
ARTICLE

Dynamic MAIT cell response with progressively
enhanced innateness during acute HIV-1 infection
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Mucosa-associated invariant T (MAIT) cell loss in chronic HIV-1 infection is a significant

insult to antimicrobial immune defenses. Here we investigate the response of MAIT cells

during acute HIV-1 infection utilizing the RV217 cohort with paired longitudinal pre- and post-

infection samples. MAIT cells are activated and expand in blood and mucosa coincident with

peak HIV-1 viremia, in a manner associated with emerging microbial translocation. This is

followed by a phase with elevated function as viral replication is controlled to a set-point

level, and later by their functional decline at the onset of chronic infection. Interestingly,

enhanced innate-like pathways and characteristics develop progressively in MAIT cells during

infection, in parallel with TCR repertoire alterations. These findings delineate the dynamic

MAIT cell response to acute HIV-1 infection, and show how the MAIT compartment initially

responds and expands with enhanced function, followed by progressive reprogramming away

from TCR-dependent antibacterial responses towards innate-like functionality.
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Mucosa-associated invariant T (MAIT) cells are an evo-
lutionarily conserved subset of unconventional T cells,
highly abundant in mucosal tissues, peripheral blood,

and the liver of humans1–3. MAIT cells express a semi-invariant
αβ T cell receptor (TCR)4–6, and recognize microbial vitamin B2
metabolite antigens from a wide range of bacteria and fungi
presented by the major histocompatibility complex (MHC) class
I-related (MR) 1 molecules7,8. MAIT cells activated by MR1-
presented antigens respond rapidly with release of cytokines
including IFNγ, TNF, and IL-171,9, and mediate cytolytic func-
tion against bacterially infected cells10–12. Their response pattern
is dependent on a transcriptional profile characterized by the co-
expression of promyelocytic leukemia zinc finger (PLZF), and
retinoid-related orphan receptor (ROR) γt1,2,13.

The unique ability of MAIT cells to respond to conserved
bacterial-derived and fungal-derived metabolites is important for
protection against microbial infections, in particular myco-
bacterial and other infections of the lung9,14–18. In addition, high
expression of the receptors for IL-18 and IL-12 provides
MAIT cells with the capacity to respond to antigen-presenting
cell (APC)-derived cytokines9, recently shown to be important for
enhancement of TCR-mediated MAIT cell activation19,20, and for
triggering of MR1-independent MAIT cell responses21–23. Such
MR1-independent responses, including production of IFNγ, may
be important for the involvement of MAIT cells in viral dis-
eases24–28. Interestingly, recent findings in murine models suggest
that MAIT cells may play a role in limiting viral replication and
immunopathogenesis of influenza virus infection29. Thus,
MAIT cells are poised to respond to infection from a variety of
pathogens and can possibly influence disease outcome.

The impact of chronic HIV-1 infection on MAIT cells has been
investigated (reviewed in ref. 30), with declining MAIT cell fre-
quency and function in response to in vitro antigen exposure, in
cross-sectional studies of untreated infection24,25,27. Combination
anti-retroviral treatment (cART) partly restores MAIT cell
function, but their numerical decline appears irreversible in the
blood24,25. The basis for MAIT cell loss is unclear, but may
involve recruitment to inflamed mucosa31. The gut mucosa is a
central site in HIV immunopathogenesis where macrophages and
T cells are recruited and mediate an inflammatory cytokine storm
in the earliest days after infection32,33. The peak of viral repli-
cation occurs around two weeks after infection, followed by
recession to a set-point level approximately one month post-
infection34.

Mucosal sites are of critical importance throughout the natural
course of HIV-1 infection. Impaired integrity of the gut mucosal
barrier with translocation of microbes and microbial products
into the underlying tissues and circulation is believed to con-
tribute strongly to immune activation, inflammation, and accel-
erated disease35. Mucosal immunity is impaired in HIV-infected
subjects, with severe consequences for control of important
pathogens such as M. tuberculosis, as well as other microbes that
encode the riboflavin biosynthesis pathway. Interestingly, mice
deficient in MR1, thus lacking MAIT cells, display signs of
impaired gut integrity and increased microbial translocation36.
Mucosal MAIT cells express the tissue-protective cytokine IL-22
suggesting a broader role in protection of the mucosa37,38. While
it is well established that MAIT cells decline in chronic stages of
HIV-1 infection, their dynamics and response during acute HIV-
1 infection have yet to be elucidated. Such studies are critical to
understand the role of MAIT cells in HIV-1 immunopathogenesis
and impaired antimicrobial immunity in the infected human
host. In this study, we investigate the response of MAIT cells
during the first critical days and weeks of acute HIV-1 infection
utilizing longitudinal pre-infection and post-infection samples
from the RV217 Early Capture HIV Cohort Study (ECHO)34.

Already at the time of peak HIV-1 viremia, MAIT cells become
activated and expand in both blood and mucosa in a manner
associated with markers of microbial translocation. This is fol-
lowed by enhanced MAIT cell function around the time of set-
point viral load establishment, and later by their functional
impairment in chronic stages of infection. Notably, MAIT cells
develop enhanced innate-like transcriptional and phenotypic
characteristics progressively over time during infection. Thus, the
MAIT cell compartment responds in a dynamic fashion to acute
HIV-1 infection with initial expansion and enhanced function,
followed by a progressive shift away from TCR-dependent anti-
microbial responses towards innate-like functional characteristics.

