 12]. Not including a culture step
avoids the introduction of bias towards culture-adapted
subpopulations and the impact of random chance and
is also likely to incorporate DNA from viable non-
culturable mycobacteria. A reduction in genetic diver-
sity has previously been shown with sequential M.
tuberculosis subculture [25, 28], but was not con-
firmed by a study performing WGS directly from spu-
tum [31]. However, the 16 paired sputum and MGIT
samples compared by Votintseva [31] had a minimum
of 5x coverage compared to a minimum 60x coverage
in this study, and were likely to contain less genetic

Fig. 2 Number of heterozygous alleles (HAs) found in directly sequenced sputum only (sputum), MGIT (MGIT) only or in both samples (shared) by patient

Table 3 Variants identified in MGIT and sputum derived
sequences from paired samples

Sputum variants MGIT variants

Total variants 24,480 25,465

Total variants present as HAs
(% of total variants)

265 (1.1%) 200 (0.8%)

Median HAs per sample 5.0 4.5

Variant type (% all HAs)

SNP 217 (81.9%) 174 (87.0%)

MNP 2 (0.8%) 0 (0.0%)

Insertion 4 (1.5%) 1 (0.5%)

Deletion 24 (9.1%) 15 (7.5%)

Complex 18 (6.8%) 10 (5.0%)

Coding change (% all HAs)

Non-synonymous (missense) 93 (35.1%) 77 (38.5%)

Non-synonymous (frameshift) 6 (2.3%) 7 (3.5%)

Synonymous 57 (21.5%) 57 (28.5%)

Intergenic 109 (41.1%) 59 (29.5%)

Values given represent totals for 32 paired samples. SNP single nucleotide
polymorphism, MNP multi-nucleotide polymorphism
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material as they were surplus clinical rather than ded-
icated research samples.
Two-thirds of the patients with MDR-TB had already

been treated for drug susceptible-TB (DS-TB), and add-
itional diversity in sputum samples may represent early
adaptation to drug pressure. As direct sputum sequen-
cing does not rely on live mycobacteria, DNA from
recently killed M. tuberculosis is likely to also be se-
quenced, meaning that recent genomic mutations are
likely to be represented as HAs.
In two patients, RAVs present as HAs provided a likely

genotypic basis for otherwise unexplained phenotypic re-
sistance. Given the small total number of resistance muta-
tions in this study, it is not possible to draw conclusions
about the frequency of heterozygous RAVs in directly se-
quenced sputum. However the presence of heterozygous
RAVs in both MGIT and sputum sequences reinforces the
biological importance of these mutations.
To reduce the risk of sample cross contamination,

paired samples were extracted on different days, pre-
pared in different sequencing libraries and sequenced
on different runs. However it is not possible to com-
pletely exclude the possibility of contamination during
sample collection and between different samples proc-
essed in batches. A further limitation of this study is
that it can be difficult to distinguish low frequency
variants from sequencing error. The SureSelect library
preparation protocol for sputum sequencing incorpo-
rates more PCR cycles than that used for MGIT se-
quencing, which may increase the risk of error.
Where possible this could be evaluated further by
performing technical sequencing replicates on ex-
tracted DNA samples, although this was not possible
due to insufficient surplus material and financial con-
straints. To reduce the risk of sequencing errors we
used high read and mapping quality thresholds, and
required a stringent 98% identity between sequenced
reads and the reference genome. Low frequency vari-
ants of particular clinical importance could be con-
firmed by resequencing the same DNA samples.

Conclusions
Directly sequencing M. tuberculosis from sputum is able
to identify more genetic diversity than sequencing from
culture. Characterising within-patient genetic diversity is
important to understand bacterial adaptation to drug
treatment and the acquisition of drug resistance. It also
has potential to identify low frequency RAVs that may
further enhance the prediction of drug resistance pheno-
type from genotype.

Methods
Patient enrolment
Adult patients presenting with a new diagnosis of spu-
tum culture positive TB were included in the study.
Patients were recruited in London, UK (n = 12) and
Durban, South Africa (n = 21). All patients recruited in
Durban were Xpert MTB/RIF (Cepheid, CA, USA) posi-
tive for rifampicin resistance. Two sputum samples were
collected prior to starting the current treatment regi-
men, with one inoculated into mycobacterial growth in-
dicator tube (MGIT) culture (BD, NJ, USA) and the
other used for direct DNA extraction. Therefore for pa-
tients with drug susceptible-TB (DS-TB), sputum was
collected prior to taking any TB therapy, while patients
starting MDR-TB treatment may have already taken
treatment for DS-TB if this was intiated prior to resist-
ance results being available.

Ethics, consent and permissions
All patients gave written informed consent to participate
in the study. Ethical approval for the London study was
granted by NHS National Research Ethics Service East
Midlands–Nottingham 1 (reference 15/EM/0091). Ethical
approval for the Durban study was granted by University
of KwaZulu-Natal Biomedical Research Ethics Committee
(reference BE022/13).

Microbiology
MGIT samples were incubated in a BACTEC MGIT 960
(BD, NJ, USA) until flagging positive. Phenotypic DST

Table 4 Resistance associated variants present as heterozygous alleles (HAs)

Patient ID Phenotypic resistance Mutation Frequency (MGIT/sputum) Description

F1002 Rifampicin rpoB S450 L 100%/100% High confidence resistance mutation

F1002 Rifampicin rpoC G332R [41] 82.6%/21.7% Putative compensatory mutations

F1002 Rifampicin rpoC L516P [41] 12.7%/7.7%

F1002 Rifampicin rpoC P1040S [42] 21.7%/12.3%

F1066 Isoniazid (high) katG N218 fs 0.0%/6.9% Possible resistance mutations, not
previously described

F1066 Clofazimine – not tested Rv1979c G376D 0.0%/0.5%

F1067 Isoniazid (high) katG N218 fs 10.7%/7.6%

RF021 Pyrazinamide – testing failed pncA Q122H 0%/2.5%
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data for London samples were those provided to treating
hospitals by Public Health England. Phenotypic DST
were performed using equivalent standardised methods.
For Durban samples this was the solid agar proportion
method (Additional file 1: Methods) and for London
samples the resistance ratio method [45].

