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In 2012, Moraglio and coauthors introduced new genetic operators for Genetic Programming, called geometric semantic genetic
operators. They have the very interesting advantage of inducing a unimodal error surface for any supervised learning problem. At
the same time, they have the important drawback of generating very large data models that are usually very hard to understand and
interpret. The objective of this work is to alleviate this drawback, still maintaining the advantage. More in particular, we propose
an elitist version of geometric semantic operators, in which offspring are accepted in the new population only if they have better
fitness than their parents.Wepresent experimental evidence, on five complex real-life test problems, that this simple idea allows us to
obtain results of a comparable quality (in terms of fitness), but withmuch smaller data models, compared to the standard geometric
semantic operators. In the final part of the paper, we also explain the reasonwhywe consider this a significant improvement, showing
that the proposed elitist operators generate manageable models, while the models generated by the standard operators are so large
in size that they can be considered unmanageable.

1. Introduction

In the original definition ofGenetic Programming (GP) [1, 2],
the operators used to explore the search space, crossover, and
mutation produce offspring by manipulating the syntax of
the parents. In the last few years, researchers have dedicated
several efforts to the definition of new GP systems based
on the semantics of the solutions [3–5]. Differently from
other domains [6–8], in the field of GP the term semantics
refers to the behavior of a program once it is executed
or more particularly the set of its output values on input
training data [9–11]. In particular, new genetic operators,
called geometric semantic operators, have been proposed
by Moraglio and coauthors [9]. While these operators have
interesting properties, which make them a very interesting
GP hot topic [9, 12], they present an important limitation:
at each application, the newly created individuals have a
size that is bigger than the one of the parents. Even using
implementation that allows executing the system in a very
efficient way (like the one presented in [12]), the problem
persists, in the sense that it is in general practically impossible

to fully reconstruct the final model generated by GP and
whenever it is possible, the resulting expression is so big that
it cannot be understood by a human being. For this reason,
in this study we define a very simple but effective method
that allows GP to produce more compact solutions, without
affecting the quality of the final solutions. More in detail,
we propose to keep the offspring into the new population
only in case they have a better fitness than the parents,
keeping the parents otherwise. This type of “elitist” strategy,
which has already been applied to standard “syntax-based”
GP operators, has, to the best of our knowledge, never been
applied to geometric semantic operators before.

The paper is organized as follows: Section 2 defines
the geometric semantic operators first introduced in [9];
Section 3 first experimentally analyzes some characteristics
of these operators and then presents the proposed elitist
method. Section 4 presents the experimental settings and
the obtained results, showing the appropriateness of the
proposed technique in reducing individuals growth without
penalizing their fitness. Finally, Section 5 concludes the paper
and provides hints for possible future work.
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2. Geometric Semantic Operators

Even though the term semantics can have several different
interpretations, it is a common trend in the GP community
(and this is what we do also here) to identify the semantics of
a solution with the vector of its output values on the training
data [3, 11, 13]. Under this perspective, a GP individual can be
identified with a point (its semantics) in a multidimensional
space that we call semantic space. The term Geometric
Semantic Genetic Programming (GSGP) indicates a recently
introduced variant of GP in which traditional crossover
and mutation operators are replaced by so-called geometric
semantic operators, which exploit semantic awareness and
induce precise geometric properties on the semantic space.
Geometric semantic operators, introduced by Moraglio et al.
[9], are becoming more and more popular in the GP com-
munity [3] because of their property of inducing a unimodal
fitness landscape on any problem consisting in matching sets
of input data into known targets (like supervised learning
problems such as regression and classification). Geometric
semantic operators define transformations on the syntax of
the individuals that correspond to geometric crossover and
ball mutation [11] in the semantic space. Geometric crossover
is an operator of Genetic Algorithms (GAs) that generates
an offspring that has, as coordinates, weighted averages of
the corresponding coordinates of the parents with weights
smaller than one, whose sum is equal to one. Ball mutation
is a variation operator that slightly perturbs some of the
coordinates of a solution. Geometric crossover generates
offspring that stand on the segment joining the parents.
It is possible to prove that, in all cases where fitness is
a monotonic function of a distance to a given target, the
offspring of geometric crossover cannot be worse than the
worst of its parents, while ball mutation induces a unimodal
fitness landscape.

