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Abstract
Huge vaccination drives are underway around the world for the ongoing COVID-19 pandemic. However, the search for 
antiviral drugs is equally crucial. As new drug discovery is a time-consuming process, repurposing of existing drugs or 
developing drug candidates against SARS-CoV-2 will make the process faster. Considering this, 63 approved and developing 
antimalarial compounds were selected to screen against main protease  (Mpro) and papain-like protease  (PLpro) of SARS-
CoV-2 using in silico methods to find out possible new drug candidate(s). Out of 63 compounds, epoxomicin showed the 
best binding affinity against the  Mpro with CDocker energy of − 57.511 kcal/mol without any toxic effect. This compound 
was further taken for molecular dynamic simulation study, where the  Mpro-epoxomicin complex was found to be stable 
with binding free energy − 79.315 kcal/mol. The possible inhibitory potential of the selected compound was determined by 
3D-QSAR analysis and found to be 0.4447 µM against SARS-CoV-2  Mpro. Finally, the structure activity relationship of the 
compound was analyzed and two fragments responsible for overall good binding affinity of the compound at the active site 
of  Mpro were identified. This study suggests a safe antimalarial drug, namely epoxomicin, as a probable inhibitor of SARS-
CoV-2  Mpro which needs further validation by in vitro/in vivo studies before clinical use.
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Introduction

Beginning from the seafood market of Wuhan, China, on 
December 2019, the pneumonia-like disease COVID-19 has 
spread over 180 countries around the world affecting around 
167,423,479 individuals and accounting for 3,480,480 deaths 
until 26 May 2021 [1, 2]. This deadly disease is caused by 

a single-stranded RNA virus termed as severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2), belonging to the 
coronavirus family, and is the third pathogenic betacoronavirus 
that has crossed the species barrier from the animal host to 
infect humans other than severe acute respiratory syndrome 
coronavirus (SARS-CoV) and the Middle East respiratory syn-
drome coronavirus (MERS-CoV) [3–5]. Due to the exponen-
tial transmission rate of the infected cases, the World Health 
Organization (WHO) declared COVID-19 as a pandemic on 11 
March 2020 [6]. Unfortunately, no specific effective drugs have 
yet been developed or available in the market for the treatment 
of COVID-19. Although some of the vaccines have reached 
the clinical trial phase II/III, still they have some serious draw-
backs and are not yet ready for common people [7].

After the discovery of the full genome sequence, several 
crucial proteins like the main protease  (Mpro) and papain-
like protease  (PLpro) of the virus were identified as possible 
targets for the drug development process [8, 9]. Both these 
two proteins have a vital role in the replication of the virus. 
After releasing the viral genome into the host cytoplasm, 
the replicase gene is translated to express polyproteins pp1a 
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and pp1ab which contain nsp1-11 and nsp1-16 respectively. 
These polyproteins are cleaved by viral proteases like  Mpro 
and  PLpro [10]. Due to its importance in viral replication, 
conserved sequences, and 3D structures,  Mpro has become a 
potential target for drug discovery against the novel corona-
virus [11]. In addition to the role in viral replication,  PLpro 
also suppresses innate immunity through reversing the ubiq-
uitination and ISGylation events where SARS-CoV-2 PLpro 
prefers the ISGylated proteins [12]. This dual functional-
ity of  PLpro makes it an attractive target for drug discovery 
against SARS-CoV-2. In the past few months, several studies 
have reported many potent inhibitors of the  Mpro and  PLpro 
but some of them are yet to be verified [13, 14].

As the discovery of new drug is time-consuming and 
costly process, repurposing of the existing approved drugs 
could substentially fasten the process of drug development. 
Many reseaserchers are trying to repurpose the already avail-
able drug from different categories against the SARS-CoV-2 
[15, 16]. These kinds of studies have already been initiated 
and, up to some extent, success has been achieved. So in 
our study, we have selected a library of 63 approved and 
under development antimalarial drugs for in silico screen-
ing against the two target proteins  Mpro and  PLpro of SARS-
CoV-2 using several computational methods including 
molecular docking followed by molecular dynamics simu-
lation, quantitative structure activity relationship (QSAR) 
analysis, and structure activity relationship (SAR).

