
RESEARCH ARTICLE

Sequence Factorization with Multiple
References
Sebastian Wandelt*, Ulf Leser

Knowledge Management in Bioinformatics, Humboldt-University of Berlin, Rudower Chaussee 25, 12489
Berlin, Germany

*wandelt@informatik.hu-berlin.de

Abstract
The success of high-throughput sequencing has lead to an increasing number of projects

which sequence large populations of a species. Storage and analysis of sequence data is a

key challenge in these projects, because of the sheer size of the datasets. Compression is

one simple technology to deal with this challenge. Referential factorization and compres-

sion schemes, which store only the differences between input sequence and a reference

sequence, gained lots of interest in this field. Highly-similar sequences, e.g., Human

genomes, can be compressed with a compression ratio of 1,000:1 and more, up to two

orders of magnitude better than with standard compression techniques. Recently, it was

shown that the compression against multiple references from the same species can boost

the compression ratio up to 4,000:1. However, a detailed analysis of using multiple refer-

ences is lacking, e.g., for main memory consumption and optimality. In this paper, we

describe one key technique for the referential compression against multiple references: The

factorization of sequences. Based on the notion of an optimal factorization, we propose opti-

mization heuristics and identify parameter settings which greatly influence 1) the size of the

factorization, 2) the time for factorization, and 3) the required amount of main memory. We

evaluate a total of 30 setups with a varying number of references on data from three differ-

ent species. Our results show a wide range of factorization sizes (optimal to an overhead of

up to 300%), factorization speed (0.01 MB/s to more than 600 MB/s), and main memory

usage (few dozen MB to dozens of GB). Based on our evaluation, we identify the best con-

figurations for common use cases. Our evaluation shows that multi-reference factorization

is much better than single-reference factorization.

1 Introduction
The development of novel high-throughput DNA sequencing techniques has led to an exponen-
tially increasing flood of data. Only one/few individuals of each species was sequenced (like
humans, mice, E.coli, etc.) until recently. Decreasing costs nowmake it possible to sequence
large samples of a given population. Examples for such projects are the 1000-Genomes project
[1]; the international cancer sequencing consortium [2]; the UK10K project [3], and the Million

PLOSONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 1 / 28

OPEN ACCESS

Citation:Wandelt S, Leser U (2015) Sequence
Factorization with Multiple References. PLoS ONE
10(9): e0139000. doi:10.1371/journal.pone.0139000

Editor: M. Sohel Rahman, Bangladesh University of
Engineering and Technology, BANGLADESH

Received: December 20, 2014

Accepted: September 7, 2015

Published: September 30, 2015

Copyright: © 2015 Wandelt, Leser. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All data used in this
study is available from the following public
repositories: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
release/20110521/, http://1001genomes.org/data/
GMI/GMINordborg2010/releases/current/, ftp://ftp.
sanger.ac.uk/pub/users/dmc/yeast/latest/
cere_assemblies.tgz.

Funding: The authors have no support or funding to
report.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0139000&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://1001genomes.org/data/GMI/GMINordborg2010/releases/current/
http://1001genomes.org/data/GMI/GMINordborg2010/releases/current/

Veteran Program [4]. These large-scale projects are generating comprehensive surveys of the
genomic landscape of phenotypes (or diseases) by sequencing thousands of genomes [5]. Man-
aging, storing and analyzing this quickly growing amount of data is challenging [6]. Sequence
compression is a key technology to cope with the increasing flood of DNA sequences [7].

Compressing DNA with standard compression techniques is ineffective, since the distribu-
tion of symbols is close to random. Accordingly, standard compression schemes can often
reduce the space requirements by only approx. 6:1 (one base is encoded with up to 1.3 Bits), see
[8–10] for recent surveys. However, if a project only considers genomes from one species, scien-
tists often deal with hundreds of highly similar genomes. Similarity between biological sequences
can be exploited for compression using so-called referential compression schemes [11–16],
which encode the differences between an input sequence and a reference sequence. Since the ref-
erence sequence is assumed to be transferred separately, the overall size of compressed devia-
tions (encoded pointers into the reference) is smaller than the uncompressed size of a sequence.
Such referential compression techniques with single references achieve compression ratios of
1,000:1 and more for Human genomes. Preliminary experiments showed that referential com-
pression against multiple references often further boosts compression ratios [17], for instance up
to 4,000:1 and higher for human genomes [18, 19]. Intuitively, the more references are present,
the longer matches can be found in the collection, and the fewer compressed entries (=factors)
are required for storage of sequences. However, detailed analysis of multi-reference referential
factorization is an open problem. Open questions include: How much gain does one obtain
when computing a factorization against multiple references? How close to optimal are approxi-
mate factorization algorithms, which need considerably less main memory? Which technique/
index should be applied to compute a multi-reference factorization under resource constraints
(bandwidth limits and required main memory)? With this paper we provide an in-depth analysis
of multi-reference factorization techniques. Our major contributions are as follows:

1. We define the notion of an optimal factorization against multiple references, based on the
number of pointers into reference sequences. We use this measure to evaluate a multitude
of different factorization algorithms.

2. We devise three basic algorithms for computing an optimal factorization, each with differ-
ent runtime characteristics. While the first algorithm is history-free, i.e. it factorizes all
sequences independently from each other, the other two algorithms keep track of previ-
ously factorized sequences and exploit this information to speed up optimal factorization.

3. We develop a reference extension technique, which factorizes against multiple references,
while only an index over a single reference is needed, and thus requiring significantly less
main memory.

4. We perform an exhaustive evaluation on 30 configurations, which are instantiations of our
general factorization framework, on six datasets from three species (Human, Arabidopsis
thaliana, and Yeast).

5. Our results show a wide range of factorization rates (optimal to an overhead of up to 300%),
factorization speed (0.01 MB/s to more than 600 MB/s), and main memory usage (few
dozen MB to a dozens of GB). We identify the best configurations depending on common
use cases using multi-criteria decision analysis techniques.

Multi-reference referential factorization
We first revisit some preliminaries for referential compression and factorization as in [18]: A
sequence s is a finite ordered list of characters from an alphabet S. The concatenation of two

Sequence Factorization with Multiple References

PLOS ONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 2 / 28

sequences s and t is denoted with s � t. A sequence s is a subsequence of sequence t, if there exist
two sequences u and v (possibly of length 0), such that t = u � s � v. The length of a sequence s
is denoted with jsj and the subsequence starting at position i with length n is denoted with s(i,
n). s(i) is an abbreviation for s(i,1). All positions in a sequence are zero-based, i.e., the first char-
acter is accessed by s(0). A referential factorization of a sequence encodes the sequence as a
concatenation of subsequence-pointers into references. We extend the definition of referential
factorization from a single reference [18] to multiple references:

Definition 1 (Referential Factorization) Let REF be a set of reference sequences and s be a
to-be-factorized sequence. A quadruple rme = (id, s, l,m) is called referential match entry (RME)
if id 2 REF is a (identifier for a) reference sequence, s is a number indicating the start of a match
within id, l denotes the match length, and m denotes a mismatch symbol. A referential factoriza-
tion of s w.r.t. REF is a list of RMEs f = [(id1, s1, l1,m1),. . ., (idn, sn, ln,mn)] such that (id1(s1, l1) �
m1) � . . . � (idn(sn, ln) �mn) = s.

The size of a RME (id, s, l,m) is defined as l+1. The offset of a RME rmei in a referential fac-
torization f = [rme1,. . ., rmen], denoted offset(f, rmei), is defined as ∑j < ijrmejj.

The algorithm shown in Table 1 is a simple method for computing a referential factorization
against multiple references. The input sequence s is traversed from left to right, and at each
step, the longest prefix of s which can be found in any of the references {ref1,. . ., refm}, is
replaced with one RME. Unfolding a factorized sequence f is equally simple: We replace each
RME in f with its unfolded sequence, where the unfolding of a single RME rme = (id, s, l,m) is
id(s, l) with the mismatch characterm concatenated to the end. The factorization of s against
REF is denoted with f = fact(s, REF) and the unfolding of f is denoted with s = unfold(f, REF).

It should be noted that computing a factorization against a set of references can also be
achieved by first concatenating all reference sequences in REF to a single sequence ref and then
compute a factorization against ref. In this case, the factorization can be computed using stan-
dard factorization algorithms, e.g. [20–24]. Implementations of compression algorithms
against a single reference, e.g. GDC [13] and RLZ [25], can be applied to multiple references in
a similar way. The major limitation of these algorithms/implementations is that similarities
between references are left unexploited. We would like to further emphasize that an optimal
factorization does not always result in an optimal compression, since the factorization is com-
pressed by an entropy encoder or using heuristic-based encodings. However, a small factoriza-
tion is usually a prerequisite for achieving high compression rates.

Table 1. Optimal algorithm for computing a referential factorization against multiple references.