Geometric semantic crossover (here we report the defini-
tion of the geometric semantic operators as given byMoraglio
et al. for real functions domains, since these are the operators
we will use in the experimental phase. For applications that
consider other types of data, the reader is referred to [9])
generates the expression 𝑇

𝑋𝑂
= (𝑇
1
⋅ 𝑇
𝑅
) + ((1 − 𝑇

𝑅
) ⋅ 𝑇
2
)

as the unique offspring of parents 𝑇
1
, 𝑇
2
: R𝑛 → R, where

𝑇
𝑅
is a random real function whose output values range in

the interval [0, 1]. Analogously, geometric semantic mutation
returns the expression 𝑇

𝑀
= 𝑇+ms ⋅ (𝑇

𝑅1
−𝑇
𝑅2
) as the result

of the mutation of an individual 𝑇 : R𝑛 → R, where 𝑇
𝑅1

and
𝑇
𝑅2

are random real functionswith codomain in [0, 1] andms
is a parameter called mutation step.

As Moraglio et al. point out, these operators create much
larger offspring than their parents and the fast growth of the
individuals in the population rapidlymakes fitness evaluation
unbearably slow, making the system unusable. In [12], a pos-
sible workaround to this problem was proposed consisting in
implementation of Moraglio’s operators that makes them not
only usable in practice, but also very efficient. Basically, this
implementation is based on the idea that, besides storing the
initial trees, at every generation it is enough to maintain in
memory, for each individual, its semantics and a reference
to its parents. As shown in [12], the computational cost of

evolving a population of 𝑛 individuals for 𝑔 generations is
𝑂(𝑛𝑔), while the cost of evaluating a new, unseen, instance is
𝑂(𝑔). This allows GP practitioners to use geometric semantic
operators to address complex real-life problems [14].

Geometric semantic operators have a known limitation
[3]: the reconstruction of the best individual at the end of a
run can be a hard (and sometimes even impossible) task, due
to its large size.

3. Elitist Geometric Semantic Operators

3.1. Issues with Geometric Semantic Operators and Motiva-
tions. Even though in [9] Moraglio and coworkers presented
interesting results on a set of benchmarks, clearly showing
that geometric semantic operators are very promising, they
also pointed out an important drawback of these operators:
when these operators are used, the size of the individuals
in the population grows very rapidly. In order to give an
intuitive idea of the importance of the phenomenon, let us
consider two individuals 𝑇

1
and 𝑇

2
and let us assume that

these individuals belong to the initial population of a GP
run. By the definition of geometric semantic crossover, the
offspring of the crossover between 𝑇

1
and 𝑇

2
is

𝑋𝑂(𝑇
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where 𝑇
𝑅
is a random tree. Assuming for simplicity that GP

uses only crossover (the reasoning can be easily extended to
the case ofmutation), at generation 2 all the individuals in the
population will have a shape like the one of the individual in
(1), with the only difference that different trees will be plugged
in place of 𝑇

1
, 𝑇
2
, and 𝑇

𝑅
.

If we iterate this reasoning, performing the crossover
between two individuals belonging to the population at
generation 2, the offspring has the following shape:
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and all the individuals at generation 3will share this structure,
although using different trees instead of 𝑇

1
, 𝑇
2
, 𝑇
3
, 𝑇
4
, and

𝑇
𝑅1
, 𝑇
𝑅2
. While individuals of the same shape as the ones

in (2) may already seem complex and hard to read, let
us now assume that we iterate the GP run for hundreds
of generations. It is not difficult to understand that the
individuals in the population rapidly become so large that
they are completely unreadable. Furthermore, evaluating
those individuals at each generation would make the GP run
extremely slow.