Results
Early MAIT cell expansion during acute HIV-1 infection.
MAIT cell dynamics were examined during the earliest stages of
acute HIV-1 infection in 29 individuals from the RV217 ECHO
study34, for which cryopreserved autologous longitudinal samples
were available from pre-infection time points, followed by sam-
ples taken within days from the first detection of HIV-1 RNA and
further out into chronic infection (Supplementary Table 1).
MAIT cells, identified by surface expression of TCR Vα7.2 and
CD161 (Fig. 1a and Supplementary Fig. 1), were measured in
samples available from up to ten time points per donor spanning
nearly three years after infection (Fig. 1b). The relative frequency
of MAIT cells among CD3+ T cells did not change significantly
over the course of acute HIV-1 infection. However, given the
broad T cell subset redistribution occurring in the blood during
acute HIV-1 infection34, we next analyzed the absolute counts of
MAIT cells and observed a pattern of increasing MAIT cells
counts during acute infection (Fig. 1c). This trend reached sig-
nificance for donors where paired time points were available from
a median (range) of 23 (8–67) MAIT cells/μl in early infection
(median 1 day since first positive test for HIV-1 RNA), to 27
(14–97) MAIT cells/μl by day 43 post-infection (p= 0.016; Wil-
coxon Signed Rank test) (Fig. 1d). This increase coincided with
the bulk CD8 T cell expansion two weeks after peak viremia, and
before viral load set-point was established (Fig. 1c). MAIT cell
counts later returned to baseline levels by early chronic infection.
However, a trend was observed 600 days after the first detectable
HIV-1 nucleic acid test where MAIT cell absolute counts declined
to a median (range) of 18 (8–38) cells/μl, below levels observed at
baseline. The identification of MAIT cells using the combination
of Vα7.2 and CD161 expression among CD3+ cells was con-
firmed using the MR1–5-OP-RU tetramer (Fig. 1a, Supplemen-
tary Fig. 1 and Supplementary Fig. 2).

To investigate changes in MAIT cells in tissues during acute
HIV-1 infection, we examined cells isolated from rectal mucosal
biopsies from 7 acutely HIV-1 infected individuals sampled
before initiation of cART and 17 uninfected matched controls
from the RV254 and RV304 cohorts using flow cytometry39

(Supplementary Table 2). In this cross-sectional data set, relative
rectal mucosal MAIT cell levels were significantly higher in the
acutely infected subjects as compared to the uninfected controls
(Fig. 1e). This pattern reflected an absolute increase in MAIT cells
per gram of rectal tissue (Fig. 1f), supporting the notion that the
temporary expansion of MAIT cells observed in peripheral blood
also occurs in gut mucosa.

The majority of human MAIT cells express CD8, with a
smaller subset being CD8 and CD4 double-negative (DN)
(Fig. 1a). Through acute and early HIV-1 infection there was a
tendency towards subset redistribution with a slight decline in
frequency of CD8+ MAIT cells, and a corresponding gain in
frequency of DN MAIT cells (Fig. 1g). CD4+ MAIT cells are a
minor subset of the total MAIT cell pool (Fig. 1a). Here, the MR1
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tetramer-defined MAIT cell population showed a significant
decline in the CD4+ subset among total MAIT cells from pre-
infection to the early chronic time point (p= 0.003; Friedman test
with the Dunn’s multiple comparison test) (Supplementary
Table 3). In contrast, expression of CD161 in the MR1
tetramer-defined MAIT cell population was unchanged and
consistently high throughout the period following HIV-1
infection (Fig. 1g). Taken together, these findings reveal that in
acute HIV-1 infection there is a brief period of MAIT cell
expansion and maintenance, which includes significant changes
in subset representation, before loss of this population com-
mences in chronic infection.

IRF4 expression predicts MAIT cell levels at viral set-point.
Acute HIV-1 infection is associated with strong activation of
conventional T cells, and in particular CD8 T cells40,41. To
ascertain the temporal dynamics of MAIT cell activation in acute
HIV infection, we examined phenotypic markers of activation
and also sorted MAIT cells for targeted transcriptomic analysis
from pre-infection and three post-infection samples by flow
cytometry. At peak viremia the frequencies of MAIT cells
expressing HLA-DR, CD38, Programmed Death 1 (PD-1), T cell
immunoreceptor with Ig and ITIM domains (TIGIT) and gran-
zyme B (GrzB) were elevated above pre-infection frequencies, and
transcripts for these proteins remained elevated above pre-

infection expression throughout acute HIV-1 infection (Fig. 2a
and Fig. 2b). Similarly, expression of CCR5, already high at the
resting state, increased significantly in MAIT cells during acute
infection (Supplementary Table 3 and Supplementary Fig. 2).
Transcriptional analysis further revealed that transcripts encod-
ing the proliferation-specific protein Ki67 (MKI67), and the
transcription factor interferon regulatory factor 4 (IRF4) were
elevated at peak viremia compared to baseline (p= 0.05 and p=
0.03, respectively; Friedman test with the Dunn’s multiple com-
parison test) (Fig. 2b). Interestingly, in parallel to the magnitude
of HIV-1 viremia, MAIT cell expression of activation markers,
including the immune checkpoint receptor PD-1 (Fig. 2a), cor-
related positively with both IRF4 and MKI67 gene expression
(Fig. 2c and Fig. 2d). By day 85 the MKI67 expression had
returned to levels observed at baseline, whereas the IRF4 tran-
script continued to be significantly elevated (p= 0.04; Friedman
test with the Dunn’s multiple comparison test) (Fig. 2b). This was
in contrast to KI67 protein expression measured at the same time
point, which remained elevated compared to pre-infection
(Supplementary Table 3). Early into chronic infection, the fre-
quency of MAIT cells expressing PD-1 correlated inversely with
MAIT cell frequency (Supplementary Fig. 3). Furthermore, levels
of IRF4 mRNA expression at peak viremia correlated inversely
with MAIT cell counts (Fig. 2e), and frequency (Fig. 2f), at the
time of viral load set-point and into early chronic infection. Thus,
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Fig. 1 MAIT cell activation and dynamics in the RV217 acute HIV-1 infection cohort. a Representative flow cytometry plots of a pre-infection time point
from one individual enrolled in the RV217 acute capture cohort showing identification of MAIT cells as CD161++Vα7.2+ of CD3+CD14-CD19- live
lymphocytes in PBMC. Confirmation of MAIT cell identification using the 5-OP-RU loaded MR1 tetramer, and the relative distribution of CD8 and CD4
positivity within the MAIT cell gate is displayed. b MAIT cell frequency as a percentage of CD3+ T cells is shown longitudinally in individuals with acute
HIV-1 infection (gray), with median frequency (blue) (n= 29). cMedian absolute counts (cells/μl of blood) of MAIT cells relative to conventional CD4 and
CD8 T cells and HIV-1 viral load displayed over time in acute HIV-1 infection (n= 29). dMAIT cell absolute counts in 9 donors where matching data points
were available from days 1 and 43 after HIV-1 infection. e MAIT cell percentages out of total CD3+ cells isolated from rectal biopsies from individuals with
acute HIV infection (n= 7), and matched uninfected controls (n= 17). f MAIT cell count per gram of rectal biopsy tissue from individuals with acute HIV
infection (n= 7), and matched uninfected controls (n= 17). g Median MAIT cell subset distribution displayed over time in acute HIV-1 infection. CD161,
CD8, CD4, and double negative expression in MR1 tetramer-defined MAIT cells displayed (n= 19). *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001. In d, statistical
analysis was performed using Wilcoxon Signed Rank test; in e and f using the Mann-Whitney test; in g the nonparametric Friedman test with the Dunn’s
multiple comparison test. PBMC, Peripheral blood mononuclear cells. MAIT cells are identified as CD161++Vα7.2+ within CD3+CD14-CD19- live
lymphocytes, except in e, where MAIT cells are identified using the 5-OP-RU loaded MR1 tetramer of CD3+CD14-CD19- live lymphocytes. 5-OP-RU 5-(2-
oxopropylideneamino)−6-d-ribitylaminouracil. VL viral load. The source data underlying b, c, and g are provided as a Source Data file.
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the initial upregulation of MKI67 transcription is consistent with
a period of activation-induced proliferation, whereas the induc-
tion and maintenance of IRF4 is associated with the subsequent
reduced frequency of MAIT cells.