Input: to-be-factorized sequence s and collection of reference sequences REF = {ref1,. . ., refm}

Output: factorization f of s with respect to REF

1: Let f be an empty list

2: while jsj 6¼ 0 do

3: Let pre be the longest prefix of s, such that ðpos;preÞ 2 searchðrefiÞ0pre, for a number pos, and there
exists no 1 � j � m, with j 6¼ i and refj contains a longer prefix of s than refi

4: if s 6¼ pre then

5: Add (refi, pos,jprej, s(jprej)) to the end of f

6: Remove the first jprej+1 symbols from s

7: else

8: Add (refi, pos,jprej − 1, s(jprej − 1)) to the end of f

9: Remove the prefix pre from s

10: end if

11: end while

doi:10.1371/journal.pone.0139000.t001

Sequence Factorization with Multiple References

PLOS ONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 3 / 28

Example 1 Given the sequences in Fig 1, let REF = {ref1, ref2}.We obtain the following refer-
ential factorizations with the algorithm from Table 1:

factðs1;REFÞ ¼ ½ð1; 0; 8;CÞ; ð0; 10; 13;TÞ; ð0; 24; 11; 71Þ; ð1; 32; 4;AÞ�
factðs2;REFÞ ¼ ½ð1; 0; 8;CÞ; ð0; 10; 13;TÞ; ð0; 24; 8;AÞ; ð0; 23; 3; 67Þ; ð0; 12; 3;GÞ�
factðs3;REFÞ ¼ ½ð0; 26; 3;CÞ; ð0; 4; 5;CÞ; ð0; 10; 13;TÞ; ð0; 24; 11; 65Þ; ð0; 33; 3;AÞ�
factðs4;REFÞ ¼ ½ð0; 0; 23;TÞ; ð0; 24; 11;GÞ; ð1; 32; 4; 65Þ�

We define a factorized sequence database for a collection of sequences as follows.
Definition 2 (Factorized sequence database) A factorized sequence database (FSD) for a

collection of sequences S = {s1,. . ., sn} and a collection of references REF = {ref1,. . ., refm}, is a col-
lection of referential factorizations fsd = {f1,. . ., fn}, such that for all 1� i� n:unfold(fi, REF) =
si. The size of a factorized sequence database is size(fsd) = ∑f 2 fsdjfj. A factorized sequence data-
base fsd isminimal for a collection of sequences S and a collection of references REF, if there exists
no fsd2 for S and REF with size(fsd2)< size(fsd). The FSD size optimization problem is to find a
minimal fsd for S and REF.

Note that the factorized sequence database does not take into account the size of the refer-
ences, but only the size of factorizations. Considering the size of the references in addition, is
an interesting direction for future work. In the following, we first prove that the algorithm in
Table 1 computes minimal factorized sequence databases (Proposition 1). We analyze the com-
plexity of this algorithm in Proposition 2.

Proposition 1 Given S = {s1,. . ., sn} and REF, let fi be the result of algorithm in Table 1 for
sequence si and references REF. The factorized sequence database {f1,. . ., fn} is minimal as long
as the storage necessary for a single RME is uniform.

Proof 1 Since we use suffix dictionaries and traverse the input sequences from left-to-right,
the same arguments from Proof 1 in [26] are used to prove optimality. Note that a prerequisite
for optimality is that the size of a referential match entry is constant.

Proposition 2 Given S = {s1,. . ., sn} and REF, a minimal factorized sequence database for S
and REF can be computed in O(n�jREFj�maxsi 2 S(jsij)).

Proof 2 Each of the n sequences from {s1,. . ., sn} is factorized separately. The algorithm from
Table 1 factorizes a single sequence in O(jREFj�maxsi 2 S(jsij)) as follows: The longest matching
prefix pre of the to-be-factorized sequence si is looked up in each reference (jREFj in total). This
takes O(jprej�jREFj) time, using an index structure for each reference which allows subsequence
lookups in time linear to the query length. After the longest prefix is identified, at least jprej sym-
bols are removed from the beginning of si and the process is repeated. Thus, we have O(jREFj�jsij)
lookups for sequence si. Overall, the number of lookups for a single sequence in S is bound by O
(jREFj�maxsi 2 S(jsij)). Since we have n sequences, we obtain O(n�jREFj�maxsi 2 S(jsij)).

Fig 1. Sequences for Example 1.

doi:10.1371/journal.pone.0139000.g001

Sequence Factorization with Multiple References

PLOS ONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 4 / 28

Note that Proposition 2 can equally be stated and proven over the concatenation of all refer-
ences into one sequence, e.g. if we create a single suffix tree over the concatenation of all refer-
ences. However, in practice, one suffix tree per reference is more convenient. First, many
implementations have difficulties to handle input sequences with several billion characters,
since during index construction these techniques need main/external memory 10–15 times the
length of the concatenated sequences. Second, whenever a reference is changed/removed/
added, the suffix tree over the whole concatenation needs to be recomputed.

2 Methods
The computation of a minimal factorized sequence database is time consuming for very long
sequences. The actual run time depends heavily on the number of lookups in the index struc-
tures of the references. In Section 2.1, we discuss how to increase the efficiency of factorization
techniques in terms of speed, by exploiting information about previously compressed
sequences to reduce the number of index lookups. In Section 2.2, we discuss how to avoid keep-
ing all reference indexes in main memory. We design a technique called reference extension,
which rewrites a single-reference referential factorization into a referential factorization against
multiple references, based on a compressed representation of references.

2.1 Avoiding index lookups
The factorization speed against multiple references mainly depends on the number of index
lookups during factorization: While the overall factorization process is linear in the length of
the sequence, the lookup of a to-be-factorized prefix in the references is very time consuming.
For instance, walking down a suffix tree character by character will frequently yield a cache
miss, and can easily take up to several milliseconds for long references, if long prefixes match.
In contrast, performing character-wise sequence matching from fixed positions in two
sequences is very fast on today’s computer architectures. In the algorithm from Table 1, which
computes an optimal factorization, we need to perform a lookup in the reference indexes for
each new RME. Finding the longest matching prefix is necessary to guarantee optimality.

We design three heuristics, which avoid index lookups by exploiting the factorization con-
text, i.e., the history of the factorization so far. In order to discuss our heuristics, we define a
general algorithm for factorization of a sequence database against a collection of references.
The algorithm is shown in Table 2. This algorithm is an extension of the algorithm from
Table 1, with the following differences. First, we factorize a whole sequence database, not only
a single sequence. Second, we keep track of the previously encoded RME prme. Third, we use a
function predict which, based on prme and the to-be-factorized sequence (suffix), suggests a
candidate RME for factorization. If the prediction succeeds, the RME is added to the factoriza-
tion without an index lookup. If the function returns (0,0,0,0), this means that no RME was
predicted, and consequently a lookup in the reference indexes needs to be performed. Whether
this algorithm is optimal depends on the predict-function. We discuss three instantiations of
the predict-function below.

2.1.1 Local matching. A very simple, yet effective, technique is local matching [18]. The
idea is as follows: This heuristic tries to find a long RME in the area near the end of the previous
RME into the reference. Intuitively, if many sequence deviations consist of SNPs/small indels
(with respect to the reference), we often do not need to perform an expensive index lookup in
the (large) reference dictionaries, but can find a good next RME by searching left and right to
the end of the previous RME. We restrict the maximum distance from the previous match end
by a parameter δmax. This exploitation of locality yields fewer cache misses and is efficiently
supported by all computer architectures. In addition, we only use the best local matching RME,

Sequence Factorization with Multiple References

PLOS ONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 5 / 28

if it is longer than a threshold lmin. The prediction function of local matching is formalized in
Table 3. This heuristic significantly increases factorization speed (see Section 5.1 for analysis).
This heuristic is, however, not optimal: It might happen that local matching encodes rather
short consecutive matches, while longer RMEs could be encoded using a different part of the

Table 3. Local matching prediction.

Input: Sequence s, RME prme, and collection of references REF = {ref1,. . ., refm}

Output: RME candidate

1: Let candidate = (0,0,0,0)

2: for −δmax � δ � −δmax do

3: Let p = prme.pos+prme.l+1+delta

4: Let l be the length of the longest prefix of refprme.id(p,jrefprme.idj − p) matching with the prefix of s

5: if l � candidate.l^l � lmin then

6: Set candidate = (prme.id, p, l, s(l))

7: end if

8: end for

doi:10.1371/journal.pone.0139000.t003

Table 2. Referential factorization with RME prediction.

Input: Sequence database S = {s1,. . ., sn} and collection of references REF = {ref1,. . ., refm}

Output: factorized sequence database fsd = {f1,. . ., fn}

1: Let fsd = ;
2: for 1 � i � n do

3: Let f be an empty list

4: Let s = si
5: while jsj 6¼ 0 do

6: Let candidate = predict(s, prme, REF)

7: if candidate 6¼ (0,0,0,0) then

8: Add candidate to the end of f

9: Remove the first jcandidatej symbols from s

10: else

11: Let pre be the longest prefix of s, such that ðpos;preÞ 2 searchðrefiÞ0pre, for a number pos, and
there exists no 1 � j � n, with j 6¼ i and refj contains a longer prefix of s than refi

12: if s 6¼ pre then

13: Set rme = (refi, pos,jprej, s(jprej))
14: Add rme to the end of f

15: Remove the first jprej+1 symbols from s

16: else

17: Set rme = (refi, pos,jprej − 1, s(jprej − 1))

18: Add rme to the end of f

19: Remove the prefix pre from s

20: end if

21: end if

22: Let prme = rme

23: end while

24: Add f to the end of fsd

25: end for

doi:10.1371/journal.pone.0139000.t002

Sequence Factorization with Multiple References

PLOS ONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 6 / 28

reference (or even a different reference sequence). This raises the question, whether it is possi-
ble to avoid index lookups with the guarantee of optimality.

2.1.2 Optimal RME prediction based on factorization history. At first, it seems unintui-
tive that one can avoid index lookups and still guarantee optimality. However, when factorizing
a large number of highly-similar sequences, lookups for the same prefix often are performed
repeatedly, which lead to the same RME (if the collection of references remains fixed during
factorization; this is our assumption here). If such redundant lookups could be avoided, the fac-
torization time can be tremendously reduced. We give an example for redundant lookups:

Example 2We want to factorize the four sequences from Example 1 against REF. When we
factorize s1, we start with a longest matching prefix lookup of AACTCGGGCGGTGGCCAG. . .,
and obtain RME (1,0,8, C). The next three longest matching prefix lookups yield (0,10,13,T),
(0,24,11,A), and (1,32,4,A), respectively. After we factorized s1 against REF, we start with the fac-
torization of s2. We look up the longest matching prefix of AACTCGGGCGGTGGCCAG. . . in
the references and obtain the RME (1,0,8,C). This RME is identical to the first RME we obtained
during the factorization of s1 against REF, since it describes the identical longest matching prefix.
Similarly, the next longest matching prefix lookup yields (0,10,13,T), which was already used as
the second RME in the factorization of s1. This small example shows that we repeatedly lookup
similar sequences and often obtain identical RMEs describing a common prefix of a suffix.