Moraglio and coauthors have an interesting discussion
about code growth in [9], and they show that in the case
of geometric semantic crossover this growth has even an
exponential speed. This clearly represents a problem for
the usability of GP and the readability of the generated
individuals. Solving, or at least alleviating, this problem is the
motivation of the present work.
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3.2. Principle of Elitist Geometric Semantic Operators. Topar-
tially counteract this problem we propose the following re-
placement method:

(i) Considering two parents 𝑃
1
and 𝑃

2
, the offspring

𝑂cross obtained from the semantic crossover between
𝑃
1
and𝑃
2
is accepted in the newpopulation if and only

if its fitness is better than the fitness of both 𝑃
1
and 𝑃
2
.

Otherwise, one of the two parents is copied in the new
population. As wewill make clear in the continuation,
the parent that survives can be a random one or the
best among 𝑃

1
and 𝑃

2
, and the choice between these

two options has a very weak effect on the overall
performance of the system.

(ii) Considering an individual 𝑇, the offspring 𝑂mut
obtained applying semanticmutation on𝑇 is accepted
in the new population if and only if its fitness is better
than the fitness of 𝑇. In the opposite case, 𝑇 itself is
copied in the new population.

While the idea is quite simple, it is interesting to point out
that the proposed method is supposed to be useful if the
geometric semantic genetic operators tend to produce a high
number of individuals whose fitness is not better than the
fitness of their parents. Hence, before testing the proposed
method, it makes sense to perform an experimental analysis
aimed at understanding how many crossover and mutation
events produce an offspring with a better fitness than the
parents. In order to do that, we considered five real-life
applications: three applications in the field of drug discovery
that are becoming widely used benchmarks for GP [15], an
application related to the prediction of the high performance
concrete strength [16], and a medical application whose
objective is predicting the seriousness of the symptoms of a
set of Parkinson disease patients, based on an analysis of their
voice [17]. Regarding the three drug discovery applications,
the objective is to predict three important pharmacokinetic
parameters of molecular compounds that are candidate to
become new drugs: human oral bioavailability (%F), median
lethal dose (LD50), and protein plasma binding level (PPB).
These problems have already been tackled byGP in published
literature and for a discussion of them the reader is referred
to [10]. Regarding the size of the dataset, the %F dataset
consists of a matrix of 260 rows (instances) and 242 columns
(features). The LD50 consists of 234 instances and 627
features, while the PPB dataset consists of 131 instances and
627 features. Each row is a vector of molecular descriptor
values identifying a drug; each column represents amolecular
descriptor, except the last one, which contains the known
target values of the considered pharmacokinetic parameter.
Regarding the concrete dataset, it consists of 9 features and
1030 instances. Each row is a vector of concrete-related
characteristics. The Parkinson dataset consists of 19 features
and ≈6000 instances.

For this experimental study, we use the same experimen-
tal settings considered in [12].Theonly difference (besides the
number of generations) is that, in this study, we considered
several mutation step values.This is fundamental considering
that wewant to analyze the behavior of the semanticmutation

operator whose performance is influenced by the mutation
step value.

Results of this analysis are reported in Figure 1. In
particular, we reported, for all the considered problems,
the median (calculated over 30 independent runs) of the
percentage of crossover and mutation events that have pro-
duced an offspring with a fitness better than the respective
parents. Let us discuss these results problem by problem,
and, for each problem, considering the different mutation
steps. For the %F problem with ms = 0.01 (Figure 1(a)) and
ms = 0.1 (Figure 1(b)), we can draw similar observations:
the mutation operator produces an offspring that has a
better fitness with respect to the original individual in a
percentage of the mutation events that stands between 70%
and 75%. Regarding the crossover operator, the percentage
of successful crossover events stands between 8% and 15%,
according to the particular generation that is considered. A
slightly different behavior can be observed in Figure 1(c),
where a mutation step equal to 1 has been considered. In this
case, the crossover operator succeeds in producing offspring
with a better fitness than both parents, on average 20% of the
times, and it is possible to see an increase of this percentage
during the evolution. On the other hand, the percentage of
successful mutations decreases, but still mutation succeeds
in producing better offspring, on average 70% of the times.
A similar analysis can be performed for the second studied
problem: PPB. With ms = 0.01 (Figure 1(d)) and ms = 0.1
(Figure 1(e)), crossover is successful on 20% of the events,
while mutation produces better offspring (with respect to
their parents) in 75%of the cases.When amutation step equal
to 1 is considered (Figure 1(f)), the mutation success rate
decreases during the evolution, passing from effectiveness
of the 80% in the initial generations to a final 20%. Also,
the success rate of crossover changes along the evolutionary
process, starting with 40% and then passing to 30% and with
a final rate of 20%. The LD50 problem presents a similar
behavior for all the considered mutation step values (from
Figures 1(g)–1(i)): mutation produces fitter individuals in
75% of the applications and crossover in approximately 20%.
Finally, the concrete problem and the Parkinson problem
present a similar behavior between each other, and thus they
can be discussed together. For ms = 0.01 and ms = 0.1
crossover produces better individuals than both the parents
in a percentage between 10% and 25% of the applications,
while mutation produces fitter individuals in a percentage
between 65% and 80% of the cases. Similar conclusions can
be drawn when a mutation step equal to 1 is considered.
The only difference in this last case is that the percentage
of mutation events that produce fitter individuals rapidly
decreases, passing from the initial 80% to the final 30%. On
the other hand, crossover produces a better individual than
both parents in only 20% of the cases.