Material and methods

Selection and preparation of the compound library 
of antimalarial drugs

A total of 63 antimalarial drugs was collected from Drug-
Bank database and already published articles to build the 
compound library [17, 18]. The structures of the selected 
compounds were generated in Marvin Sketch v20.4 and 
saved as.sdf file format for future use. The SMILES of the 
compounds were loaded to Discovery Studio 2020 (DS 
2020) molecular modelling software (Dassault Systèmes 
BIOVIA, San Diego, USA) and three-dimensional struc-
tures were generated using the “Small Molecule” tool of 
the DS 2020. Then, energy minimization of the compounds 
was carried out using “Full Minimization” protocol under 
“Small Molecule” tool using CHARMm-based (Chemistry 
at Harvard Macromolecular Mechanics) smart minimizer 
which performs 2000 steps of Steepest Descent followed by 
Conjugate Gradient algorithm with an energy RMSD gradi-
ent of 0.01 kcal/mol. Then, the compound library was saved 
in a single file for further studies [19].

Preparation of the target proteins and selection 
of binding sites

The X-ray crystal structures of the two proteins, namely 
main protease  (Mpro) (PDB ID: 6M0K) [20] and papain-
like protease  (PLpro) (PDB ID: 6WX4) [21], were obtained 
from the Protein Data Bank websites [22]. To prepare the 
target proteins for the docking process, first, both proteins 
were loaded in DS 2020. Then, the targets were cleaned 
and prepared by the “Prepare Protein” protocol under the 
“Macromolecules” tool of DS 2020. During cleaning, 
alternate conformations were deleted, terminal residues 
were adjusted, and bond orders were corrected. In the 
preparation process, water molecules were removed from 
the structure and co-crystal ligands were kept with the 
proteins. Then, energy minimizations of the enzymes were 
performed using the CHARMm-based smart minimizer 
method at maximum steps of 200 and energy RMSD gradi-
ent of 0.1 kcal/mol [19].

The binding site spheres for the two proteins were 
selected around the co-crystal inhibitors using the “Edit 
and Define Binding Site” method under the “Receptor-
Ligand Interactions” tools of DS 2020. The active binding 
site sphere of  Mpro had the coordinates of X: − 12.074224, 
Y: 12.007731, Z: 69.419457 and radius 8.169772 Å; and 
 PLpro had the coordinates of X: 8.904486, Y: − 27.443594, 
Z: − 37.926085 and radius 10.323938 Å (Fig. S1). The val-
idation of the binding sites and docking study was done by 
redocking the co-crystal inhibitors in the selected active 
binding sites [23].

Preliminary in silico screening for binding affinity 
and safety

Molecular docking study

The compound library was docked with the two selected 
targets using simulation-based docking protocol 
“CDocker” of DS 2020 [24]. CDocker uses a CHARMm-
based molecular dynamics (MD) algorithm to dock com-
pounds into the active binding site of a receptor. In this 
process, high-temperature molecular dynamics was used 
to generate random conformations of the compounds at 
the active binding site. Finally, compound poses were cre-
ated using random rigid-body rotations followed by simu-
lated annealing. Then, a final minimization of the complex 
was done to refine the different poses of the compound at 
the binding site. After docking, the binding poses of the 
compounds were analyzed and compared with the binding 
poses of the co-crystal ligands of the respective two target 
proteins.
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Determination of scoring functions

The compounds which showed better results than the co-
crystal inhibitor (FJC) were taken for determining the differ-
ent docking scores based on the CDocker energy. Different 
scoring functions of the best pose of the compounds like 
LigScore1, LigScore2, piecewise linear potentials (-PLP1 
and -PLP2), and potential of mean force (-PMF) were deter-
mined to evaluate molecular binding affinity of the com-
pounds. The scoring functions of the co-crystal inhibitors 
were taken as control to evaluate the test compounds against 
the two respective targets [25].