One possibility to avoid repeated lookups of the same prefix is to keep track of the seen pre-
fixes and the RMEs describing them, in a Patricia-tree-like data structure. However, this
approach requires large amounts of main memory, and the tree structure is again subject to
many cache-misses during traversal. Intuitively, we would like to have a compressed represen-
tation which helps us to predict the next RME, based on the history of factorization so far. For
this purpose, we introduce a new data structure called RME graph.

A RME graph describes all consecutive pairs of RMEs for multiple factorizations. The RMEs
are modeled as vertexes and there exists an edge between two vertexes, if these two RMEs
occur consecutively in any referential factorization of the FSD. We augment the edges in RME
graphs with position information (identifier of the referential factorization and offset of the
second RME in the pair).

Definition 3 (RME Graph) The RME Graph of a factorized sequence database fsd = {f1,. . .,
fn} is defined as a graph hV, Ei, such that V = {rmej9i.rme 2 fi} is the set of vertexes and E is a set
of edges, such that (rme1,(i, pos), rme2) 2 E if and only if we have offset(fi, rme1) = pos − jrme1j,
offset(fi, rme2) = pos, and rme2 is not the last RME in fi.

Note that we do not store the last RME of each referential factorization. This is necessary in
order to guarantee optimality of compressions. We explain this below.

Example 3 The RME graph for the sequences from Example 1 is shown in Fig 2.
Here we exploit RME graphs to avoid index lookups and still preserve optimality. Suppose

that we are factorizing a sequence database {s1,. . ., sn} against REF and are processing si, i.e. we
have already factorized {s1,. . ., si − 1}. Let rmeg = hV, Ei be the RME graph for {f1,. . ., fi − 1}. We
define a notion called RME matching to decide, whether a RME in a RME graph describes the
prefix of a sequence.

Definition 4 (RME matching) A RME (id, s, l,m) matches a sequence s, if s(0, l+1) =
id(s, l) �m.

During factorization, if any rme = (id, s, l,m) in the RME graph matches current si suffix,
then there cannot be any better (longer) match in the references (see the proof below), and
thus, we use rme as a compressed representation of the prefix of length l+1 of si. This prediction
function is presented in Table 4. Note that this prediction function takes an additional argu-
ment: The RME graph of the sequences factorized before, i.e., if the algorithm from Table 2 is
currently factorizing si, then the RME graph rmeg is built over the factorizations of s1 to si − 1.

Sequence Factorization with Multiple References

PLOS ONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 7 / 28

Proposition 3 The algorithm from Table 2 with the prediction function of Table 4 computes
a minimal factorized sequence database for S and REF.

Proof 3We prove Proposition 3 by induction on the number of sequences in S. The induction
base is jSj = 1, such that the RME graph is empty. In this case, the algorithm is identical to
Table 1 (for multiple sequences), and thus, computes an optimal factorization. The induction
step is as follows: Suppose we have factorized n − 1 sequences from S and factorize sn. The inter-
esting case is that we find a RME (ref, pos, l,m) 2 V, i.e., the nodes of the RME graph, which
matches sn, as defined in Definition 4. We need to show that there is no other RME into REF
whose length is greater than l+1. Assume on contrary that there exists one such RME (refX, posX,
lX,mX) with lX > l. This implies that at least the first l+1 characters of reference refX starting
from position posX match with sn. By induction hypothesis, all RMEs in rmeg describe maximal
matches with respect to REF. But, if (ref, pos, l,m)matches s and (refX, posX, lX,mX)matches s as
well, then (ref, pos, l,m) is not the longest match in the references, since we assume that l< lX.

Note that for Proposition 3 to hold, we cannot store the last RME of a factorization in the
RME graph, since these RMEs do not necessarily describe a longest match (see Line 17–19 in
Table 2). Thus we omit the last RME of each factorization from RME graphs. To further support
the understanding of Proposition 3 and its corresponding proof, we provide a small example:

Fig 2. RME graph for the sequences from Example 1. The graph has 8 nodes and 8 edges. The edge from
(1,0,8,C) to (0,10,13,T) occurs two times: one time for the factorization of s1 and another time for the
factorization of s2.

doi:10.1371/journal.pone.0139000.g002

Table 4. General RME graph prediction.

Input: Sequence s, RME prme, a collection of references REF = {ref1,. . ., refm}, and a RME graph
rmeg = hV, Ei
Output: RME candidate

1: Let candidate = (0,0,0,0)

2: for rme 2 V do

3: if rme matches s then

4: Set candidate = rme

5: end if

6: end for

doi:10.1371/journal.pone.0139000.t004

Sequence Factorization with Multiple References

PLOS ONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 8 / 28

Example 4 Revisiting Example 2, assume that we have factorized s1 and are now factorizing
s2. The first RME is (1,0,8,C). Next, we try to factorize the suffix GGTGGCCAGGCGGT. . . of s2,
which is matched by the RME (0,10,13,T). This RME was added to the RME graph during the
factorization of s1. Now suppose that there would exist a RME into the reference longer than 13
symbols. In this case, the subsequence GGTGGCCAGGCGGT must occur somewhere in one of
the references. However, if this subsequence occurred in the references, then we would have
already factorized s1 differently when obtaining (0,10,13,T), since always searched for the longest
possible matches.

We described how to avoid costly index lookups in the references, while guaranteeing an
optimal factorization. The major shortcoming of the algorithm in Table 2 using the prediction
function of Table 4 is that it checks for all RMEs in rmeg, whether they match with a to-be-fac-
torized prefix. If the number of RMEs in the RME graph grows, checking all RMEs can be more
time-consuming than a single longest matching prefix-lookup in all references. Moreover, the
vast majority of these checks eventually fail, since only one/few previously encoded RMEs
match a current prefix. We need a strategy to select a promising subset of all RMEs in rmeg to
reduce the number of failed RMEmatching checks. We introduce two such heuristics below.

We would like to select a subset of RME candidates based on the current context of factori-
zation. A simple, yet very effective, strategy is to exploit the previously encoded RME as a con-
text of factorization, just as we did with local matching: Identical RMEs are often followed by
similar/identical RMEs. All we need to do is to look up the previously encoded RME prme in
the RME graph, get all successor RMEs, i.e. all RMEs which followed prme in previously factor-
ized sequences, and check for these RMEs whether they match a current prefix of the to-be-fac-
torized sequence. It is important to note that reducing the number of candidates still preserves
the factorization algorithm optimal, since in the worst case an index lookup is performed in all
references (just that we might miss some RMEs, whose lookup could have been avoided). We
call this strategy SUCC (for successor). The predict-function is shown in Table 5.

Only checking RMEs which have exactly the same predecessor RME can be too strict. We
propose a more relaxed heuristic which exploits the idea behind local matching. The intuition
is that RMEs which end at the same position in the reference often have the same next RME, if
the unfolded sequences are highly similar. The algorithm is shown in Table 6. This heuristic
keeps the factorization algorithm optimal, since in the worst case an index lookup is performed
in all references. We call this strategy POSI (for position).

2.2 Decreasing memory usage
The amount of memory required for factorization against multiple references grows linearly
with the number of references: Due to resource constraints, (optimal) referential factorization
against many, large references is only feasible on high-end systems. For instance, a compressed

Table 5. RME graph successor prediction (SUCC).

Input: Sequence s, RME prme, a collection of references REF = {ref1,. . ., refm}, and a RME graph
rmeg = hV, Ei
Output: RME candidate

1: Let candidate = (0,0,0,0)

2: for (prme,(i, pos), rme) 2 E do

3: if rme matches s then

4: Set candidate = rme

5: end if

6: end for

doi:10.1371/journal.pone.0139000.t005

Sequence Factorization with Multiple References

PLOS ONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 9 / 28

suffix tree for a single whole human genome takes approx. 6 GB, while an enhanced suffix
array consumes 30 GB and more.

Note that we have proposed a heuristic for multi-reference factorization [18]. The general
idea is that instead of factorizing against indexed uncompressed references, we also factorize
sequences against factorized references, exploiting the fact that identical subsequences are
often encoded with identical RMEs. First, given a set of references REF = {ref1,. . ., refm} all ref-
erences are factorized against a single reference (ref1) only. Second, all to-be-factorized
sequences in a sequence database S are factorized against ref1, using, for instance, the algorithm
from Table 1. At this stage, we have a set of factorized references and a set of factorized
sequences. In the final step, all factorized sequences are rewritten against the factorized refer-
ences, which eventually yields a multi-reference factorization. A description of this algorithm is
shown in Table 7. We refer to this algorithm as reference extension, since starting from one ref-
erence, a factorization is extended to multiple references.

The actual reference extension is encoded in Line 8 of Table 7, here only an abstract descrip-
tion of the extension process is shown. In [18], the extension process was implemented as fol-
lows: Traversing the RMEs of fi from left to right, greedily find the longest matches in fsdref The
main trick is to view RMEs as symbols, which can be identical, and similarly to the algorithm
from Table 1, we can encode lists of RMEs as pointers into other referential factorizations. If a
longest match is found that covers at least two RMEs in fi, then this subsequence of RMEs in fi
is replaced with a single RME into the (unfolded) reference. We refer to this process as right-
extension, since the RMEs in a factorized sequence are traversed from left to right. Here, we

Table 6. RME graph position prediction (POSI).

Input: Sequence s, RME prme, a collection of references REF = {ref1,. . ., refm}, and a RME graph
rmeg = hV, Ei
Output: RME candidate

1: Let candidate = (0,0,0,0)

2: for rme 2 V, such that there exists a rmet 2 V with (rmet,(prme.refid, prme.s+prme.l+1), rme) 2 E do

3: if rme matches s then

4: Set candidate = rme

5: end if

6: end for

doi:10.1371/journal.pone.0139000.t006

Table 7. Referential factorization with reference extension.