It is worth pointing out that this last situation is ideal
for testing the effectiveness of the proposed growth control
method. In fact, the proposed technique will be applied in
80% of the crossover events, hence reducing by a significant
amount the size of the individuals in the population. At the
same time, considering semantic mutation, it is possible to
notice that the mutation events produced a better offspring
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Figure 1: Continued.
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Figure 1: Success rate of the crossover and mutation events. For each one of the five considered problems (from top to the bottom: %F, PPB,
LD50, concrete, and Parkinson), three different mutation steps have been considered. From left to right, ms = 0.01, ms = 0.1, and ms = 1.

than the parent in the large majority of the cases. Hence,
the proposed technique will be less effective with mutation.
However, it will still contribute to reducing the average size
of the individuals in the population. Moreover, it is known
that the semantic crossover operator is mainly responsible for
the growth of the size of the individuals; hence it makes sense
that a method aimed at controlling the size of the individuals
is applied principally to crossover.

4. Experimental Study

In this section, we analyze the training and test performance
of GSGP with the proposed elitist replacement technique,
comparing it to standard GSGP. The results of this study
are reported in Section 4.1. Then, we present a study aimed
at understanding the actual contribution, in terms of size
reduction, given by the proposed elitist replacement method.
The latter study is presented in Section 4.2. To perform all the
experiments, we used the implementation of the geometric
semantic operators available at http://gsgp.sourceforge.net/.

4.1. Training and Test Fitness. The plots shown in this section
report as fitness the root mean square error between target
and obtained values on training and test data. All the results
have been obtained by considering 30 independent runs and
the plots report the median fitness of the best individual
(on the training set) at each generation. Each run uses a
different partition of the data: 70% of the instances, selected
at random with uniform distribution, form the training set,
while the remaining 30% are used to assess the performance
of the model on unseen instances. The obtained results will
be discussed separately for each studied test problem, and, for
each one of them, the results obtained using different values
of the mutation step will be analyzed.

Figure 2 shows the results achieved for the %F dataset.
Considering a mutation step of 0.01 (Figures 2(a) and 2(d)),
it is possible to see that GSGP produces better performance
on both the training and test instances with respect to
the proposed elitist replacement technique. However, the

situation is different when the remaining mutation steps
are considered: with a mutation step of 0.1 (Figures 2(b)
and 2(e)) the two techniques produce results of comparable
quality on the training set, but the elitist method outperforms
GSGP on the test set. Finally, the two considered GP systems
return comparable results when a mutation step equal to
1 is considered (Figures 2(c) and 2(f)). This is particularly
important, considering that as reported in the literature [12],
for the%F problem the best results are achieved considering a
mutation step equal to 1. In other words, on the %F problem,
the proposed method is able to perform as well as GSGP
on both training and test data, while maintaining in the
population smaller individuals (as it will be clear in the
continuation).