MAIT cell transcriptional dynamics in acute HIV-1 infection.
To gain a better understanding of the MAIT cell response to
HIV-1 infection, MAIT cells were sorted from PBMCs of nine
donors at pre-infection, peak viremia, viral load set-point, and
early into chronic infection. Isolated MAIT cells were subjected to
whole-genome transcriptional analysis using RNA-sequencing
(RNA-Seq). The RNA-Seq data revealed dynamic transcriptional
changes in MAIT cells compared to donor-matched data from the
pre-infection time point (Fig. 3a). At peak HIV-1 viremia,
expression of 61 genes was significantly upregulated and
expression of 72 genes was downregulated (Fig. 3b and Supple-
mentary Table 4). As the viral load receded to a set-point level,
approximately 43 days after detectable HIV-1, the transcriptional
changes were dominated by reduced expression of 123 gene
transcripts, and increased expression of 24 genes relative to pre-
infection. Finally, at the early chronic stage, transcriptional acti-
vation was further reduced with fewer changes observed com-
pared to the pre-infection time point. Analysis of these data
revealed a highly dynamic pattern of gene expression in
MAIT cells during acute HIV-1 infection with little overlap
between time points (Fig. 3c and Supplementary Table 4).

Of the top 10 transcripts upregulated at peak HIV-1 viral load,
the majority (6 out of 10) were related to cell cycle and cell
division including RRM2, MYBL2, CDK1, UBE2C, CDC45, and

TK1 with 8 to 15-fold increased expression compared to the pre-
infection samples (Supplementary Table 4). Similarly, at this time
point the transcript for an inhibitor of apoptosis, BIRC5 was
increased 8-fold compared to the pre-infection expression level.
The majority of cell cycle gene transcripts, including RRM2,
MYBL2, CDK1, and TK1, remained significantly elevated at early
set-point viral load time points, as did BIRC5. At the chronic
stage of infection the majority of cell cycle gene transcripts
returned to pre-infection levels, except for RRM2, which
remained just 2.8-fold higher, while BIRC5 expression returned
to pre-infection levels. Together, these findings support a model
wherein MAIT cell activation with increased cell cycling occurs in
the earliest stages of acute HIV-1 infection, and then subsides as
disease progresses into chronic infection.

Upregulation of innate immune pathways at peak viremia. To
examine the MAIT cell transcriptome at the pathway level, gene
set enrichment analysis (GSEA) at the pre-infection and post-
infection time points was performed42,43. GSEA analysis using
the Gene Ontology (GO) gene set revealed an enrichment of
multiple pathways at one or several time points during acute
HIV-1 infection (Fig. 3d and Supplementary Table 5). Many
enriched gene sets were related to cellular activation and meta-
bolism, DNA replication, or cell cycle progression, in line with the
observed patterns of MAIT cell activation and expansion. How-
ever, several important immunological pathways were also
upregulated, including the gene signatures for negative regulation
of viral entry (Fig. 3e), positive regulation of IFNγ production
(Fig. 3f), and natural killer (NK) cell mediated immunity

16 43 85

CD38

HLADRA

TIGIT

MKI67

PDCD1

IRF4

Median days since first positive
test for HIV-1 RNA

ba

0 20 40 60
0

5

10

15

0

2

4

6

8

Days since first positive test for HIV-1 RNA

CD38PD-1HLA-DR TIGIT

V
iral load (log10 copies/m

l)

***
*** **

GrzB

Log2 fold change compared to preinfection

GZMB

14 16 18 20 22 24 26
0

20

40

60

80

100

IRF4 gene expression (Et) in MAIT cells at peak VL

A
bs

ol
ut

e 
M

A
IT

 c
el

l c
ou

nt
 (

ce
lls

/μ
l)

Early chronic infection*
rho = –0.5956

Set point VL***
rho = –0.7843

14 16 18 20 22 24 26
0

2

4

6

IRF4 gene expression (Et) in MAIT cells at peak VL

M
A

IT
 c

el
l f

re
qu

en
cy

(%
 o

f T
 c

el
ls

)

Set point VL***
rho = –0.777

Early chronic infection*
rho = –0.5956

E
xp

re
ss

io
n 

fr
eq

ue
nc

y
(%

 o
f M

A
IT

 c
el

ls
) 

–6

–4

–2

0

2

4

6

Fold change

18 20 22 24 26 28
0

10

20

30

40

50

60

70

MKI67 gene expression (Et) in MAIT cells

E
xp

re
ss

io
n 

on
 M

A
IT

 c
el

ls
 (

%
)