Input: Sequence database S = {s1,. . ., sn} and collection of references REF = {ref1,. . ., refm}

Output: factorized sequence database fsd = {f1,. . ., fn}

1: Factorize REF against {ref1} and obtain fsdref (using the algorithm from Table 2)

2: Let rmeg be the RME graph of fsdref
3: Factorize S against {ref1} and obtain fsdS (using the same algorithm as for fsdref
4: Let fsd = ;
5: for fi 2 fsdS do

6: Let fo = ;
7: while jfij 6¼ 0 do

8: Extend fi to fo, using rmeg and fsdref
9: end while

10: Add fo to fsd

11: end for

doi:10.1371/journal.pone.0139000.t007

Sequence Factorization with Multiple References

PLOS ONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 10 / 28

exploit RME graphs for extension, since, given two identical RME, we can find the right-hand
RMEs by visiting the successors of the identical RMEs.

However, further analysis of reference extension showed that changing the direction of
extension to right-to-left, can actually decrease the number of RMEs. We show an example
explaining why left-extension is often more effective.

Example 5We are given one reference and two to-be-factorized sequences:

ref1 ¼ AAGCTCGGGAGGTGGCCAGGCGGCAGGAAGGCGCACCC

s1 ¼ TAGGAGCTCGGGAGGGCCAGGCGGCAGGAAGGCGCACCC

s2 ¼ ATAGGAGCTCGGGAGGGCCAGGCGGCAGGAAGGCGCACCC

Note that s2 = A � s1.We obtain the following referential factorizations:

f1 ¼ factðs1; fref1gÞ ¼ ½ð0; 4; 1;AÞ; ð0; 7; 4;CÞ; ð0; 4; 8;GÞ; ð0; 15; 22;CÞ�
f2 ¼ factðs2; fref1gÞ ¼ ½ð0; 0; 1;TÞ; ð0; 24; 4;GÞ; ð0; 3; 9;GÞ; ð0; 15; 22;CÞ�

Suppose that in addition we want to exploit similarities between f2 and f1, by referentially factoriz-
ing f2 against (factorized) f1. If we use right-extension (see above), the two sequences only share one
RME: (0,15,22,C). This RME is the right-most RME in f2, and thus, right extension will not rewrite
f2 at all: The problem is that the commonalities between s1 and s2 are only identified after two iden-
tical RMEs encoding identical subsequences. In fact, the last two RMEs of f1, [(0,4,8,G),(0,15,22,
C)], describe a suffix of [(0,3,9,G),(0,15,22,C)]. The same observation holds when further extending
to the left: [(0,7,4,C),(0,4,8,G),(0,15,22,C)] is a suffix of [(0,24,4,G),(0,3,9,G),(0,15,22,C)] although
both sequences are encoded with distinct RMEs. Extending further to the left, we find the f1 is a sub-
sequence of f2 and that the last three RMEs of f2 encode a subsequence of f1. These three RMEs in f2
can be replaced with (1,0,36,C), where 1 is the identifier for factorized reference f1.

We exploit the observation from Example 5 as follows: Given two identical RMEs as
anchors, one in a factorized reference and one in a to-be-extended factorized sequence, we
unfold the RMEs on-the-fly towards the left, until neither of the two unfolded sequences is sub-
sequence of the other one. We find the longest possible extension (among all identical RMEs in
all references) and rewrite the RME-subsequence of fi accordingly to represent the longer
match into the factorized reference. We call this process left-extension. In general, it is possible
to combine left-extension with right-extension. However, the design of such algorithms is com-
plicated, since one needs to factorize in both directions and possibly repeatedly replace previ-
ously factorized subsequences.

3 Results
We used six real-world datasets in our experiments: 110 sequences from two different chromo-
somes of Arabidopsis thaliana (AT1 and AT5), 110 sequences from three human chromosome
(HG1, HG10, HG21), and a set of 38 yeast genomes (yeast). Details of the datasets are shown
in Table 8. Human chromosomes have a very high sequence similarity among different indi-
viduals and excellent compression rates have been shown in the literature [8–10]. We selected
three distinct chromosomes to cover different lengths. Yeast genomes are the most dissimilar
sequences in our dataset and compression rate is expected to be much worse than for Human
chromosomes. The degree of similarity between Arabidopsis thaliana chromosomes is in
between Human chromosomes and yeast genomes.

We used the same datasets as in [18]. The data can be obtained as follows: Human genomes
can be found in the archive ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/ of the
1000 Genomes Project [1] as VCF [27] files. Since the VCFs contain phased genome data, two

Sequence Factorization with Multiple References

PLOS ONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 11 / 28

haploid sequences can be derived for each individual. In our experiments, we have only
extracted one consensus sequence for each individual, always choosing the first sequence only.
For instance, variant rs73877820 of chr22 contains (among others) the following two data
fields: a) 1j0:1.000: −5.00,0.00, −5.00 and b) 0j1:0.900: −2.49, −0.46, −0.19. In the former case
(a), we incorporated rs73877820 into the consensus sequence, while in the latter case (b), we
chose the value of the reference sequence instead. The data for Arabidopsis thaliana is taken
from the 1001 Genomes project [28] from release GMINordborg2010 at http://1001genomes.
org/data/GMI/GMINordborg2010/releases/current/. For each strain, a file with SNPs with
respect to the reference TAIR9 is provided. The dataset for yeast [29] genomes is available as
well at ftp://ftp.sanger.ac.uk/pub/users/dmc/yeast/latest/cere_assemblies.tgz.

We conducted an extensive set of experiments for the evaluation of factorization methods
and heuristics, in terms of factorization size, speed, and main memory usage. All experiments
were run in a server with 1 TB RAM and 4 Intel Xeon E7-4870, where all experiments were run
in a single thread only. Parallelization is left for future work. Our analysis shows that single-
threaded factorization algorithms already face an IO-bottleneck for highly-similar sequences.
Code was implemented in C++, using the BOOST library, CST [30] for compressed suffix
trees, and SeqAn [31] for enhanced suffix arrays. Our code can be downloaded at http://www.
informatik.hu-berlin.de/*wandelt/MRF for free academic use.

The setup for our experiments is described in Section 3.1 and parameters for experiments are
analyzed in Section 5.1 In Section 3.2 we report on the results of optimal multi-reference factori-
zation and discuss heuristic factorization in Section 3.3. We analyze the speed of multi-reference
factorization techniques in Section 3.4 and report on main memory usage in Section 3.5.

3.1 Experimental Setup
We compared 30 configurations: For each configuration we chose to instantiate the following:
the type of index structure for reference sequences, the match finding algorithm, and the refer-
ence extension method. These components of a configuration are described as follows:

• We have used three index structures for references: Compressed suffix trees (CST), enhanced
suffix array (ESA), and a k-mer index (KMER). The value of k is chosen in Section 5.1.

• We compared four match finding algorithms: Basic greedy lookup in the references (BASE),
RME-successor prediction (SUCC), positional RME prediction (POSI) and local match-
finding (LOMA). The parameters for LOMA are chosen in Section 5.1.

• We distinguished three types of reference extension methods: Left-extension (L), right-exten-
sion (R) and no extension (N, where all references are indexed in main memory).

A configuration is denoted as INDEX_MATCHFINDING_EXTENSION, for instance,
CST_POSI_N is a configuration which creates a compressed suffix tree (CST) for each

Table 8. Datasets for evaluation.

Name Description No. of References No. of sequences Avg length jΣj
AT1 1st chromosome of Arabidobsis thaliana Up to 10 100 30,427,671 5

AT5 5th chromosome of Arabidobsis thaliana Up to 10 100 26,975,502 5

HG1 1st Human chromosome (longest) Up to 10 100 249,184,427 5

HG10 10th Human chromosome (average length) Up to 10 100 135,493,299 5

HG21 21st Human chromosome (smallest) Up to 10 100 48,113,871 5

yeast Complete yeast genomes Up to 10 28 12,592,856 5

doi:10.1371/journal.pone.0139000.t008

Sequence Factorization with Multiple References

PLOS ONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 12 / 28

http://1001genomes.org/data/GMI/GMINordborg2010/releases/current/
http://1001genomes.org/data/GMI/GMINordborg2010/releases/current/
http://www.informatik.hu-berlin.de/∼wandelt/MRF
http://www.informatik.hu-berlin.de/∼wandelt/MRF

reference (N) and uses positional RME prediction (POSI). We checked all combinations except
from KMER_SUCC and KMER_POSI, since k-mer-based indexes are not applicable for opti-
mal factorization. The following configurations compute an optimal factorization: CST_BA-
SE_N, CST_POSI_N, CST_SUCC_N, ESA_BASE_N, ESA_POSI_N, and ESA_SUCC_N. All
other configurations compute a factorization without optimality guarantee.

First, we chose the following parameters for indexing and match finding techniques: The
choice of k for a k-mer index is set to 16, δ = 10, and lmin = k = 16 (see Appendix for rationale/
experiments).

3.2 Optimal Factorization
We compared the size of optimal factorization (in number of RMEs) for a varying number of ref-
erences. We repeated the experiments with different randomly selected references and report the
average values. The references were external to the datasets we used, i.e., references and to-be-fac-
torized sequences were disjoint. The results are shown in Fig 3. For all six datasets, the average
size of factorizations is reduced with an increasing number of references. In fact, one can fit each
of the curves with a power-law function accurately, with very high R2. The result is as follows:

• AT1: 137,663.2�x − 0.7073, R2 = 0.9968

• AT5: 136,365.9�x − 0.6681, R2 = 0.9987

• HG1: 218,538.7�x − 0.7990, R2 = 0.9984

• HG10: 126,679.0�x − 0.7265, R2 = 0.9986

• HG21: 45,474.3�x − 0.9297, R2 = 0.9955

• yeast: 75,784.7�x − 0.5953, R2 = 0.9860

Sequences from Human genomes have the highest absolute exponents, which means that
additional references can be much better exploited than for AT and yeast. The R2-value for all
six datasets is very high. Our evaluation suggests that the number of RMEs can be approxi-
mately predicted given the species/type of a sequence and a number of references. This finding
should be further investigated in future research. Previous research [18] showed that 60 refer-
ences (using heuristic factorization) can reduce the size of compressions for Human genomes
by 80% and more. Our experiments show that using optimal factorization already 6–10 refer-
ences suffice to decrease the number of RMEs by 80%. For instance, HG21 sequences are
reduced from 45,341 RMEs (on average, with one reference) to 5,464 RMEs (on average with
ten references), a reduction by 88%. Similarly, for AT the average number of RMEs is reduced
from 135,376 to 27,284, a reduction by 80%. Note that the compressibility of datasets cannot
be compared for different datasets in Fig 3, since one needs to take into account the length of
the sequences, e.g., yeast sequences in our dataset are 20 times shorter than HG1 sequences.
Thus, although the curve for yeast is located below four other curves, the factorization rate of
yeast is worse (when taking into account length of sequences as well).