Toxicity analysis

The filtered compounds obtained from the docking study 
were analyzed for different types of toxicity using the “Tox-
icity Prediction” protocol under the “Small Molecules” tool 
of the DS 2020. In the toxicity analysis, different parameters 
like carcinogenicity (NTP (National Toxicology Program) 
and FDA (Food and Drug Administration) Rodent Carci-
nogenicity), mutagenicity (Ames Mutagenicity), Develop-
mental Toxicity Potential (DTP), oral  LD50 (Rat Oral LD50, 
lethal dose 50), and skin irritation (Skin Irritancy) were 
determined. The “Toxicity Prediction” protocol uses TOP-
KAT (Toxicity Prediction by Komputer Assisted Technol-
ogy) models which accurately and rapidly assess the toxicity 
of compounds based on their 2D molecular structure. TOP-
KAT uses range-validated Quantitative Structure–Toxicity 
Relationship (QSTR) models for assessing specific toxico-
logical endpoints of test compounds [26].

Molecular dynamic simulation study

The compound that showed the best binding affinity against 
the selected target protein was further considered for molec-
ular dynamics (MD) simulation study using DS 2020. MD 
simulation is considered a common method for the inves-
tigation of biomolecular interaction along with their con-
formational dynamics [27]. The best protein–ligand com-
plex generated from the docking study was taken for MD 
simulation study along with the original crystal structure of 
the target proteins bound with the co-crystal inhibitors. The 
protein–ligand complexes were initially cleaned and pre-
pared using the macromolecule tool of DS 2020. Then, the 
complexes were solvated using explicit periodical boundary 
condition in a cubic box of water of size 10 Å × 10 Å × 10 Å. 
The system was neutralized by adding 0.15 M NaCl during 
the solvation process. The solvated systems were energy 
minimized (5000 steps steepest descent and 5000 steps 
conjugate gradient with energy RMSD (root mean square 
deviation) gradient 0.01 kcal/mol), heated (20 ps), and 

equilibrated (500 ps) using the “Standard Dynamic Cascade” 
protocol of DS 2020. After that, 50-ns production was run 
in NPT ensemble at 300 K for the whole protein–ligand 
complexes where snapshots were saved every 2 ps. For the 
electrostatics calculations, the Particle Mesh Ewald (PME) 
method was used, and to constrain bonds containing hydro-
gen the SHAKE algorithm was used with the time step of 
2 fs. After completing the simulation, RMSD, RMSF (root 
mean square fluctuation), and ROG (radius of gyration) were 
computed by taking the starting structure as a reference to 
evaluate the conformational changes of the protein–ligand 
complexes. Throughout the simulation, the distances of 
different hydrogen bonds formed were also monitored and 
analyzed. Finally, different non-bond interactions were also 
analyzed from the average interaction structure of the pro-
tein–ligand complexes and compared with the interactions 
obtained from the starting structures [21–24].

MM‑PBSA‑based binding free energy calculation

The MM-PBSA-based calculation of binding free energy 
(ΔG) is one of the important parameters to estimate the 
binding affinity of a compound to a biological macromol-
ecule or target as well as thermodynamic stability of the 
protein–ligand complex [30]. This technique provides a 
fast and accurate prediction of absolute binding affinity of a 
compound within the active binding site of a target protein 
in the form of binding free energy which is very impor-
tant for stability and particular potency of the compound 
[31]. Hence, after MD simulation, the binding free energies 
for each protein–ligand complex were calculated using the 
“Binding Free Energy—Single Trajectory” protocol of DS 
2020 using the MM-PBSA method. In the analysis, the bind-
ing free energies of all the generated conformations were 
calculated and, finally, the average binding free energy (ΔG) 
was determined for each protein–ligand complex.