The same observations can be drawn considering the PPB
dataset (results reported in Figure 3). Also in this case, GSGP
outperforms the elitist replacement technique on both the
training and test sets when a mutation step equal to 0.01
is considered (Figures 3(a) and 3(d)). On the other hand,
with a mutation step equal to 0.1 (Figures 3(b) and 3(e))
and with a mutation step equal to 1 (Figures 2(c) and 2(f)),
the considered GP systems produce comparable results on
both training and test instances. Also for this problem, it
is important to highlight that the best performances are
achieved with amutation step equal to 1 [12] and, in this case,
the elitist replacement method is able to perform as well as
GSGP on both training and test data.

For the third considered problem, that is, the LD50
dataset (results reported in Figure 4), we observe a different
behavior. In this case, with a mutation step of 0.01 (Figures
4(a) and 4(d)), the elitist method outperforms GSGP on
the training set, but, on the other hand, it is outperformed
by GSGP on the test set. With a mutation step equal to
0.1 (Figures 4(b) and 4(e)), the proposed elitist replacement
method outperforms GSGP on both the training and test
instances. Anyway, also for the case of the LD50 dataset,
the most interesting results are the ones achieved with the
mutation step equal to 1, which is the value that has allowed
us to find the best results so far for this problem [12]. In this
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Figure 2: Training (plots a, b, and c) and test (plots d, e, and f) fitness for the %F problem, considering different mutation step values.

case, the two considered GP systems produce comparable
results on the training instances (Figure 4(c)). Interestingly,
as Figure 4(f) shows, their behaviors on the unseen instances
are very different between each other: GSGP is able to reach
better fitness values faster than the elitist method. On the
other hand, considering the last few studied generations,
GSGP is not able to further improve the results, while
the elitist technique seems to have some further room for
improvement. In other words, at the end of the run both
methods return comparable results on the test set, but the
elitist technique obtains those results later in the run.

For the concrete dataset (results shown in Figure 5), it
is possible to draw conclusions that are quite similar to the
ones reported for the %F problem. In particular, considering
a mutation step of 0.01 (Figures 5(a) and 5(d)), it is possible
to see that GSGP obtains better results on both the training
and test sets. On the other hand, with amutation step equal to
0.1 (Figures 5(b) and 5(e)) and with a mutation step equal to
1 (Figures 5(c) and 5(f)), the considered GP systems produce
results that are comparable, on both the training and test sets.
Also for this problem, it is important to note that the best
performance is achieved using amutation step equal to 1 and,
in this case, the elitist replacement method is able to perform
as well as GSGP on both the training and test instances.

Figure 6 shows the results achieved on the Parkinson
dataset. Considering a mutation step of 0.01 (Figures 6(a)

and 6(d)) and a mutation step of 0.1 (Figures 6(b) and 6(e)),
we observe that the proposed elitist replacement technique
outperforms GSGP on both the training and test sets. Never-
theless, when amutation step equal to 1 is considered (Figures
6(c) and 6(f)), the two systems produce comparable results,
on both the training and test data. Also in this case, this is
an important aspect, considering that, also for the Parkinson
dataset, the best results known so far have been achieved
considering a mutation step value equal to 1 (as reported in
[10]). Hence, also in this last application, the proposed elitist
method is able to perform as well as GSGP on both training
and test data when the best known value of the mutation step
is used.

To summarize all of these results, we point out that, for
all the studied applications, the two GP systems perform
differently (in some cases GSGP outperforms the elitist
method and in other cases vice versa) when small values (i.e.,
0.01 and 0.1) of the mutation step are considered. However,
the two systems always produce comparable results when
a mutation step equal to 1 is considered. This value of the
mutation step is known from the literature to be the one that
allows GSGP to produce the best results known so far for all
the considered problems. Hence, when the best setting for
the mutation step is used, the elitist method always produces
results that are comparable to the ones obtained using
GSGP.
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Figure 3: Training (plots a, b, and c) and test (plots d, e, and f) fitness for the PPB problem considering different mutation step values.