3.3 Heuristical Factorization
We evaluated the quality of factorization heuristics compared to the optimal factorization. The
increase in number of RMEs of each heuristic against the optimal factorization as a baseline is
shown in Fig 4. We summarize main insights as follows:

1. ESA-based local matching is always better than KMER-based local matching: This is
explained as follows: if local-matching does not yield a match, then an optimal match is

Sequence Factorization with Multiple References

PLOS ONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 13 / 28

found with ESA. KMER only can find approximate matches, if the match length is shorter
than k. For all HG, average match lengths are larger than k and thus often an optimal match
is found. For the other species (AT and yeast), matches are often rather short and a RME
consists of only one character, if no match longer/equal than k can be found.

2. Left/right-extension on an optimal factorization creates smaller representations than factori-
zation based on local matching. The explanation is as follows: When using local matching for
initial factorization, the algorithm is sometimes stuck in finding short local matches, while
larger matches could be found with an index. These short matches are then encoded with dis-
tinct RMEs for different factorizations and thus do not provide a starting point for extension.

Fig 3. Optimal (average) number of RMEs as computed by ESA_BASE_N.With an increasing number of references, the number of RMEs for encoding
decreases significantly.

doi:10.1371/journal.pone.0139000.g003

Sequence Factorization with Multiple References

PLOS ONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 14 / 28

An optimal factorization, on the other hand, produces more often identical RMEs for the
same subsequence, which leads to more starting points for left/right-extension.

3. Left-extension often creates fewer RMEs than right-extension. The reason is as follows: fac-
torization with locality-based heuristics prefers local matches over (possibly better) matches
more far away. Thus, two identical subsequences from two different sequences are

Fig 4. Increase in the number of RMEs for approximate factorization techniques: without extension (left), with left-extension (center), and with
right-extension(right).With an increasing number or references, all techniques gradually deviate from the optimum, up to 100% and more. Left-extension is
always more close to the optimum than right-extension. Extensions built on BASE are more efficient than the ones built on LOMA.

doi:10.1371/journal.pone.0139000.g004

Sequence Factorization with Multiple References

PLOS ONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 15 / 28

sometimes encoded with different RMEs, if factorization starts in different contexts. Only
once a global (large) match is found, the remaining suffixes of the two identical subse-
quences are encoded with the same RME(s), since the factorization context is equal for the
suffixes. Thus, left-extension can uncover new kinds of sequence equalities which are hid-
den from right-extension.

4. Left/right extension can even lead to (slightly) smaller representations than factorization
without extension but local matching. This fact is explained as follows: When using local
matching with many reference indexes, the factorizations is sometimes stuck in one refer-
ence, while much longer matches could be found in another reference. If, on the other hand,
only one reference with extension is used the identical subsequences are partly identified
during the extension phase. This observation is very surprising and interesting, since we will
show below that factorization with extension needs less memory than factorization without
extension: We obtain a better factorization, while always using less memory for references.

3.4 Factorization Speed
We analyzed the factorization speed of selected configurations. First, we evaluated the factori-
zation speed of optimal factorization techniques. The result for AT1, HG21, and yeast is shown
in Fig 5. We do not show the results for AT5, HG1, and HG10, since factorization speed within
a species is quite stable. The fastest factorization is obtained for HG21 (up to 170MB/s), since a
single lookup often finds a long match in the reference sequence(s). Factorizing AT1 is already
slower by a factor of four and yeast again two times slower.

Factorization speed slowly decreases with an increasing number of references, since for each
suffix, more lookups have to be performed. At the same time, the average match length
increases (see our results in Fig 3), which means that less lookups need to be performed overall.
This increase in match length causes non-linear curves for factorization speed in Fig 6: Optimal
factorization against 10 references is on average only four times slower than optimal compres-
sion against a single reference.

Fig 5. Factorization speed of optimal factorization techniques: based on ESA (top) and based on CST (bottom). The factorization speed significantly,
but non-linearly reduces with an increasing number of references. Factorization with ESA index is more than two orders of magnitude faster than CST-based
techniques.

doi:10.1371/journal.pone.0139000.g005

Sequence Factorization with Multiple References

PLOS ONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 16 / 28

Optimal factorization with ESA is orders of magnitude faster than using a compressed suffix
tree. For instance, while HG21 sequences can be compressed at up to 170 MB/s, optimal com-
pression with CST tops at 0.6 MB/s. The reason is that a single index lookup of a prefix takes
much longer with a compressed data structure (CST).

The efficiency of our RME graph-based optimizations can be seen for all datasets: With
increasing similarity of sequences, SUCC and POSI perform increasingly better (speedup of
approx. 30% for yeast and approx. 300% for HG21). Note that, as anticipated, POSI is always
faster than SUCC, since more often the optimal match is predicted based on the context of
factorization.

We analyzed the factorization speed of selected approximate methods next. The results are
shown in Fig 6. Again, CST-based approaches are 2–3 orders of magnitude slower than their
ESA/KMER-counterparts. Similarly to optimal factorization, the highest factorization speed is
obtained for highly-similar sequences of HG21: up to 604 MB/s for KMER_LOMA_N, i.e., a k-
mer-based index with local matching and all references in memory. ESA_LOMA_N, and
CST_LOMA_L/R are ranked second and third. Our experiments show that factorization
speeds of at least 60 MB/s are possible for each dataset. With an increasing number of refer-
ences, the factorization speed is gradually reduced, however not as significantly as during opti-
mal factorization.

3.5 Memory Footprint
We analyzed the main memory usage of configurations and results are shown in Fig 7. Without
left/right-extension, techniques based on CST use the smallest amount of memory, at the price
of long factorization time. The reason is that compressed suffix trees store the labels of tree
links in a compressed representation, which tremendously reduces the storage, but makes tra-
versing the tree slow, compared to other indexes. In contrast, techniques based on ESA, an
enhanced suffix array, use the largest amount of main memory. Accessing suffix arrays is
orders of magnitudes faster than CST, since no time is spent on decompression (of the index
structure). KMER-based techniques have a memory footprint in between CST and ESA.

With an increasing number of references, configurations with left-extension have a much
lower memory footprint than their counterparts with no extension. This shows that additional
overhead of RME graphs for references is small compared to the size of an index over unfolded
references. The smallest overall memory footprint is obtained by CST_BASE_L. Note that all
right-extension techniques use the same amount of memory as their left-extension counter-
parts, because they work on the same data structure (RME graphs).

It is interesting to note that the ranking of techniques according to the used main memory
is the same for all datasets. This observation suggests that the main memory usage of the con-
figurations is rather independent on the degree of similarity between the sequences, but domi-
nated by the number and length of the references. However, it can be seen that configurations
with left-extension are sensitive to the similarity of the sequence, e.g., the growth of main mem-
ory usage is much steeper for (not so similar) yeast sequences compared to (highly-similar)
human sequences: Dissimilar sequences yield many (short) referential match entries, which
needs to be kept in the RME graph for reference extension.

4 Discussion

4.1 Related Work
We evaluated experimentally the following other factorization algorithms: ISA6r [23], KKP3
[32], and KKP1s [32], whose implementations are available online at https://www.cs.helsinki.fi/
group/pads/lz77.html. According to that webpage, ISA6r is specialized for highly repetitive

Sequence Factorization with Multiple References

PLOS ONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 17 / 28

https://www.cs.helsinki.fi/group/pads/lz77.html
https://www.cs.helsinki.fi/group/pads/lz77.html

Fig 6. Factorization speed of selected approximate configurations with one reference (left) and ten references (right).More references do not
degrade factorization speed as much as in optimal factorization. Local matching on a KMER-index provides the highest factorization speeds for all datasets.

doi:10.1371/journal.pone.0139000.g006

Sequence Factorization with Multiple References

PLOS ONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 18 / 28

inputs, KKP3 is the fastest for non-highly repetitive inputs, and KKP1s streams a suffix array
from the disk. The experimental results are reported in Fig 8. All factorization algorithms need
at least n�jLRj bytes of storage in memory (usually more), where LR is the length of the shortest
reference and n is the number of references. Moreover, the factorization speed is often much
slower than our own baseline implementation with enhanced suffix arrays. The size of factoriza-
tions decreases tremendously with the number of references, similarly to our own experiments.

Sequence compression algorithms caught a lot of attention in the research community dur-
ing the last years (see [8–10] for broad surveys). In particular, referential, or reference-based,
compression algorithms emerged recently [11, 13, 18, 25, 33], outperforming other types of
compression algorithms by orders of magnitude, in terms of compression ratio when applied
to highly-similar sequences. Similar to dictionary-based techniques [34, 35], these algorithms
replace long subsequences of the to-be-compressed input with pointers into an external
sequence, which is not part of the to-be-compressed input data [11]. Thus, the reference in ref-
erential compression is usually static and defined offline, while dictionaries in dictionary-based
compression are built only at compression time. A wide range of compression rates has been
reported for reference-based encoding. Given an adequate reference sequence, i.e. a highly-

Fig 7. Memory usage of selected configurations. The memory usage without extension is for 10 references up to almost one order higher than for
extension-based configurations. ESA requires most memory, CST least, and KMER is in between.

doi:10.1371/journal.pone.0139000.g007

Sequence Factorization with Multiple References

PLOS ONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 19 / 28

similar sequence, compression rates of 1,000:1 and better are possible, for instance, for human
genomes [11, 13, 18, 25, 33]. Another approach to referential sequence compression is based
on greedy alignment [36].