HLA-DR**
rho = 0.710

PD-1*
rho = 0.5536

CD38**
rho = 0.640

14 16 18 20 22 24
0

10

20

30

40

50

60

70

IRF4 gene expression (Et) in MAIT cells

 E
xp

re
ss

io
n 

on
 M

A
IT

 c
el

ls
 (

%
)

HLA-DR***
rho = 0.710

PD-1*
rho = 0.5666

CD38**
rho = 0.640

c

fed

Fig. 2 MAIT cell activation in acute HIV-1 infection. aMedian expression of markers of activation and exhaustion (HLA-DR, PD-1, CD38, TIGIT, and GrzB)
in MAIT cells in PBMC as assessed by flow cytometry displayed over time in acute HIV-1 infection (n= 19). b The fold change of gene expression
compared to pre-infection of individual genes (CD38, HLADRA, TIGIT, PDCD1, GZMB, MKI67, and IRF4) in three post-infection time points in acute HIV-1
infection from bulk sorted MAIT cells (n= 20). c Correlation of IRF4 and d,MKI67 gene expression in bulk sorted MAIT cells with the protein expression of
markers activation (HLA-DR, PD-1, and CD38) at the post-infection time point corresponding with peak VL (median 16 days since first positive test for
HIV-1 RNA) (n= 20). e Correlation of gene expression of IRF4 in sorted MAIT cells with MAIT cell absolute counts, or f, MAIT cell frequency at two post-
infection time points corresponding with set point VL (median 43 days since first positive test for HIV) or early chronic infection (n= 20). *p≤ 0.05, **p≤
0.01, ***p≤ 0.001. In a, statistical analysis was performed using the nonparametric Friedman test with the Dunn’s multiple comparison test; in c, d, e, and
f correlative analyses were performed using Spearman Rank correlation test. In a, significance indicated is valid for all markers displayed. PBMC, Peripheral
blood mononuclear cells. MAIT cells are identified as CD161++Vα7.2+within CD3+ CD14-CD19- live lymphocytes. VL viral load. The source data
underlying a and b are provided as a Source Data file.
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(Fig. 3g). The NK cell gene signature included enhanced
expression of KLRD1, GZMB, MICB, SLAMF7, and KIR3DL1; the
IFNγ production signature included IFNaR1, TLR3, and
HAVCR2; and the negative regulation of viral entry pathway
included upregulation of IFITIM1, 2, and 3 and TRIM5. The
MAIT cell GSEA data are indicative of not only activation and
cell proliferation but also utilization of pathways more commonly
affiliated with the innate cellular compartment.

MAIT cell TCR repertoire diversification in acute infection.
The MR1-restricted TCR repertoire of MAIT cells is limited, in
particular for the TCR α chain while the β chain shows greater
diversity. Nevertheless, controlled infections of humans with S.
enterica was recently shown to lead to preferential expansion of
the more antigen reactive MAIT cell clonotypes44. To evaluate
possible alterations in the TCR repertoire of MAIT cells
resulting from acute HIV-1 infection, we analyzed the TCR α
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and β chain transcripts within the RNA-Seq data at pre-
infection and the early chronic time point for six donors
(Fig. 4). Surprisingly, acute HIV-1 infection was associated with
enhanced diversity of the CDR3 clonal distribution of both
TCR α and β chains (Fig. 4a and Fig. 4b). Unique clone fre-
quencies ranged between 0.4–22.2% (median= 6.9%) of all
TCR α chain clones or 0.3–40.3% (median= 3.6%) of all β
chain clones. Interestingly, two CDR3 α chain clones were
shared and considered “public” among all donors and time
points analyzed. The diversifying effect of acute HIV-1 infec-
tion was also associated with the contraction of the dominant α
and β chain clones pre-infection, and specifically of TRBV20–1
(Vβ2) usage, in the MAIT cell repertoire (Supplementary Fig. 4
and Supplementary Table 6). These changes in TCR repertoire
composition during acute infection may suggest that activation
and response of the MAIT cell compartment depend on TCR-
mediated recognition of microbes.

Progressive upregulation of innate MAIT cell characteristics.
MAIT cells that express the neural-cell adhesion marker CD56,
commonly associated with NK cells, have an enhanced respon-
siveness to the innate cytokines IL-12 and IL-18 in healthy
humans23. Given the results of the GSEA pathway analysis, the
behavior of the CD56+ MAIT cell subset during acute HIV-1
infection was evaluated (Fig. 5a). Interestingly, the proportion of

CD56+ MAIT cells among the total MAIT cell population
increased progressively throughout acute infection from an
average of 32% before infection to an average of 47% of total
MAIT cells in chronic infection (Fig. 5b). This pattern was also
reflected in the CD56 real-time PCR gene expression data from
sorted total MAIT cells (Fig. 5c). Furthermore, several additional
transcripts associated with innate effector cell function were
upregulated throughout acute infection, compared to pre-infec-
tion, including NKG7, KLRD1, EOMES, CD160, SLAMF5, and
IL12RB1 (Fig. 5d).

To assess whether the expanding CD56+ MAIT cell subset had
superior capacity to respond to innate cytokine stimulation23,
PBMC were stimulated with IL-12 and IL-18, and IFNγ production
in subsets of MAIT cells with or without CD56 surface expression
was evaluated by intracellular cytokine staining and flow cytometry
(Fig. 5e). In samples drawn before HIV-1 infection, MAIT cell
responses to the cytokine stimulus recapitulated the pattern
previously reported for healthy donors, with higher IFNγ
expression in the CD56+ MAIT cells compared to their CD56−
counterparts (p < 0.01; Wilcoxon Signed Rank test) (Fig. 5e, f and
Supplementary Fig. 5). Importantly, this pattern was retained post-
infection, with no sign of decline in IL-12 and IL-18 responsiveness
during early chronic HIV-1 infection (Supplementary Fig. 5).
Together, the expansion of CD56+ MAIT cells represents a
progressive increase of innate characteristics within the MAIT cell
compartment throughout acute HIV-1 infection.