The differences between GSGP and the proposed elitist
method, observed when mutation steps equal to 0.01 and 0.1
have been considered, can be explained with the following
argument: when a small mutation step is considered, the
mutation operator creates individuals with semantics that
differ from the original parents by very small quantities
(the variation quantity is limited by the value of ms itself).
Hence, in this case, crossover is the operator that produces
the strongest effect on the search process (i.e., crossover
has a larger exploration power). In this scenario, individuals
created by crossover can give an important contribution in
approaching the global optimum even if their fitness is not
better than the fitness of both parents. The situation can
be sketched in Figure 7. Even though this is an extremely
simplified example (e.g., the semantic space is bidimensional
here, while, having the same dimension as the number of
fitness cases, it is highly multidimensional in the studied test
cases), this figure helps to give an idea of the fact that, with the
elitist method, it would be difficult to reach the optimum by
using only the crossover operator. In fact, the elitist method
will ignore all the individuals like the offspring reported in the
figure. On the other hand, with the standard GSGP system, it
is possible to generate an offspring like the one represented in
the figure. Hence, using an informal argument, we could say
that crossover can create several individuals that are “on the
right side” of the figure, hence incrementing the probability

of selecting, in the next generation of the search process, two
individuals containing the optimum in the segment joining
them.

4.2. Average Individuals Size. While it is computationally
expensive to calculate the exact size of each tree in the
population, it is possible to perform a theoretical study
that, with a good approximation, allows us to gain some
information about the average size of the individuals at a
certain generation. Let us consider again the definition of
geometric semantic crossover and mutation. In particular let
us consider the structure of the individuals that are created
by the semantic operators. Starting from 2 parents 𝑇

1
and

𝑇
2
the geometric semantic crossover produces an offspring
𝑇
𝑋𝑂

that has the structure shown in Figure 8(a).The offspring
consists of a copy of the genotype of the parent individuals,
plus 5 nodes and two copies of the genotype of one random
tree 𝑇

𝑅
, whose maximum depth is known (let us denote

it as 𝐷). Analogously, starting from an individual 𝑇, the
geometric semantic mutation produces an offspring 𝑇

𝑀
that

has the structure shown in Figure 8(b). It is composed of a
copy of the genotype of 𝑇, plus the genotype of 2 different
random trees (whose maximum depth is, again, 𝐷) and 4
nodes. Hence, denoting as 𝑝

𝑥𝑜
the crossover probability, with

𝑝
𝑚
the mutation probability and with 𝑝

𝑟
the reproduction

probability (where 𝑝
𝑥𝑜
+ 𝑝
𝑚
+ 𝑝
𝑟
= 1), the average size of
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Figure 4: Training (plots a, b, and c) and test (plots d, e, and f) fitness for the LD50 problem considering different mutation step values.

the individuals after 𝑔 generations (indicated as 𝑆̂(𝑔)) has
an upper bound (given by the fact that we pessimistically
consider the depth of all the used random trees equal to 𝐷,
which is instead the maximum possible value); that is, this
formula holds only if all the primitive functions used by GP
are binary operators (which allows us to state that the number
of nodes of a tree of depth 𝐷 is 2𝐷). In the experiments
presented in this paper, the used primitive functions were
always the binary arithmetic operators, so this property is
respected:

𝑆̂ (𝑔) = 𝑝
𝑥𝑜
⋅ (2 ⋅ 𝑆̂ (𝑔 − 1) + 2 ⋅ 2

𝐷
+ 5) + 𝑝

𝑚

⋅ (𝑆̂ (𝑔 − 1) + 2 ⋅ 2
𝐷
+ 4) + 𝑝

𝑟
⋅ 𝑆̂ (𝑔 − 1) .

(3)

From this formula, which is problem independent, it is clear
that as expected, reproduction gives a smaller contribution
to size of the individuals than crossover and mutation. Given
that the proposed elitist method, contrary to GSGP, performs
reproduction instead of crossover approximately 85% of the
times and reproduction instead of mutation approximately
25%of the times, it is clear that it maintains in the population
smaller individuals.