We discuss four referential compression techniques in detail: In [25], RLZ, an approach
based on self-indexing is described. It works as follows: the algorithm compresses input
sequences with LZ77 encoding relative to the suffix-array of a reference sequence. Raw
sequences are never stored; even very short matches to the reference are encoded, which makes
the method impractical. In [33], RLZopt is presented as an extension of RLZ. The key aspect is
longest increasing subsequence computation that allows to efficiently encode positions. It
incorporates several improvements, including local look-ahead optimization. A LZ77-style
compression scheme, called GDC, based on RLZopt was proposed in [13]. The main difference
is that a way for encoding approximate matches is introduced. Also, the Lempel-Ziv parsing
scheme originally based on hashing is slightly altered in that the algorithm considers trade-offs
between the length of matches and distance between matches. Compression is performed on
input blocks with shared Huffman codes, enabling random access. Furthermore, GDC can be
started in mode ultra, which enables compression against multiple references. FRESCO [18] is
a framework for referential sequence compression. The reference sequence is indexed with a
34-mer index and additional heuristics for fast and compact compression are introduced. All
the above methods, in general, compress against a single reference only, with some exceptions:

• GDC compresses against a main reference and appends hard-to-compress subsequences to
the reference, particularly in mode GDC-ultra.

• FRESCO exploits different heuristics for reference selection and reference rewriting. In addi-
tion, a proof-of-concept for referential compression against compressed references is

Fig 8. Related factorization algorithms.We show results for related factorization algorithms: main memory usage, factorization speed, and mean number
of factors per sequence for dataset HG21. For ease of comparison, we added few interesting instances of our own factorization algorithms (marked with a
dashed line). Note that the mean number of factors cannot be compared directly between related work and our algorithms, since our RMEs contain mismatch
characters, while related work factorizations are solely pointer into references (which yields more factors, albeit being optimal).

doi:10.1371/journal.pone.0139000.g008

Sequence Factorization with Multiple References

PLOS ONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 20 / 28

proposed, but without an estimation of optimality. Furthermore, the evaluation of FRESCO
provided very limited analysis of compression ratio, main memory usage, and compression
speed for a variable number of references. This idea behind FRESCO’s second-order com-
pression was recently extended in [19]. The authors report very high compression ratios,
once the number of (compressed) reference sequences is increased.

There are other areas in Bioinformatics where compression is highly relevant, for instance,
read compression [37–40] and compression of aligned sequences [41]. Very recently, several
techniques for searching compressed representations of highly-similar sequences were pro-
posed [42–46]. These tools provide efficient search capabilities based on an index much smaller
than the raw sequence data. Note that most of these techniques [42, 44–46] are based on a mul-
tiple sequence alignment, and thus their real strength is the compressed representation of an
index structure over all sequences. Our paper addresses the problem of finding a small com-
pressed representation of all sequences, without the need of computing a multiple sequence
alignment. In fact, indexes over collections of highly-similar sequences can benefit from our
analysis of multi-reference compression algorithms, by building smaller indexes faster.

4.2 Summary
Our evaluation gives an overview over the wide range of performances for 30 factorization
techniques against multiple references. If a user, however, has to select a method for factori-
zation, it is not clear which one is actually the best method. The selection of a good factoriza-
tion method is difficult and depends on multiple criteria: Expected factorization speed,
optimality guarantees, and required main memory during factorization. Therefore, the selec-
tion of a factorization technique is a typical multi-criteria decision analysis (MCDA) prob-
lem. We solve the following MCDA-problem below: Given up to 10 references and preferences
weights on factorization size, factorization speed, and used main memory, which method is
appropriate and how many references should be used?We used a commonly used MCDA
technique TOPSIS [47, 48] to find solutions to the following four scenarios: 1) overall best
solution, 2) preference on small factorizations, 3) preference on fast factorization, and 4)
preference on a small memory footprint. We analyzed 300 configurations, by associating the
number of references with each of the standard configurations, for instance, CST_LO-
MA_N_2 is CST_LOMA_N with two references. For each of the 300 configurations we
recorded the number of RMEs, factorization speed (in MB/s), and memory footprint (in MB)
for each of the six datasets. The result is shown in Fig 9; for brevity we show the ranks and
values for AT5, HG21, and yeast only.

The first scenario (equal weighting factors) attempts to select an overall good factorization
method. The best ranked methods all use a (fast) KMER index and local matching for a
medium number of references. The worst method is ESA_BASE_N_10, which uses a large ESA
index, non-optimized matching and ten references without extension. When we increase the
weight for factorization speed (from 33% to 80%), the KMER-based methods with local match-
ing and only a few references are ranked best. If we set the priority on small factorizations, left-
extension setups with optimizations (POSI/SUCC) are ranked best, with the exception of
KMER_BASE_N_10, which yields a factorization close to the optimum, with medium memory
usage and medium factorization speed. Finally, methods with KMER and local-matching are
also ranked best for factorization with small main memory usage. If we further increase the
preference weights to 99%, we obtain the following results: KMER_LOMA are the best meth-
ods for fast factorization, ESA_POSI and ESA_SUCC are the best methods for small factoriza-
tions, and CST_BASE methods are best for a low memory footprint.

Sequence Factorization with Multiple References

PLOS ONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 21 / 28

5 Conclusions
We have devised and implemented referential sequence factorization against multiple refer-
ences. Dissection of the framework into its components led to 30 configurations which were
evaluated on six datasets from three species. Our analysis shows a wide range of factorization
rates, factorization speed, and main memory usage. We identified the best configurations
depending on common use cases.

One direction for future work is to a develop multi-reference factorization algorithm using
recently developed multi-genome indexes [43, 44]. These indexes exploit similarities among
sequences (here: the references) and provide different types of search functionality, as exact sub-
sequence matching or approximate pattern matching. Generating such a multi-reference index
over a set of references enables to compress sequences against these references. However, devel-
oping a fast and optimal compression algorithm for these indexes is a challenging problem.
Another line of research is to investigate the combination of left-extension and right-extension
techniques into one algorithm. The difficulty here is to decide which previously factorizations
should be replaced whenever a new match in the factorized references is found, since there is
not only one direction (left-right or right-left) during the factorization process. Furthermore,
since the encoding of factors determines the compression ratio, it would be interesting to ana-
lyze and understand different encoding techniques on top of optimal factorizations.

Appendix

5.1 Parameter analysis
We evaluated parameters for indexing and match finding techniques first. The choice of k for a
k-mer index (k-mer indexes are used for referential compression as described in [18]) has a

Fig 9. Ranking of the Top-5 and worst method for four scenarios: 1) equal weighting factors, 2) preference on factorization speed, 3) preference on
small factorizations, and 4) preference on lowmemory footprint.We show the original criteria values for three datasets (AT5, HG21, yeast).

doi:10.1371/journal.pone.0139000.g009

Sequence Factorization with Multiple References

PLOS ONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 22 / 28

significant impact on factorization speed and factorization rate: too small k will lead to high
verification costs, since a k-mer can occur very frequently in the references and too large k will
increase the number of missed matches. In Fig 10, we show the average number of occurrences
of all k-mers for our datasets depending on k. We have analyzed a range of 10� k� 20. If we

Fig 10. Average occurrences count of k-mer instances with varying k. For all six datasets independently, a value of k = 16 guaranteed that each 16-mer
had an average number of occurrences smaller than 2 in the sequences.

doi:10.1371/journal.pone.0139000.g010

Sequence Factorization with Multiple References

PLOS ONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 23 / 28

Fig 11. Percentage of index lookups saved against baseline BASE (left) and factorization speed (right). Larger δ-values reduce the number of index
lookups and often increase factorization speed. A value of δ = 10 allows fast factorization for yeast and Human genomes, while not degrading factorization
speed of AT too much.

doi:10.1371/journal.pone.0139000.g011

Sequence Factorization with Multiple References

PLOS ONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 24 / 28

Fig 12. Effectiveness of SUCC/POSI on factorization time for an increasing number of sequences in the RME graph. A number of 10 sequences
allows for fast factorization, while keeping the memory overhead low.

doi:10.1371/journal.pone.0139000.g012

Sequence Factorization with Multiple References

PLOS ONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 25 / 28

choose k� 16, most k-mers are unique (note that the curve is growing exponentially to the left;
see for instance HG1). We decided to set k = 16: then the average number of occurrences for k-
mers is less than 2 for each dataset.

Next we chose a δ value for our local match-finding algorithm. In general, a small δ will
only identify SNPs (or very short indels), while a larger δ lead to increased verification times,
since a larger neighborhood of the previous match end have to be compared to the to-be-fac-
torized sequence prefix. The results of our analysis are shown in Fig 11. We compare the basic
greedy match finding algorithm (denoted with NO) to a range of 0� δ� 13. For all datasets,
setting δ = 0, which only identifies SNPs, saves 50% or more of the index lookups. For Human
chromosomes, more than 80% of the index lookups can be saved, since many sequence devia-
tions in Human chromosomes from the 1000 Genome Projects are SNPs. The factorization
speed is increased by a factor of almost 2 (yeast, AT) to factor of 3 and more (HG). For Human
genomes, δ larger than 0 further avoids index lookups (and increase factorization speed), by
detecting short indels. For the other datasets, factorization speed remains stable (yeast) or is
slightly decreasing (AT). Our results for AT show that local match finding can reduce the fac-
torization speed, if no short indels can be found and neighborhoods of previous matches are
verified without success. We chose δ = 10 for our remaining experiments. For the algorithm in
Table 3, we set lmin = k = 16, since this avoids spurious matches in the sequence.