Fig. 3 The transcriptional signature of MAIT cells before and during acute HIV-1 infection. RNA-Seq was performed on sorted MAIT cells from the
PBMC of longitudinal samples corresponding to one pre-infection and three post-infection time points in the acute capture cohort (n= 9). a Volcano plots
depict upregulated (red) or downregulated (blue) genes compared to pre-infection at three post-infection time points in acute HIV-1 infection. Individual
genes listed in Supplementary Table 4. Highlighted genes have a –Log10 p-value≥ 3 and a Log2 fold change of 0.5 or −0.5 (corresponding to p≤ 0.001, and
fold change of 1 or −1, in a generalized linear model). b The temporal dynamics of the upregulated and downregulated genes shown longitudinally in acute
HIV-1 infection, together with plasma VL. c Shared and unshared differently expressed genes compared to pre-infection between all three post-infection
time points in acute HIV infection are highlighted as a Venn diagram, and listed in Supplementary Table 4. d Gene expression patterns were subjected to
Gene Set Enrichment Analysis (GSEA), and upregulated and downregulated pathways in post-infection time points compared to pre-infection are displayed
as a Normalized Enrichment Score (NES) heat map. Enrichment plots from three selected post-infection upregulated pathways compared to pre-infection
are shown; e, negative regulation of viral entry into host cell, f, regulation of IFNγ production, and g, natural killer cell mediated immunity. Genes
contributing to enrichment plots are listed in Supplementary Table 5. PBMC, Peripheral blood mononuclear cells. VL, viral load. MAIT cells are identified as
CD161++Vα7.2+ cells within CD3+ CD14-CD19- live lymphocytes.
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Transiently elevated MAIT cell function precedes decline. We
next investigated MAIT cell functionality in response to bacterial
or mitogen stimulus. MAIT cell responses in PBMC pulsed with
E. coli, or in response to PMA/Ionomycin, were detected by
intracellular cytokine expression as previously described45

(Fig. 6a). Compared to pre-infection, MAIT cell expression of
single functions did not change in response to E. coli, as ten-
dencies towards increased expression of GrzB at the time of viral
load set-point did not reach significance (Fig. 6b). MAIT cell

production of cytokines in response to bacterial stimulation were
rather stable during the first three time points evaluated, and
showed a trend towards decline at the final time point corre-
sponding to early chronic HIV-1 infection (Fig. 6b). This pattern
was also observed in PMA/ionomycin stimulation, with reduced
TNF expression at the final time point tested (p= 0.036; Fried-
man test with the Dunn’s multiple comparison test) (Fig. 6c).
Interestingly, determination of the total functionality in
MAIT cells in response to E. coli, calculated as the percentage of
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MAIT cells expressing at least one function in response to sti-
mulus (Fig. 6d), showed a pattern where this measure of MAIT
cell responses was transiently enhanced at the time of viral load
set-point (p= 0.04; Friedman test with the Dunn’s multiple

comparison test). This pattern reversed into a decline in func-
tionality at the early chronic time point in PMA/ionomycin sti-
mulated MAIT cells, as compared to baseline (p= 0.01; Friedman
test with the Dunn’s multiple comparison test).
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MAIT cell responses are associated with sCD14 and CRP levels.
Acute HIV-1 infection is associated with massive release of
cytokines including mediators of inflammation and a rise in
markers of microbial translocation46. Here we assessed plasma
levels of soluble CD14 (sCD14), C-reactive protein (CRP), IL-6,
and intestinal fatty acid binding protein (IFABP) at the pre-
infection time point and over the course of the first 45 days of
acute HIV-1 infection (Fig. 7a). Levels of CRP spiked very early in
infection and returned to normal by day 45, whereas the rise in
IFABP and sCD14 occurred with slower kinetics and did not fully
normalize to levels observed prior to infection. In contrast, IL-6
concentrations continued to rise over the course of this early stage
of infection. Interestingly, levels of sCD14, a marker of monocyte
activation and microbial translocation, correlated directly with
concurrent MAIT cell activation at peak viremia, and were
positively associated with MAIT cell production of TNF and
IFNγ at the time of set-point viral load (Fig. 7b). Also, levels of
CRP at peak viremia correlated with TNF and IFNγ production
by MAIT cells at both set-point viral load and early chronic
infection time point (Fig. 7c). Thus, microbial translocation and
acute-phase inflammatory responses may influence MAIT cell
activation and function during acute HIV-1 infection.

Discussion
Unconventional T cell subsets, such as MAIT cells, that recognize
non-peptide antigens presented by MHC class I-like molecules
broaden the scope of microbial antigen recognition beyond pro-
teins47. Many microbes of clinical relevance in the immuno-
compromised host, such as mycobacteria, express the riboflavin
pathway and can thus give rise to the main class of MR1-
presented antigens recognized by MAIT cells. Here, we investi-
gate the response of MAIT cells during the first critical days and

weeks of acute HIV-1 infection utilizing longitudinal pre-
infection and post-infection samples from the RV217 ECHO
study34, and show that the MAIT cell compartment responds
rapidly during acute HIV-1 infection (Fig. 8). At peak viremia
MAIT cells are already activated with elevated expression of
CD38, HLA-DR, TIGIT, and PD-1, and show clear signs of
transcriptional activation with upregulation of transcripts
involved in cell cycle progression and cell division. Interestingly,
MAIT cell activation correlates directly with plasma levels of
sCD14 at peak viremia. Even though sCD14 may not exclusively
mark microbial translocation, this correlation supports the model
where MAIT cell activation is driven by exposure to microbial
products and microbial antigens. Notably, the activation of
MAIT cells at peak viremia occurs at a stage in infection when
depletion of innate lymphoid cells occurs concomitant with signs
of gut barrier breakdown48. Furthermore, at peak viremia MAIT
cell levels of activation markers correlate directly with levels of
transcripts for KI67 and IRF4. This pattern is consistent with
initiation of proliferation and generation of effector-type
MAIT cells at this early phase of acute infection.