Prediction of inhibitory potential

The possible inhibitory potentials of the final hit and the 
co-crystal inhibitor (FJC) were predicted using 3D-QSAR 
(quantitative structure activity relationship) analysis. To 
build the model, a dataset of synthesized  Mpro inhibitors 
were collected from PostEra website [32] along with their 
inhibitory potential in the form of  IC50 values. A total of 
111 compounds  (IC50 range 0.0405–9.5268 µm) were col-
lected from the website and their  IC50 values were converted 
into  pIC50 values using an online tool before using them to 
build the model [33]. Initially, the compounds were aligned 
using the molecular overlay method (50% electrostatic and 
50% steric fields), which were then divided into a training 
set (73 compounds) and a test set (38 compounds) based 
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on molecular diversity in each group. The Grid-Based 
Temp model was generated using two probe types to calcu-
late energy grids, which indicates electrostatics and steric 
effects. The regression analysis was performed by cross-
validated partial least square (PLS) method of leave-one-
out (LOO). The  pIC50 values served as dependent variables 
to build the model which validates the test set for stability 
and predictability.

HYDE analysis

Different atoms and fragments have different roles in the 
binding affinity as well as biological activity of a molecule. 
The proper analysis of these roles of the compounds can 
provide valuable information for further development of new 
drug candidates with improved efficacy as well as safety. 
Hence, the final hit and the co-crystal inhibitor were further 

Table 1  Docking scores of the 
best compounds in comparison 
to the co-crystal inhibitor

Name LigScore1 LigScore2 -PLP1 -PLP2 -PMF CDocker 
energy (kcal/
mol)

FJC 3.71 4.7 82.4 70.27 22.89  − 21.119
Trimethoprim 3.44 4.63 65.54 59.04  − 7.55  − 28.263
Methylene blue 2.46 4.69 69.54 60.3 36.2  − 23.691
Primaquine 2.1 4.54 60.8 56.27 17.48  − 22.061
Pyrimethamine 2.61 4.51 53.93 50.81 36.88  − 21.131
Acediasulfone 4.05 4.75 61.13 59.64 48.65  − 26.122
Cycloguanil 1.89 4.05 48.6 38.88 35.58  − 21.145
Naphthoquine 3.3 5.45 88.19 80.12 49.09  − 23.526
WR99210 3.05 5.09 67.49 56.8 35.12  − 27.449
Propafenone 2.43 4.79 67.84 62.64 35.58  − 34.266
Decoquinate 2.35 4.85 76.53 59.59 63.98  − 34.215
NITD-731 4.3 5.42 93.36 86.47 35.04  − 36.581
Epoxomicin 4.91 5.85 96.59 80.07 58.89  − 57.511
P218 4.49 5.15 85.32 69.8 7.07  − 44.36
Albitiazolium 2.66 4.85 72.25 63.59 37.45  − 37.048
SSJ-183 2.43 4.98 88.99 71.94 50.08  − 24.889

Table 2  Toxicity analysis of the filtered compounds from docking study

C carcinogenic, NC non-carcinogenic, SC single-carcinogenic, MC multiple-carcinogenic, NM non-mutagenic, M mutagenic, T toxic, NT non-
toxic