In order to give experimental corroboration to this
finding, in Figure 9 we report the evolution of the median
size of the best individual in the population (calculated over

30 independent runs), while in Table 1 we report the median
size of the best individuals at termination (final models) for
the five test problems considered previously. The proposed
elitist method actually maintains populations of individuals
that are smaller than the ones produced by the standard
GSGP system. To assess the statistical significance of the
difference between the size of the individuals produced by
the proposed elitist method and the ones produced by the
standard GSGP system, we performed a set of statistical tests
on the median size. As a first step, the ShapiroWilk test (with
𝛼 = 0.1) has shown that the data are not normally distributed
and hence a rank-based statistic has been used. Then, the
Mann-Whitney test has been used. The null hypotheses
for the comparison across repeated measures are that the
distributions (whatever they are) are the same across repeated
measures. The alternative hypotheses are that distributions
across repeatedmeasures are different. Also in this test a value
of 𝛼 = 0.1 has been used. The 𝑝 values returned by the
statistical test have shown that the elitist method produced
individuals whose size is significantly smaller than the size of
the individuals obtained with the standard GSGP system.

Once established, both theoretically and experimentally,
that the proposed elitist method maintains populations of
smaller individuals than GSGP, it is interesting to discuss
if the size of those individuals is “usable” or as it typically



Computational Intelligence and Neuroscience 9

25

30

35

40

GSGP
Elitist GSGP

0 500 1000
Number of generations

Tr
ai

ni
ng

 fi
tn

es
s (

m
s=

0
.0
1

)

(a)

10

20

30

40

GSGP
Elitist GSGP

0 500 1000
Number of generations

Tr
ai

ni
ng

 fi
tn

es
s (

m
s=

0
.1

)
(b)

10

20

30

40

GSGP
Elitist GSGP

0 500 1000
Number of generations

Tr
ai

ni
ng

 fi
tn

es
s (

m
s=

1
)

(c)

25

30

35

40

GSGP
Elitist GSGP

0 500 1000
Number of generations

Te
st 

fit
ne

ss
 (m

s=
0
.0
1

)

(d)

10

20

30

40

GSGP
Elitist GSGP

0 500 1000
Number of generations

Te
st 

fit
ne

ss
 (m

s=
0
.1

)

(e)

10

20

30

40

GSGP
Elitist GSGP

0 500 1000
Number of generations

Te
st 

fit
ne

ss
 (m

s=
1

)
(f)

Figure 5: Training (plots a, b, and c) and test (plots d, e, and f) fitness for the concrete problem considering different mutation step values.

Table 1: Size of the best model after 1000 generations. Median
calculated over 30 runs.

Size
GSGP Elitist GSGP

%F 6.65𝐸 + 26 3.80𝐸 + 16

PPB 8.37𝐸 + 49 2.39𝐸 + 31

LD50 9.59𝐸 + 19 2.28𝐸 + 07

Concrete 5.36𝐸 + 23 9.43𝐸 + 09

Parkinson 1.10𝐸 + 29 4.47𝐸 + 09

happens for GSGP, the individuals are still too big to be
managed. To answer this question, we use the following
argument: in his first book on GP, Koza established a fixed
tree depth limit of the individuals in the population equal to
17. Even though this limit appears quite arbitrary, several GP
studies even nowadays use this limit that has become, more
or less, standard value for the maximum tree depth. As such,
we can state that a population that contains individuals with
a depth equal to 17 is still “usable” population. If we use only
binary primitives, like in this work, trees of depth equal to
17 have a number of nodes equal to 217. Both from (3) and
from the curves of Figure 9, we can see that GSGP begins to
have in the population individuals with a number of nodes
approximately equal to 217 around generation 100, while for
the proposed elitist method this happens around generation

500. From the literature [9, 12], we know that, despite the fact
that GSGP induces a unimodal fitness landscape, it is able
to navigate it using very small optimization steps. Also, the
experimental results reported in the literature inwhichGSGP
is compared to standard GP for the problems studied here
[12] indicate that 100 generations are not enough for GSGP
to outperform standard GP, while 500 generations are.

In conclusion, the proposed elitist method outperforms
standard GP and obtains results that are qualitatively com-
parable to the ones of GSGP, but, contrary to what happens
for GSGP, it is able to maintain populations composed of
individuals of manageable size.