It is well established that MAIT cells suffer numerical and
functional decline in chronic untreated HIV-1 infection, but the
timing of this loss is unknown. Here, we demonstrate that the
initial signs of numerical loss occur beyond one year into HIV-1
infection, whereas no loss is seen during acute stages. In fact, the
initial activation is followed by significant expansion of the MAIT
cell compartment just after peak viremia, occurring both in
peripheral blood and in rectal mucosa. This is accompanied by
an enhanced response against E. coli-pulsed cells in terms of total
functionality, i.e., the ability of MAIT cells to respond with
any measured function. It thus seems like the initial wave of
activation at peak viremia causes a priming phenomenon, which
is followed by an effector response with expanded levels of
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the acute capture cohort, displayed longitudinally (n= 20). b Correlative analysis of plasma sCD14 fold over baseline at peak VL (median 16 days since first
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effector MAIT cells. Similar to the correlation between activation
markers and sCD14 at peak viremia, the functional capacity at the
time of set-point viral load correlates directly with sCD14. It is
thus possible that this response is driven by microbial translo-
cation and direct TCR engagement. Consistent with this, the TCR
repertoire of the MAIT cell compartment changes in response to
acute HIV-1 infection, with enhanced TCR diversity as infection
progresses into early chronicity. This enhancement of diversity
seems to be driven by expansion of some clones, decline of some
and addition of new clones not detected at the pre-infection time
point. Controlled infections of humans with S. enterica was
recently shown to lead to preferential expansion of the more
antigen reactive MAIT cell clonotypes44. The more mixed
response pattern observed here during acute HIV-1 infection is
consistent with a broad stimulus by diverse microbes via micro-
bial translocation.

The initial activation and expansion of MAIT cells during acute
HIV-1 infection is eventually followed by decreased activation, as
well as numerical and functional loss. Interestingly, expression of
the transcription factor IRF4 at peak viremia, a gene whose
induction and sustained expression in conventional CD8 T cells
corresponds to exhaustion in viral infection49, correlates both
directly with concurrent PD-1 expression levels, and inversely
with MAIT cell counts and percentages at later time points. This
opens the possibility that strong activation at very early stages
during infection may set the MAIT cell compartment up for
exhaustion at later stages. Another interesting aspect is that
functional decline seems to precede MAIT cell loss. It is possible
that these two facets of the MAIT cell compartment are inde-
pendent from each other. For example, progressive homing of
functional cells to peripheral sites may leave the less functional or
exhausted MAIT cells in circulation. This possibility is supported
by the increase in CCR5 expression by MAIT cells in early
chronic stages of infection in the absence of evidence of caspase
activation or caspase transcript upregulation, and also by the
increased levels of MAIT cells detected in rectal mucosa. Thus,
homing of MAIT cells to sites of inflammation and microbial
translocation remains a primary candidate explanation for the
loss of MAIT cells in circulation31.

The transcriptional landscape in MAIT cells during acute HIV-1
infection shows activation of a range of pathways, including
those involved in cell cycle progression and proliferation. Several
important immunological pathways were also upregulated, includ-
ing a gene signature for NK cell-mediated immunity. Furthermore,
there is progressively enhanced frequency of CD56 expression in
the MAIT cell compartment over time throughout acute and into
early chronic infection. This is notable because CD56 marks a
MAIT cell subset with enhanced responsiveness to innate cytokine
stimulation in healthy donors23, a pattern confirmed here for HIV-
1 infected individuals. It is important to note that the MAIT cell
responsiveness to IL-12 and IL-18 stimulation is preserved in
matched donor samples before and after HIV-1 infection. Overall,
these data are consistent with progressively enhanced innateness in
the MAIT cell compartment in response to HIV-1 infection, sug-
gesting that MAIT cells move along the recently described innate-
adaptive spectrum of unconventional T cells50.

The MAIT cell pool is mostly CD8+, with smaller DN and
CD4+ subsets. The longitudinal pattern over acute HIV-1
infection reveals changes in the subset composition as com-
pared to the pre-infection time point, with relatively fewer CD8+
and CD4+ MAIT cells, and an expanding DN MAIT cell subset.
The shift from CD8+ to DN character is consistent with the
expansion of effector-like MAIT cells, and with recent observa-
tions indicating that the DN subset is an activation-induced
derivative of the main CD8+ MAIT cell pool51. CD8+
MAIT cells give rise to DN MAIT cells as part of their effector
response, and this may be important given that the DN popula-
tion is functionally distinct with enhanced IL-17 and lower IFNγ
production51. The decline in CD4+ MAIT cells observed here is
different from the preservation of CD4+ MAIT cells seen in
previous studies of chronic HIV-1 infection, and may indicate
that this small subpopulation is susceptible to infection. The
difference between the present data and previously published data
may be explained by the fact that CD4+Vα7.2+CD161+ cells
include many contaminating non-MAIT cells and only approxi-
mately 30–50% of this population is bona fide MAIT cells23. The
present dataset is based on MR1-tetramer defined populations,
which excludes such non-MAIT cells from analysis.
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The previous observation by us and others that MAIT cells are
lost in chronic HIV-1 infection and generally do not recover in
response to successful cART24,25, indicated a persistent impair-
ment of this broad anti-microbial defense mechanism. In this
context, it is significant that this study indicates that the
numerical loss of MAIT cells does not occur within the first year
of infection. Some signs of functional impairment are evident
already at three months post infection but this may not be as
critical, since previous studies suggest that antibacterial respon-
siveness can at least be partly restored in residual MAIT cells
upon cART later in chronic infection24. Overall, this pattern
indicates that the MAIT cell compartment is not subject to rapid
degradation in the first months of HIV-1 infection, and can
probably be rescued by cART within the first months after
infection. There is thus a fairly generous window of opportunity
to preserve this important arm of anti-microbial immunity by
initiation of treatment within this period, but this ultimately
needs to be explored to better understand how early therapy can
ameliorate immune dysfunction.

It is interesting to note similarities between our observations in
acute HIV infection, and those made by others studying SIV
infection in non-human primates. Juno et al. recently observed
activation and expansion of MAIT cells in pigtail macaques
acutely infected with various SIV strains, with little evidence of
MAIT cell loss during the first nine months of infection52. In
chronically SIV infected Asian macaques, Vinton et al. observed
activation, proliferation and loss of MAIT cells53. Whereas dif-
ferences in host species and viral strain characteristics are
important, these patterns are broadly consistent with the patterns
observed in HIV-1 infected humans.