Name NTP FDA Ames muta-
genicity

DTP Skin irritancy

Mouse Rat Mouse Rat

Female Male Female Male Female Male Female Male

Trimethoprim C C NC C NC SC SC MC NM T None
Methylene blue NC NC C C MC MC SC SC M NT Mild
Primaquine NC NC NC NC NC SC NC NC M NT None
Pyrimethamine NC C NC C NC NC NC NC NM NT None
Acediasulfone NC NC NC NC NC SC SC MC NM NT None
Cycloguanil NC C NC NC NC SC NC NC NM NT None
Naphthoquine NC C NC NC NC NC NC NC NM T None
WR99210 NC C NC C NC NC NC NC NM NT Mild
Propafenone NC NC NC NC NC NC NC NC NM T None
Decoquinate NC C NC NC NC NC NC NC NM NT None
NITD-731 NC NC NC NC NC NC NC NC NM NT None
Epoxomicin NC NC NC NC NC NC NC NC NM NT None
P218 NC NC NC NC NC NC NC NC NM NT None
Albitiazolium NC NC NC NC MC MC SC SC NM NT Mild
SSJ-183 NC C C C MC NC SC NC NM NT Mild

1412 Structural Chemistry (2022) 33:1409–1422
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analyzed using the SeeSAR 10.1 bioinformatics tool to ana-
lyze the possible atoms/fragments having significant contri-
butions towards the inhibitory potential of the compounds 
against  Mpro [34, 35].

Results and discussion

Preliminary in silico screening for binding affinity 
and safety

In the simulation-based docking study, CDocker energy 
(kcal/mol) was considered for filtering the best compounds 
because it provides comparatively accurate information 
regarding the binding affinity of a compound in the active 
site [24]. In the case of  Mpro, out of the 63 compounds, 15 
compounds showed better CDocker energy in comparison 
to the co-crystal ligand (FJC or 11b; − 21 =  − 0.1189 kcal/
mol) which is an irreversible inhibitor of  Mpro with  IC50 
value 0.51 µm (Table S1). But in the case of  PLpro, none 
of the compounds showed better results than the co-crystal 
ligand (VIR51) (Table S2). Therefore, only those 15 com-
pounds having better CDocker energy value than FJC were 
considered for further analysis. For all the 15 compounds 
and the co-crystal inhibitor FJC, some other parameters like 
LigScores, -PLP scores, and -PMF scores were also deter-
mined. These scoring functions like LigScores indicate polar 

attraction between ligand and receptor whereas -PLP scores 
evaluate hydrogen bond interactions. -PMF computes Helm-
holtz binding free interaction energies between ligands and 
the receptor. The docking scores of all the selected com-
pounds are given in Table 1.

Furthermore, the selected 15 compounds were considered 
for toxicity assessment. Out of these 15 compounds, only 3 
compounds, epoxomicin, NITD-731, and P218, were found 
to be safe concerning carcinogenicity (NTP and FDA), muta-
genicity, developmental toxicity prediction (DTP) index, and 
skin irritancy in the toxicity analysis (Table 2). Among the 
3 compounds, epoxomicin showed the best CDocker energy 
(− 57.5107 kcal/mol) suggesting the presence of higher 
binding affinity of epoxomicin towards the binding site of 
 Mpro. Hence, epoxomicin was selected for further molecular 
dynamic simulation study.

On analyzing the compound-target interactions, it was 
observed that epoxomicin formed three conventional hydro-
gen bond interactions with His41, Asn142, and Ser144; 
two carbon hydrogen bond interactions with Leu141 and 
Gln189; and three hydrophobic interactions (Pi-Alkyl) with 
Phe140 and His163. On the other hand, FJC formed two 
conventional hydrogen bonds with Gly143 and His163; three 
carbon hydrogen bonds with Leu141, Met165, and Gln189; 
and four hydrophobic interactions with Leu27, Cys145, and 
Met165. It is worth mentioning that His41 and Cys145 are 
present in the catalytic site of  Mpro and they are involved in 

Fig. 1  Interactions of the compounds in the active binding site of  Mpro with (A) FJC and (B) epoxomicin

1413Structural Chemistry (2022) 33:1409–1422
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the bond formation with epoxomicin and FJC respectively. 
Therefore, it can be hypothesized that binding of epoxomicin 
and FJC may affect the catalytic activity of  Mpro (Fig. 1).