Next we analyzed the effect of RME graphs on factorization speed. Our analysis showed that
it is not beneficial to store the RME graph of all previously factorized sequences for two rea-
sons. First, the memory usage is linearly increasing with each sequence. Second, the time spent
on checking RME graph predictions increases with the number of sequences in the RME
graph. We measured the time spend on SUCC/POSI prediction and index lookups separately
for an increasing number of factorized sequences, to find out how many sequences are actually
necessary. The result is shown in Fig 12. For all datasets, RME prediction based on the RME
graph shows a significant reduction of factorization time for the first few sequences. More than
10 sequences in the RME graph do not improve factorization times significantly. In fact, we
found that the required number of index lookups is roughly constant with more than 10
sequences in the RME graph. Overall, POSI reduces the factorization time further for HG21
and all other human genomes (data not shown), but for AT and yeast, there is no significant
speedup from SUCC to POSI. It seems that for these not-so-similar datasets, prediction based
on the previous RME (SUCC) is already sufficient.

Author Contributions
Conceived and designed the experiments: SW UL. Performed the experiments: SW. Analyzed
the data: SW UL. Wrote the paper: SW UL.

References
1. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequenc-

ing. Nature. 2010 Oct; 467(7319):1061–1073. doi: 10.1038/nature09534 PMID: 20981092

2. Consortium ICG. International network of cancer genome projects. Nature. 2010 Apr; 464(7291):993–
998. doi: 10.1038/nature08987

3. Brierley C. Press release for UK10K; 2010. Available from: http://www.wellcome.ac.uk/News/Media-
office/Press-releases/2010/WTX060061.htm.

4. U S Department of Veteran affairs. Million Veteran Program; 2014. Available from: http://www.
research.va.gov/MVP/.

5. International Cancer Genome Consortium Data Portal–a one-stop shop for cancer genomics data.
Database: the journal of biological databases and curation. 2011; 2011(0):bar026. doi: 10.1093/
database/bar026 PMID: 21930502

Sequence Factorization with Multiple References

PLOS ONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 26 / 28

http://dx.doi.org/10.1038/nature09534
http://www.ncbi.nlm.nih.gov/pubmed/20981092
http://dx.doi.org/10.1038/nature08987
http://www.wellcome.ac.uk/News/Media-office/Press-releases/2010/WTX060061.htm
http://www.wellcome.ac.uk/News/Media-office/Press-releases/2010/WTX060061.htm
http://www.research.va.gov/MVP/
http://www.research.va.gov/MVP/
http://dx.doi.org/10.1093/database/bar026
http://dx.doi.org/10.1093/database/bar026
http://www.ncbi.nlm.nih.gov/pubmed/21930502

6. Kahn SD. On the Future of Genomic Data. Science. 2011; 331(6018):728–729. Available from: http://
www.sciencemag.org/content/331/6018/728.abstract. doi: 10.1126/science.1197891 PMID: 21311016

7. Nalbantoglu U, Russell DJ, Sayood K. Data Compression Concepts and Algorithms and Their Applica-
tions to Bioinformatics. Entropy. 2010; 12(1):34–52. Available from: http://www.mdpi.com/1099-4300/
12/1/34/. doi: 10.3390/e12010034 PMID: 20157640

8. Deorowicz S, Grabowski S. Data compression for sequencing data. Algorithms for Molecular Biology.
2013; 8:25. doi: 10.1186/1748-7188-8-25 PMID: 24252160

9. Giancarlo R, Rombo SE, Utro F. Compressive biological sequence analysis and archival in the era of
high-throughput sequencing technologies. Briefings in Bioinformatics. 2014; 15(3):390–406. doi: 10.
1093/bib/bbt088 PMID: 24347576

10. Wandelt S, Bux M, Leser U. Trends in Genome Compression. Current Bioinformatics. 2014; 9(3):315–
326. doi: 10.2174/1574893609666140516010143

11. Christley S, Lu Y, Li C, Xie X. Human genomes as email attachments. Bioinformatics (Oxford, England).
2009 Jan; 25(2):274–275. doi: 10.1093/bioinformatics/btn582

12. Ochoa I, Hernaez M, Weissman T. iDoComp: a compression scheme for assembled genomes. Bioin-
formatics. 2014;Available from: http://bioinformatics.oxfordjournals.org/content/early/2014/11/21/
bioinformatics.btu698.abstract.

13. Deorowicz S, Grabowski S. Robust Relative Compression of Genomes with Random Access. Bioinfor-
matics (Oxford, England). 2011 Sep; doi: 10.1093/bioinformatics/btr505

14. Deorowicz S, Danek A, Grabowski S. Genome compression: a novel approach for large collections.
Bioinformatics. 2013;Available from: http://bioinformatics.oxfordjournals.org/content/early/2013/08/29/
bioinformatics.btt460.abstract. doi: 10.1093/bioinformatics/btt460

15. Pinho AJ, Pratas D, Garcia SP. GReEn: a tool for efficient compression of genome resequencing data.
Nucleic Acids Research. 2011 Dec; doi: 10.1093/nar/gkr1124 PMID: 22139935

16. Chern B, Ochoa I, Manolakos A, No A, Venkat K, Weissman T. Reference Based Genome Compres-
sion. CoRR. 2012;abs/1204.1912. Available from: http://arxiv.org/abs/1204.1912.

17. Brandon MC, Wallace DC, Baldi P. Data structures and compression algorithms for genomic sequence
data. Bioinformatics. 2009; 25(14):1731–1738. Available from: http://bioinformatics.oxfordjournals.org/
content/25/14/1731.abstract. doi: 10.1093/bioinformatics/btp319 PMID: 19447783

18. Wandelt S, Leser U. FRESCO: Referential Compression of Highly Similar Sequences. IEEE/ACM
Trans Comput Biol Bioinformatics. 2013 Sep; 10(5):1275–1288. doi: 10.1109/TCBB.2013.122

19. Deorowicz S, Danek A, Niemiec M. GDC 2: Compression of large collections of genomes. Scientific
Reports. 2015 June; 5(11565). doi: 10.1038/srep11565 PMID: 26108279

20. Chen G, Puglisi SJ, Smyth WF. Lempel–Ziv factorization using less time & space. Mathematics in Com-
puter Science. 2008; 1(4):605–623. doi: 10.1007/s11786-007-0024-4

21. Ohlebusch E, Gog S. Lempel-Ziv factorization revisited. In: Combinatorial Pattern Matching. Springer;
2011. p. 15–26.

22. Al-Hafeedh A, Crochemore M, Ilie L, Kopylova E, SmythWF, Tischler G, et al. A comparison of index-
based Lempel-Ziv LZ77 factorization algorithms. ACM Computing Surveys (CSUR). 2012; 45(1):5. doi:
10.1145/2379776.2379781

23. Kärkkäinen J, Kempa D, Puglisi SJ. Linear time Lempel-Ziv factorization: Simple, fast, small. In: Combi-
natorial Pattern Matching. Springer; 2013. p. 189–200.

24. Crochemore M, Langiu A, Mignosi F. Note on the greedy parsing optimality for dictionary-based text
compression. Theoretical Computer Science. 2014; 525:55–59. doi: 10.1016/j.tcs.2014.01.013

25. Kuruppu S, Puglisi SJ, Zobel J. Relative Lempel-Ziv compression of genomes for large-scale storage
and retrieval. In: Proceedings of the 17th international conference on String processing and information
retrieval. SPIRE’10. Berlin, Heidelberg: Springer-Verlag; 2010. p. 201–206. Available from: http://dl.
acm.org/citation.cfm?id=1928328.1928353.

26. Cohn M, Khazan R. Parsing with Prefix and Suffix Dictionaries. In: Data Compression Conference;
1996. p. 180–189.

27. Danecek P, Auton A, Abecasis G, 1000 Genomes Project Analysis Group. The variant call format and
VCFtools. Bioinformatics (Oxford, England). 2011 Aug; 27(15):2156–2158. doi: 10.1093/
bioinformatics/btr330

28. Cao J, Schneeberger K, Ossowski S, Gnther T, Bender S, Fitz J, et al. Whole-genome sequencing of
multiple Arabidopsis thaliana populations. Nature Genetics. 2011 Aug; 43(10):956–963. doi: 10.1038/
ng.911 PMID: 21874002

Sequence Factorization with Multiple References

PLOS ONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 27 / 28

http://www.sciencemag.org/content/331/6018/728.abstract
http://www.sciencemag.org/content/331/6018/728.abstract
http://dx.doi.org/10.1126/science.1197891
http://www.ncbi.nlm.nih.gov/pubmed/21311016
http://www.mdpi.com/1099-4300/12/1/34/
http://www.mdpi.com/1099-4300/12/1/34/
http://dx.doi.org/10.3390/e12010034
http://www.ncbi.nlm.nih.gov/pubmed/20157640
http://dx.doi.org/10.1186/1748-7188-8-25
http://www.ncbi.nlm.nih.gov/pubmed/24252160
http://dx.doi.org/10.1093/bib/bbt088
http://dx.doi.org/10.1093/bib/bbt088
http://www.ncbi.nlm.nih.gov/pubmed/24347576
http://dx.doi.org/10.2174/1574893609666140516010143
http://dx.doi.org/10.1093/bioinformatics/btn582
http://bioinformatics.oxfordjournals.org/content/early/2014/11/21/bioinformatics.btu698.abstract
http://bioinformatics.oxfordjournals.org/content/early/2014/11/21/bioinformatics.btu698.abstract
http://dx.doi.org/10.1093/bioinformatics/btr505
http://bioinformatics.oxfordjournals.org/content/early/2013/08/29/bioinformatics.btt460.abstract
http://bioinformatics.oxfordjournals.org/content/early/2013/08/29/bioinformatics.btt460.abstract
http://dx.doi.org/10.1093/bioinformatics/btt460
http://dx.doi.org/10.1093/nar/gkr1124
http://www.ncbi.nlm.nih.gov/pubmed/22139935
http://arxiv.org/abs/1204.1912
http://bioinformatics.oxfordjournals.org/content/25/14/1731.abstract
http://bioinformatics.oxfordjournals.org/content/25/14/1731.abstract
http://dx.doi.org/10.1093/bioinformatics/btp319
http://www.ncbi.nlm.nih.gov/pubmed/19447783
http://dx.doi.org/10.1109/TCBB.2013.122
http://dx.doi.org/10.1038/srep11565
http://www.ncbi.nlm.nih.gov/pubmed/26108279
http://dx.doi.org/10.1007/s11786-007-0024-4
http://dx.doi.org/10.1145/2379776.2379781
http://dx.doi.org/10.1016/j.tcs.2014.01.013
http://dl.acm.org/citation.cfm?id=1928328.1928353
http://dl.acm.org/citation.cfm?id=1928328.1928353
http://dx.doi.org/10.1093/bioinformatics/btr330
http://dx.doi.org/10.1093/bioinformatics/btr330
http://dx.doi.org/10.1038/ng.911
http://dx.doi.org/10.1038/ng.911
http://www.ncbi.nlm.nih.gov/pubmed/21874002