In summary, these findings delineate the dynamic MAIT cell
response to acute HIV-1 infection where the MAIT cell com-
partment initially responds and expands with enhanced function,
goes through TCR repertoire diversification, followed by pro-
gressive reprogramming away from TCR-dependent antibacterial
responses and towards enhanced innateness. These changes are
likely to have broad consequences for antimicrobial immunity in
humans infected with HIV-1.

Methods
Ethics. All subjects in studies RV217/WRAIR#1373, RV254/SEARCH 010/
WRAIR#1494, and RV304/SEARCH 013/WRAIR#1751 were adults and provided
written informed consent. For subjects that were unable to read, the consent
document was read to them with an impartial witness present; the volunteer, the
witness and the study staff obtaining consent signed the affidavit with a signature
or mark. Studies were reviewed and approved by the human subject ethics and
safety committees in each country, as well as by the Walter Reed Army Institute of
Research (WRAIR) (Silver Spring, MD, USA), in compliance with relevant federal
guidelines and institutional policies. RV304: The Institutional Review Board of the
Faculty of Medicine, Chulalongkorn University; and the WRAIR Institutional
Review Board. RV217: Institutional Review Board Royal Thai Army Medical
Department; Kenya Medical Research Institute (KEMRI) Scientific and Ethics
Review Unit (SERU); Uganda National HIV/AIDS Research Committee (NARC);
Mbeya Medical Research and Ethics Committee (MMREC) and the National
Health Research Ethics Committee (NatHREC); and the WRAIR Institutional
Review Board. RV254: The Institutional Review Board of the Faculty of Medicine,
Chulalongkorn University; and the WRAIR Institutional Review Board.

Subjects. This study focuses on 29 participants from the RV217 ECHO cohort
(Supplementary Table 1)34. The RV217 study enrolled high-risk, consenting adults
at four clinical research sites: Walter Reed Project, Kericho, Kenya; Makerere
University Walter Reed Project, Kampala, Uganda; Mbeya Medical Research
Center, Mbeya, Tanzania; and Armed Forces Research Institute of Medical Sci-
ences, Bangkok, Thailand. HIV-uninfected participants were screened twice weekly
with small samples through finger pricks, and analyzed with nucleic acid ampli-
fication test (Aptima HIV-1 RNA Qualitative test, Hologic Inc., San Diego, CA).
Enrollees with reactive tests were enrolled in a second phase of the study that
included twice-weekly sampling of large blood volumes for one month. Upon HIV-
1 confirmation by standard serological methods, HIV acute cases were offered
participation in long-term follow up phase. All HIV-1 positive participants were
referred to care providers for management of the infection, based on national

guidelines. The cases presented in this study are a selected set from a group of 29
RV217 participants for which cryopreserved PBMC were available at pre-infection,
and at least three post-infection time points corresponding to peak viral load
(median 16 days, range 14–22, since first positive test for HIV-1 RNA), set point
viral load (median 43 days, range 31–50, since first positive test for HIV-1 RNA),
and early chronic infection (median 85 days, range 60–126, since first positive test
for HIV-1 RNA). Occasionally, long term follow up samples were used (out to
1,040 days since first positive test for HIV-1 RNA).

Additional cross sectional studies were performed with samples from 7 acutely
HIV-1 infected participants from the RV254/SEARCH 010 study sampled before
initiation of cART, and 17 uninfected matched controls from the RV304/SEARCH
013 study39 (Supplementary Table 2).

Clinical parameters. Plasma HIV-1 RNA levels were measured using the Real-
Time HIV-1 Assay (m2000 RealTime System, Abbott Molecular). EDTA-
anticoagulated samples of whole blood were analyzed with the use of the BD
Multitest on a FACSCalibur flow cytometer (BD Biosciences).

Targeted quantitative gene expression analysis. CD161++Vα7.2+MAIT cells
from 20 individuals from the RV217 acute capture cohort from one pre-infection
time point and three post-infection time points were sorted (100 cells/well) directly
into reaction mixture (SuperScript III Reverse Transcriptase/Platinum Taq Mix,
Cells Direct 2× Reaction Mix, Invitrogen). Reverse transcription and specific
transcript amplification were performed using a thermocycler (Applied Biosystems
Gene Amp PCR System 9700) with the following parameters: 50 °C for 15 min,
95 °C for 2 min, and 95 °C for 15 s; and then 60 °C for 30 s for 18 cycles. Amplified
cDNA was then loaded into a Biomark 96.96 Dynamic Array chip using the
Nanoflex IFC controller (Fluidigm). This microfluidic platform was then used to
conduct quantitative PCR (qPCR). Threshold cycle (CT), as a measurement of
relative fluorescence intensity, was extracted from the BioMark Real-Time PCR
Analysis software. See Supplemental Experimental Procedures and Supplementary
Table 7 for details.