Molecular dynamics simulation study

To understand the binding of ligand to the receptor, molec-
ular dynamics simulation was performed as this in silico 
approach mimics the real physiological conditions of in vitro 
and in vivo wet lab experiments [36]. Hence, the RMSD, 
RMSF, and ROG of the  Mpro-epoxomicin complex were 

calculated for the 50-ns simulation period and compared with 
the control  (Mpro-FJC complex). The whole protein–ligand 
complexes were considered to calculate the RMSD, RMSF, 
and ROG of the test and the control complexes. After the 
completion of the 50-ns simulation, the RMSD plots for both 
the complexes were analyzed. From the RMSD plot, it was 
observed that  Mpro-FJC reached the plateau state within 5 ns 
and it maintained the deviations within or near ~ 5 Å until 
the end of the simulation trajectory. On the other hand, the 
 Mpro-epoxomicin complex reached the plateau state after 
11 ns and maintained the deviations near 6 Å (Fig. 2A). The 

Fig. 2  Different stability-
indicating parameters obtained 
from the molecular dynamic 
simulation study: (A) RMSD, 
(B) RMSF, and (C) ROG

1414 Structural Chemistry (2022) 33:1409–1422
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fluctuations of the individual residues within the simulation 
period were plotted where the fluctuations of the residues 
of  Mpro-epoxomicin were found to be more in comparison 
to the  Mpro-FJC complex (Fig. 2B). The amino acid resi-
dues in  Mpro-epoxomicin had an average RMSF of 1.252 Å 
whereas in  Mpro-FJC it was 0.938 Å. All the residues fluctu-
ated below 2 Å in  Mpro-FJC complex. On the other hand, 
in  Mpro-epoxomicin, some of the residues (Asn72, Ile106, 
Gln107, Phe181, Thr196, Thr226, Leu227, Asn228, Asp229, 

Asn274, Asn277, Arg279, and Phe294) varied over 2 Å. 
Considering the catalytic residues, i.e., His41 and Cys145, 
it was observed that His41 has a RMSF value of 0.540 Å in 
the  Mpro-FJC complex and 0.849 Å in the  Mpro-epoxomicin 
complex. On the other hand, Cys145 showed a RMSF value 
of 0.496 Å in  Mpro-FJC and 1.083 Å in  Mpro-epoxomicin. 
The amino acid residues in  Mpro-epoxomicin were slightly 
more altered during the simulation period of 50 ns. From 
the ROG analysis, it was found that the  Mpro-FJC complex 

Fig. 3  Interactions of the compounds obtained from the aver-
age protein–ligand complexes generated after 50  ns of simula-
tion; (A) surface model of  Mpro-FJC complex, (B) surface model of 

 Mpro-epoxomicin complex, (C) 2D structure of  Mpro-FJC complex, 
(D) 2D structure of  Mpro-epoxomicin complex after 50 ns of simula-
tion

1415Structural Chemistry (2022) 33:1409–1422
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Fig. 4  Fluctuations of distances of the H-bonds formed during the simulation period: (A)  Mpro-FJC, (B) H-bond with Cys145 in  Mpro-FJC, (C) 
 Mpro-epoxomicin, (D) H-bonds with His41 residue in  Mpro-epoxomicin

1416 Structural Chemistry (2022) 33:1409–1422
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Fig. 5  Binding free energies of the two protein–ligand complexes during the simulation period

Fig. 6  Alignment of the com-
pounds with the (A) VDW and 
(B) EP grids; (C) compound 
with green colour is the FJC and 
that with the red colour is the 
epoxomicin

1417Structural Chemistry (2022) 33:1409–1422
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was consistent and stable within the simulation period but 
 Mpro-epoxomicin started to form a more compact complex 
from 17 ns onwards (Fig. 2C).