5. Conclusions

Recent work in Genetic Programming (GP) has been dedi-
cated to the definition of methods based on the semantics of
the solutions. Among the existing semantic-based methods,
one of the most recent methods is based on the definition
of particular genetic operators, called geometric semantic
genetic operators, that have precise consequences on the
semantics of the individuals. This GP variant, known as
Geometric Semantic GP (GSGP), has shown very interesting
results for a vast set of complex real-life applications in
several domains, consistently outperforming standard GP
on all of them. Nevertheless, an important problem affects
GSGP: the geometric semantic operators, by construction,
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Figure 6: Training (plots a, b, and c) and test (plots d, e, and f) fitness for the Parkinson problem considering different mutation step values.

Optimum

Offspring
P1

P2

Figure 7: Example of crossover that generates an offspring whose
fitness is not better than the fitness of both the parents.

generate individuals that are larger than their parents, leading
rapidly to unmanageable populations unless very specific
implementation is used. Also, the very big dimension of
the individuals makes it difficult to read and understand
the final solution, practically turning GP into a black box
system. To limit this important drawback of GSGP, in this
paper we proposed a method (called elitist system) in which
a newly created individual is accepted as a member of the
new population only if it has a fitness that is better than the
fitness of the parents. A preliminary experimental analysis,
presented in the first part of the paper, has shown that
in GSGP several applications of the genetic operators do
not produce offspring that are better than their parents
(in particular for crossover). This fact has encouraged us
to pursue the research and implement the proposed elitist
system. The experimental results that we have presented in

TXO =

+

∗∗

T1 TR

TR1

T2−

(a)

ms

+

∗

TM =

T

TR1 TR2

−

(b)

Figure 8: Individuals generated by the geometric semantic
crossover (a) and by the geometric semantic mutation (b).

the central part of the paper have shown that the proposed
elitist system produces individuals of comparable quality
to the ones obtained with standard GSGP. The final part
of the paper was dedicated to a comparison between the
size of the individuals maintained in the population by
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Figure 9: Evolution of the median size of the best individuals in the population calculated over 30 independent runs.

the proposed elitist method and the ones of GSGP.This study,
besides confirming, as it was expected, that the proposed
elitist method creates smaller individuals, has also indicated
that the individuals evolved by the elitist method maintain
a manageable size at least until generation 500, while for
GSGP this is true only approximately until generation 100. In
this study, we have used as a threshold between manageable
and unmanageable individuals sizes the depth limit equal to
17 suggested by Koza in his first book on GP. Given that
as known from the literature, geometric semantic operators
allow us to outperform standard GP only in the late stages of
the evolution, we can conclude that when GSGP outperforms
standard GP, its populations are already unmanageable, while
the proposed elitist method is able to outperform standard
GP while still evolving individuals of manageable size.This is
the real advantage of the proposed elitistmethod compared to
GSGP: for comparable levels of performance, individuals are
not simply “smaller” but “significantly smaller” in the sense
that the difference in size fills the gap between the possibilities
of storing the individuals in memory and using them or
not.

A lot of futurework is planned on this research track, with
the final objective of defining aGSGP system able tomaintain
the same geometric properties of the current one, but in
which individuals do not steadily grow during the evolution.
If, on the one hand, it is important to further test the elitist

method proposed in this paper on several other applications,
possibly in conjunction with several other improvements,
on the other hand simplification methods aimed at main-
taining optimized expressions in the population deserve
investigation. Extending the achievements obtained so far by
GSGP on symbolic regression to other kinds of application
is also a priority. Geometric semantic genetic operators for
different applicative domains, like Boolean problems and
classification, were already defined in the original work of
Moraglio and coauthors and have been later further refined
by the same authors. We are currently working toward the
definition of geometric semantic operators for applications
in the field of pattern reconstruction, like the artificial
ant on the Santa Fe trail. Preliminary experimental results
seem to indicate that the proposed elitist method may be
particularly useful for these new operators. Last but not
least, the most ambitious task of this research track remains
to be the definition of new geometric semantic operators
that, while maintaining the same geometric properties of
the current ones, do not create individuals that are larger
than their parents. An important first step has already
been taken by Moraglio and collaborators, with the defini-
tion of such operators for the particular domain of basis
functions. An extension of this result to functions of any
possible shape is one of the main objectives of our current
research.
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