RNA-Seq transcriptomics. Peripheral blood MAIT cells were purified by sorting
(1911–64,011 total cells) using a FACS Aria SORP (BD Biosciences), pelleted, and
overlaid with 250 μl of RNAlater (ThermoFisher) and frozen at −20 °C. RNA was
extracted using the RNeasy Mini Kit (Qiagen), and RNA quality and concentration
were assessed with the Agilent 2100 Bioanalyzer Pico Chip. RNA-Seq libraries were
prepared using the SMART-Seq v4 Ultra Low Input RNA Kit (Clontech) according
to the manufacturer’s instructions. Amplified material was purified using Agen-
court AMPure XP beads (Beckman). cDNA quantity was assessed on a Qubit 3.0
(ThermoFisher) and fragment size was evaluated on a 2100 BioAnalyzer (Agilent).
The PCR products were next indexed using the Nextera XT DNA Library Prep Kit
(Illumina) according to the manufacturer’s instructions. Briefly, products were
tagmented using the Amplicon tagment mix containing Tn5 transposase, and
indexed using Nextera index 1 (i7) and index 2 (i5) primers. The libraries were
again cleaned-up with Agencourt AMPure XP beads, quantified, pooled, and
sequenced across 75 base pairs (bp) using a single-end strategy with a 75-cycle high
output flow cell on a NextSeq 500 (Illumina). Nine biological replicates were
sequenced per experiment, with four donor-matched time points corresponding to
one pre-infection and three post HIV-infection time points at peak viral load, set
point viral load, and early chronic infection. Median reads per sample was 22.9
million reads. The Unix based program Spliced Transcripts Alignment to a
Reference (STAR) v.2.6.1 with human genome hg38, was used for alignment54.
Transcription mapping was performed using RNA-seq by Expectation Max-
imization (RSEM) v.1.3.155. The feature Counts program was used for counting
mapped reads56. RUVSeq v1.12 was used to remove unwanted variation57, and
differentially expressed gene list was generated by edgeR v3.20. R package58. The
GSEA method42 was used for finding statistically significant pathways with 5917
gene sets of GO in Molecular Signatures Database (MSigDB) issued by Broad
Institute. TCR data was extracted from the RNA-Seq dataset from six donors with
sufficiently high cell counts across all four analyzed time points, using the MiXCR
software (https://mixcr.readthedocs.io/en/master/index.html). See Supplemental
Experimental Procedures for details on TCR analysis.

Polychromatic flow cytometry. Four polychromatic flow cytometry panels were
used to measure MAIT cell function, phenotype, and for cell sorting for tran-
scriptomics59. Briefly, thawed samples were washed, stained with LIVE/DEAD
Fixable Aqua Dead Cell dye (ThermoFisher), blocked for Fc receptors using
Normal mouse serum (ThermoFisher), and surface stained with antibody cocktail.
Samples were surface stained at room temperature for 30 min, and some were
intracellularly stained at room temperature for 30 min. Some samples were fixed in
2% paraformaldehyde or BD FIX/PERM Buffer (BD Biosciences) before acquisition
on a 5 laser, 16-parameter BD LSRII SORP flow cytometer (BD Biosciences) within
12 h of staining. Other samples used for sorting for downstream transcriptomics
were resuspended in sorting buffer (PBS containing 1% BSA) and sorted for bulk
MAIT cells for either RNA-Seq or targeted transcriptomics with Fluidigm Biomark.
Data were analyzed with FlowJo v.9.9.4 (TreeStar). See Supplemental Experimental
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Procedures and Supplementary Table 8 for specific antibodies, MR1 tetramer, and
reagents used in the study.

MAIT cell functional assay. MAIT cell functionality pre-HIV and post-HIV
infection was assessed using three stimulation techniques. Detailed experimental
procedures and specific antibodies used are described in Supplemental Experi-
mental materials. Briefly, PBMC were stimulated for either 24 h with partially fixed
E. coli D21 in the presence of anti-CD28, for 24 h with IL-12 and IL-18, or for 6 h
with PMA/ionomycin as per the manufacturer’s recommendation (eBioscience™
Cell Stimulation Cocktail (500×), ThermoFisher). All stimulation methods inclu-
ded BFA and monensin for the last 6 h of stimulation.

Soluble cytokine analysis. Luminex® based detection assays were used to
measure plasma levels of C-reactive protein (CRP) and IL-6 (EMD Millipore,
Billerica MA) per manufacturer’s instructions. Briefly, samples were mixed
with a cocktail of MagPlex® magnetic microspheres, bound to capture antibody
specific to proteins of interest. Following incubation with sample overnight at
4 °C, excess sample was washed off using a magnetic plate washer (BioTek
Instruments, Winooski VT) and biotinylated detection antibody cocktail was
added for 1 h at room temperature. Streptavidin-phycoerythrin was added for
30 min before a final wash and resuspension in sheath fluid. Data was collected
on a FlexMap 3D® system. Levels of sCD14 and intestinal fatty acid binding
protein (IFABP) were measured by standard chemiluminescent detection ELISA
(R&D Systems, Minneapolis MN) per manufacturer’s instructions and read on a
VersaMax® reader (Molecular Devices, Sunnyvale CA). Data were analyzed in
Prism version 6.0 for Mac OS X (GraphPad, La Jolla CA) using a 4-parameter fit
standard curve.

Isolation of sigmoid colon mucosal mononuclear cells. Sampling of gut-
associated lymphoid tissue was performed by sigmoidoscopy, and mucosal
mononuclear cells (MMCs) were isolated39. Briefly, 20–25 pieces of gut-associated
lymphoid tissue were collected from the sigmoid colon by sigmoidoscopy using
Radial Jaw 3 biopsy forceps (Boston Scientific, Natick, MA, USA). The biopsy
pieces were placed in complete RPMI 1640 media containing 10% human AB
serum (HAB; Gemini Bio-Product, West Sacramento, CA, USA), 1% HEPES, 1%
L-Glutamine, 0.1% Gentamicin (Invitrogen, Carlsbad, CA, USA), 1% Penicillin/
Streptomycin and 2.5 µg/ml Amphotericin B (Invitrogen, Carlsbad, CA, USA).
Samples were then digested using 0.5 mg/ml Collagenase II (Sigma, St. Louis, MO,
USA). Isolated MMCs from one donor were pooled, washed twice and then
counted using Trypan Blue exclusion. MMCs were directly used for phenotypical
characterization by flow cytometry.

Statistical analyses. The Wilcoxon Signed Rank test was used for comparison of
non-parametrically distributed paired data sets. For comparison of unpaired data
the Mann–Whitney test was used. The Spearman rank correlation test was used to
compare correlation between two parameters. For matched longitudinal analysis
the nonparametric Friedman test was performed with the Dunn’s multiple com-
parison test. Statistical analyses were performed with GraphPad Prism v.6.0c
(GraphPad Software).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of this study are available
within the article and its supplementary information files or are available upon
reasonable requests to the authors. The RNA-Seq data have been deposited in NCBI’s
Gene Expression Omnibus and are accessible through GEO accession number
GSE126752. The source data underlying medians in Fig. 1b, c and g; 2a and b; 5d, 6d and
7a are provided as a source data file.
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