In this study, we further analyzed the interactions of 
the compounds with  Mpro from the average protein–ligand 
complex obtained after 50-ns MD simulation (Fig. 3) and 
also monitored the formation of H-bonds during the simu-
lation period. After MD simulation, the co-crystal inhibi-
tor FJC formed twelve conventional hydrogen bonds with 
Thr25, Thr26, Asn142, Ser144, Cys145, His163, Glu166, 
His172, Ala191, and Gln192; three carbon hydrogen bonds 
with Thr25, Leu141, and Asn142; and five hydrophobic 
interactions (Amide-Pi Stacked, Pi-Alkyl, Pi-Anion) with 
Cys44, Met49, Leu141, and Leu191 in the active site of the 
target protein. On the other hand, epoxomicin formed five 
conventional hydrogen bonds with Thr25, His41, Cys44, 
and Asn142; two carbon hydrogen bonds with His41 and 
Asn142; and four hydrophobic interactions (Alkyl) with 
Leu27 and Cys145 in the active site. From the interactions, 
it was observed that FJC formed conventional hydrogen 

bond interaction with one catalytic residue Cys145, but did 
not form any interaction with His41. On the other hand, 
epoxomicin interacted with both the catalytic residues of 
 Mpro (His41 and Cys145) forming conventional and carbon 
hydrogen bonds with His41 and hydrophobic bond (Alkyl) 
with Cys145.

The number of H-bonds formed and their distances 
within the simulation period for each conformation were 
generated and depicted in Fig. 4. In  Mpro-FJC complex, a 
total of twelve hydrogen bonds were found where one of 
them was formed with Cys145 residue. The distance of 
this H-bond was very stable and maintained an average 
of 1.961 Å during the simulation period. In the case of 
 Mpro-epoxomicin complex, a total of five H-bonds were 
found where two of them were formed with His41 residue. 
One of them was stabilized after 11 ns of simulation and 
maintained the average distance of 2.456 Å during the 
simulation period. The other H-bond fluctuated very less 
and maintained an average distance of 2.353 Å during the 
simulation period.

Fig. 7  3D-QSAR model for the 
(A) training set and (B) test set

1418 Structural Chemistry (2022) 33:1409–1422
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MM‑PBSA‑based binding free energy

The binding free energies (ΔG) of the protein–ligand com-
plexes indicate the tendency of forming complexes by the 
ligands and their thermodynamic stability; hence, they can 
directly relate to the potency of a compound in terms of 
inhibition or activation. In this study, the MM-PBSA-based 
approach was used to calculate the ΔG of all the conforma-
tions generated during the 50-ns simulation and finally the 
average value was determined. After calculation, the average 

ΔG of the  Mpro-epoxomicin complex was found to be similar 
(− 79.315 kcal/mol) with the average ΔG of  Mpro-FJC com-
plex (− 79.105 kcal/mol) which indicated the formation of 
a stable complex with spontaneous interaction similar to the 
co-crystal inhibitor (Fig. 5).

Prediction of inhibitory potential

The predicted activity  (IC50) of the compounds was deter-
mined with the help of 3D-QSAR analysis. In this study, the 

Fig. 8  Structure activity analysis of (panel A) co-crystal inhibitor (FJC) and (panel B) epoxomicin by HYDE analysis

1419Structural Chemistry (2022) 33:1409–1422
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three-dimensional (3D) structures of a set of compounds 
were used to calculate the energy potential in the 3D-QSAR 
method. The calculated potential energy was then used as 
descriptors to build the 3D-QSAR model to correlate the 
3D structures and their biological activities. The gener-
ated QSAR model gives the information on the correlation 
between the molecular field and the biological activities of 
the compounds [37]. By using the following linear equa-
tion, the predicted activity, i.e.,  IC50, of the compounds and 
control was determined.

where NEP denotes the number of descriptors of electro-
static potential (EP), VEP is the electrostatic potential value 
on a grid point, and CEP(i) is the model coefficient for EP 
descriptor i. Similarly, NVDW, CVDW(i), and VVDW 
denote the number of descriptors of van der Waals (VDW) 
interaction, the model coefficient for VDW descriptor i, and 
VDW interaction energy on a grid point respectively. The 
generated VDW and EP grids aligned with the training set 
are given in supplementary materials (Fig. S3) whereas the 
alignment of the best poses of the reference compound, i.e., 
co-crystal inhibitor FJC (or 11b), and the test compound 
epoxomicin is given in Fig. 6.