DNA extraction and sequencing
Positive MGIT tubes were centrifuged at 16,000 g for 15
min and the supernatant removed. Cells were resus-
pended in phosphate-buffered saline before undergoing
heat killing at 95 °C for 1 h followed by centrifugation at
16,000 g for 15 min. The supernatant was removed and
the sample resuspended in 1 mL sterile saline (0.9% w/
v). The wash step was repeated. DNA was extracted with
mechanical ribolysis before purification with DiaSorin
Liaison Ixt (DiaSorin, Italy) or CTAB [46]. NEBNext
Ultra II DNA (New England Biolabs, MA, USA) was
used for DNA library preparation.
Sputum samples for direct sequencing were heat

killed, centrifuged at 16,000 g for 15 min and the super-
natant was removed. DNA extraction was performed
with mechanical ribolysis followed by purification using
DiaSorin Liaison Ixt (DiaSorin, Italy) or DNeasy blood &
tissue kit (Qiagen, Germany) [46]. Target enrichment
was performed using SureSelect with a custom-designed
bait set covering the entire positive strand of the M. tu-
berculosis genome as described previously [33]. Batches
of 48 multiplexed samples were sequenced on NextSeq
500 (Illumina, CA, USA) 300-cycle paired end runs with
a mid-output kit. Sequencing was performed by the
Pathogen Genomics Unit at University College London
in a dedicated laboratory where one sequencing run was
processed at a time. All paired samples were extracted,
prepared and sequenced on different days. The National
Center for Biotechnology Information Sequence Read
Archive (NCBI SRA) accession number for each sample
is shown in Additional file 1: Table S3.

Read mapping
DNA sequence reads were adapter and quality trimmed
then aligned to the H37Rv reference genome (GenBank
accession NC_000962.3) with Trim Galore v0.4.4 [47]
and BBMap v38.32 [48], with mapped reads stored in an
output bam file. Duplicate reads were removed with
Picard tools v1.130 [49] MarkDuplicates and coverage
statistics generated with Qualimap v2.2.1 [50]. For each
sample pair, the bam file with greater mean genome
coverage was randomly downsampled to that of the
paired sample with Picard tools v1.130 [49] Downsam-
pleSam. All further analyses were performed using these
downsampled bam files. Command line parameters used
are specified in the Additional file 1: Methods.

Variant calling
Variant calling for comparison for HA counts was per-
formed with FreeBayes v1.2 [51]. Variants falling in or
within 50 bases of PE/PPE family genes and repeat ele-
ments were excluded using vcfinteresect in vcflib [52].
For the initial analysis of genetic diversity, variants were
included if supported by ≥2 reads, with ≥1 forward and
reverse read, no read position bias, a minimum mapping
quality of 30 and base quality of 30. The minimum
supporting read threshold was then increased in a
stepwise fashion from 2 to 15. Variant calling files
where variants were supported ≥4 supporting reads
including ≥1 forward and reverse read were used to
compare HA frequency and location and to screen
for mixed infection.
The phylogenetic tree was constructed by calling vari-

ants with VarScan v2.4.0 [53] mpileup2cns as this is able
to generate consensus-level calls at each reference se-
quence base. SNPs were then used to generate a se-
quence of equal length to the reference using a custom
perl script and these sequences were combined in a
multi-alignment fasta file. SNP sites were extracted from
this alignment using snp-sites v2.4.1 [54], and pairwise
SNP differences calculated using snp-dists v0.6.3 [55].
Extracted SNP sites were used to generate a maximum
likelihood phylogenetic tree using RaxML v8.2.12 [56]
which was visualised using FigTree v1.4.3.

Identification of mixed infection
All samples were screened for evidence of mixed infec-
tion using described methods [39]. In brief, any sample
with 10 or fewer heterozygous SNPs, or between 11 and
20 heterozygous SNPs where heterozygous SNPs were ≤
1.5% of all SNPs was classified as not mixed. For other
samples, the Baysian mixture model analysis [39] was
used where samples with a Bayesian information criter-
ion value > 20 for presence of more than one strain were
assumed to be mixed.

Metagenomic assignment
Sequencing reads were classified using Kraken v0.10.6
[57] against a custom Kraken database previously con-
structed from all available RefSeq genomes for bacteria,
archaea, viruses, protozoa, and fungi, as well as all
RefSeq plasmids (as of September 19th 2017) and three
human genome reference sequences [58]. The size of the
final database after shrinking was 193 Gb, covering
38,190 distinct NCBI taxonomic IDs.
To assess the proportion of contaminating reads

that could generate spurious diversity when mapped
to M. tuberculosis ribosomal genes, we randomly sub-
sampled 100 reads taxonomically assigned as non-M.
tuberculosis and performed a BLAST search with
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blastn v2.2.28 [59] against each gene as described
from the H37Rv reference genome. We only analysed
hits of at least 30 bases.

Statistics
Statistical analyses were performed with Prism v8.0
(Graphpad, CA, USA). Mean coverage depth statistics,
number of HAs and BLAST hits of contaminating reads
in paired samples were compared using a two-tailed
Wilcoxon matched-pairs signed rank test.

Additional file

Additional file 1: Supplemetary Methods, Figures and Tables. (PDF 490
kb)
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