29. Mewes HW, Albermann K, Bhr M, Frishman D, Gleissner A, Hani J, et al. Overview of the yeast
genome. Nature. 1997 May; 387(6632 Suppl):7–65. Available from: http://www.nature.com/doifinder/
10.1038/42755. PMID: 9169865

30. Ohlebusch E, Fischer J, Gog S. CST++. In: SPIRE’10; 2010. p. 322–333.

31. Döring A, Weese D, Rausch T, Reinert K. SeqAn An efficient, generic C++ library for sequence analy-
sis. BMC Bioinformatics. 2008; 9. doi: 10.1186/1471-2105-9-11 PMID: 18184432

32. Kempa D, Puglisi SJ. Lempel-Ziv factorization: Simple, fast, practical. In: Sanders P, Zeh N, editors.
ALENEX. SIAM; 2013. p. 103–112. Available from: http://dblp.uni-trier.de/db/conf/alenex/alenex2013.
html#KempaP13.

33. Kuruppu S, Puglisi S, Zobel J. Optimized relative lempel-ziv compression of genomes. In: Australasian
Computer Science Conference; 2011.

34. Larsson J, Moffat A. Offline Dictionary-Based Compression. In: Proceedings of the IEEE Data Com-
pression Conference; 1999. p. 296–305.

35. Shibata Y, Matsumoto T, Takeda M, et al. A Boyer-Moore Type Algorithm for Compressed Pattern
Matching. In: Proceedings of the 11th Annual Symposium on Combinatorial Pattern Matching.
COM’00. London, UK, UK: Springer-Verlag; 2000. p. 181–194. Available from: http://dl.acm.org/
citation.cfm?id=647819.736215.

36. Saha S, Rajasekaran S. ERGC: An efficient referential genome compression algorithm. Bioinformatics.
2015;Available from: http://bioinformatics.oxfordjournals.org/content/early/2015/07/01/bioinformatics.
btv399.abstract. doi: 10.1093/bioinformatics/btv399 PMID: 26139636

37. Roguski L, Deorowicz S. DSRC 2—Industry-oriented compression of FASTQ files. Bioinformatics.
2014; 30(15):2213–2215. doi: 10.1093/bioinformatics/btu208 PMID: 24747219

38. Ochoa I, Asnani H, Bharadia D, Chowdhury M, Weissman T, Yona G. QualComp: a new lossy com-
pressor for quality scores based on rate distortion theory. BMC Bioinformatics. 2013; 14:187. Available
from: http://dblp.uni-trier.de/db/journals/bmcbi/bmcbi14.html#OchoaABCWY13. doi: 10.1186/1471-
2105-14-187 PMID: 23758828

39. Janin L, Rosone G, Cox AJ. Adaptive reference-free compression of sequence quality scores. Bioinfor-
matics. 2014; 30(1):24–30. Available from: http://dblp.uni-trier.de/db/journals/bioinformatics/
bioinformatics30.html#JaninRC14. doi: 10.1093/bioinformatics/btt257 PMID: 23661694

40. Hach F, Numanagic I, Alkan C, Sahinalp SC. SCALCE: boosting sequence compression algorithms
using locally consistent encoding. Bioinformatics. 2012; 28(23):3051–3057. Available from: http://dblp.
uni-trier.de/db/journals/bioinformatics/bioinformatics28.html#HachNAS12. doi: 10.1093/bioinformatics/
bts593 PMID: 23047557

41. Deorowicz S, Danek A, Grabowski S. Genome compression: a novel approach for large collections.
Bioinformatics. 2013; 29(20):2572–2578. Available from: http://dblp.uni-trier.de/db/journals/
bioinformatics/bioinformatics29.html#DeorowiczDG13. doi: 10.1093/bioinformatics/btt460 PMID:
23969136

42. Schneeberger K, Hagmann J, Ossowski S, Warthmann N, Gesing S, Kohlbacher O, et al. Simultaneous
alignment of short reads against multiple genomes. Genome biology. 2009 Sep; 10(9):R98+. doi: 10.
1186/gb-2009-10-9-r98 PMID: 19761611

43. Wandelt S, Starlinger J, Bux M, Leser U. Scalable similarity search in thousand(s) of genomes. Pro-
ceedings VLDB Endowment. 2013;.

44. Danek A, Deorowicz S, Grabowski S. Indexes of Large Genome Collections on a PC. PLoS ONE. 2014
10; 9(10):e109384. doi: 10.1371/journal.pone.0109384 PMID: 25289699

45. Rahn R, Weese D, Reinert K. Journaled string tree-a scalable data structure for analyzing thousands of
similar genomes on your laptop. Bioinformatics. 2014; 30(24):3499–3505. Available from: http://
bioinformatics.oxfordjournals.org/content/30/24/3499.abstract. doi: 10.1093/bioinformatics/btu438
PMID: 25028723

46. Siren J, Valimaki N, Makinen V. Indexing Graphs for Path Queries with Applications in Genome
Research. Computational Biology and Bioinformatics, IEEE/ACM Transactions on. 2014 March; 11
(2):375–388. doi: 10.1109/TCBB.2013.2297101

47. Yoon KP, Hwang CL. Multiple attribute decision making: an introduction. vol. 104. Sage Publications;
1995.

48. Sun X, Gollnick V, Li Y, Stumpf E. Intelligent Multicriteria Decision Support System for Systems Design.
Journal of Aircraft. 2014; 51(1):216–225. doi: 10.2514/1.C032296

Sequence Factorization with Multiple References

PLOS ONE | DOI:10.1371/journal.pone.0139000 September 30, 2015 28 / 28

http://www.nature.com/doifinder/10.1038/42755
http://www.nature.com/doifinder/10.1038/42755
http://www.ncbi.nlm.nih.gov/pubmed/9169865
http://dx.doi.org/10.1186/1471-2105-9-11
http://www.ncbi.nlm.nih.gov/pubmed/18184432
http://dblp.uni-trier.de/db/conf/alenex/alenex2013.html#KempaP13
http://dblp.uni-trier.de/db/conf/alenex/alenex2013.html#KempaP13
http://dl.acm.org/citation.cfm?id=647819.736215
http://dl.acm.org/citation.cfm?id=647819.736215
http://bioinformatics.oxfordjournals.org/content/early/2015/07/01/bioinformatics.btv399.abstract
http://bioinformatics.oxfordjournals.org/content/early/2015/07/01/bioinformatics.btv399.abstract
http://dx.doi.org/10.1093/bioinformatics/btv399
http://www.ncbi.nlm.nih.gov/pubmed/26139636
http://dx.doi.org/10.1093/bioinformatics/btu208
http://www.ncbi.nlm.nih.gov/pubmed/24747219
http://dblp.uni-trier.de/db/journals/bmcbi/bmcbi14.html#OchoaABCWY13
http://dx.doi.org/10.1186/1471-2105-14-187
http://dx.doi.org/10.1186/1471-2105-14-187
http://www.ncbi.nlm.nih.gov/pubmed/23758828
http://dblp.uni-trier.de/db/journals/bioinformatics/bioinformatics30.html#JaninRC14
http://dblp.uni-trier.de/db/journals/bioinformatics/bioinformatics30.html#JaninRC14
http://dx.doi.org/10.1093/bioinformatics/btt257
http://www.ncbi.nlm.nih.gov/pubmed/23661694
http://dblp.uni-trier.de/db/journals/bioinformatics/bioinformatics28.html#HachNAS12
http://dblp.uni-trier.de/db/journals/bioinformatics/bioinformatics28.html#HachNAS12
http://dx.doi.org/10.1093/bioinformatics/bts593
http://dx.doi.org/10.1093/bioinformatics/bts593
http://www.ncbi.nlm.nih.gov/pubmed/23047557
http://dblp.uni-trier.de/db/journals/bioinformatics/bioinformatics29.html#DeorowiczDG13
http://dblp.uni-trier.de/db/journals/bioinformatics/bioinformatics29.html#DeorowiczDG13
http://dx.doi.org/10.1093/bioinformatics/btt460
http://www.ncbi.nlm.nih.gov/pubmed/23969136
http://dx.doi.org/10.1186/gb-2009-10-9-r98
http://dx.doi.org/10.1186/gb-2009-10-9-r98
http://www.ncbi.nlm.nih.gov/pubmed/19761611
http://dx.doi.org/10.1371/journal.pone.0109384
http://www.ncbi.nlm.nih.gov/pubmed/25289699
http://bioinformatics.oxfordjournals.org/content/30/24/3499.abstract
http://bioinformatics.oxfordjournals.org/content/30/24/3499.abstract
http://dx.doi.org/10.1093/bioinformatics/btu438
http://www.ncbi.nlm.nih.gov/pubmed/25028723
http://dx.doi.org/10.1109/TCBB.2013.2297101
http://dx.doi.org/10.2514/1.C032296