The linear plot of the training set and the test set is 
depicted in Fig. 7. The determined R2 values for the training 
set were found to be 0.9545 and 0.8567 for the test set dur-
ing validation. From the 3D-QSAR analysis, the predicted 
 IC50 value of FJC was observed to be 0.0945 μM whereas 
the reported  IC50 of FJC against  Mpro was 0.040 ± 0.002 μM 
[20]. Both the predicted and reported  IC50 values of FJC 
lie in the same order of magnitude. On the other hand, the 
predicted  IC50 of the test drug epoxomicin was observed to 
be 0.4447 μM.

Since epoxomicin is an established drug for the treat-
ment of malaria and other diseases, so, it was considered 
for further structure activity analysis to assess the role 
of different fragments and individual atoms towards the 
overall binding affinity.

HYDE analysis

From the HYDE analysis, we tried to find out the role of the 
individual atoms along with the different possible fragments 
(pharmacophore) of the molecules in the overall binding affin-
ity in the active site of the target  Mpro [35, 38]. In the case 
of co-crystal inhibitor FJC, we identified two fragments or 
pharmacophore of the molecule having good contributions 
towards the binding affinity. Most of the atoms of these two 
fragments had good or positive contributions in the binding 
affinity as indicated by the green coronas obtained from the 

Activity(predicted) =

NEP
∑

i=1

CEP(i)VEP(i) +

NVDW
∑

i=1

CVDW(i)VVDW(i)

HYDE analysis (Fig. 8A1, A2, and A3). But in the case of 
fragment 2, the oxygen atom present in the pyrrolidone ring 
has negative impact (red corona, 1.5 kj/mol) in the binding 
affinity. Similarly, in the case of epoxomicin, two fragments 
were identified having good contributions towards the overall 
binding affinity of the molecule. Those two fragments are indi-
cated by the green coronas. On the other hand, overall atoms of 
four groups (two -CH3 and two -NH- groups) of epoxomicin 
showed bad or negative contributions (red coronas) towards 
the overall binding affinity of the molecule which were not part 
of the above-mentioned fragments having good contribution 
(Fig. 8B1, B2, and B3).

Conclusion

The shortest possible way to combat with the newly emerg-
ing COVID-19 pandemic is to find a new drug from the 
old ones and based on this we designed the present study. 
Already hydroxychloroquine from antimalarial categories 
gained attention from the scientists and research organiza-
tion as a possible drug against the novel coronavirus. But 
due to significant adverse effects in comparison to the low 
therapeutic benefits, the WHO decided to stop the trials of 
this drug. Considering these facts, we selected the library 
of approved and under development antimalarial drugs to 
virtually screen against vital targets of the novel virus to 
find out possible new drugs from these categories. In our 
study, we found a drug epoxomicin that showed high bind-
ing affinity in the active site of SARS-CoV-2 target  Mpro. 
From the in silico studies and structure activity relation-
ship analysis, it was observed that the drug epoxomicin 
has the possible antiviral capability against COVID-19 by 
inhibiting the function of  Mpro. But it needs to be veri-
fied by in vitro/in vivo studies before clinical experiments. 
Epoxomicin, a selective proteasome inhibitor, is a clinically 
relevant antimalarial drug which has potent gametocyto-
cidal activity. From this preliminary study, we have found 
the possible repurposing of this drug against COVID-19 
and it might be able to serve the purpose individually or 
in combination with other antiviral drugs. Hence, we sug-
gest for evaluating the effectiveness of the drug against the 
deadly virus to find out its possible antiviral roles.
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