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Abstract

Rabies is a highly lethal disease caused by the neurotropic rabies virus (RABV), and it remains an 

important public health problem globally. Effective vaccines have been developed for pre- and 

post-exposure prophylaxis (PEP). PEP is only effective if it is initiated promptly after recognizing 

exposure. Once neurological symptoms develop, however, it is widely accepted that there is no 

effective treatment available. Recent studies indicate that the presence of RABV-specific immunity 

(i.e. Virus neutralizing antibodies, VNA) and the transient enhancement of the BBB permeability 

are absolutely required for effective virus clearance from the CNS. In principle, it has been shown 

in mice using various live-attenuated RABVs or recombinant RABVs expressing three copies of 

the G or expressing chemokine/cytokines, which can induce high levels of VNA in the serum and 

also capable of transiently enhancing the BBB permeability that it is possible to clear the virus 

from CNS. Also, it has been demonstrated that, intravenous administration of VNA together with 

MCP-1 (shown to transiently open up BBB) can clear RABV from the CNS in both 

immunocompetent and immunocompromised mice, as late as 5 days after lethal challenge. Novel 

therapeutic approaches aimed at allowing the peripheral VNA to cross the BBB by administration 

of the VNA in combination with biological or chemical agents that can transiently open up the 

BBB would be useful to establish an effective therapy for rabies in humans. In this review, we 

focus on the some of the approaches that can be used to meet the challenges in the field of rabies 

treatment.
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Introduction

Rabies (Latin, “madness”) is a highly lethal zoonotic disease caused by a neurotropic rabies 

virus (RABV) of the Lyssavirus genus, in the family of Rhabdoviridae, order 

Mononegavirales. These are bullet or rod-shaped enveloped viruses with a negative-sense, 
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single-stranded RNA genome [1]. RABV infects a wide range of hosts, including dogs, cats, 

raccoons, skunks, foxes, coyotes, bats, and human beings [2]. RABV is usually transmitted 

to humans through a bite from domesticated or wild animals. It invades the central nervous 

system (CNS) which leads to acute encephalitis and death [2, 3]. It has been estimated that 

about 70,000 people die from rabies each year, mostly in Africa and Asia [4]. Effective 

vaccines have been developed for pre-and post-exposure prophylaxis (PEP). Timely 

administration of PEP can prevent the development of rabies, when individuals are exposed 

to the virus. The PEP includes through cleansing of the wound, administration of vaccines 

and equine or human rabies immune globulins (ERIG or HRIG) [5, 6]. However, the PEP is 

ineffective once neurological signs have appeared. Yet, there are a few reports on human 

rabies survivors, but no effective/established therapy is available till date. Improvements in 

the treatment of rabies are often translated from key studies of its pathogenesis in animal 

models. The purpose of this article is to review the current literature and to highlight the 

novel approaches attempted to the prevention and treatment of rabies using animal models.

Rabies: Virus and Disease

Molecular characteristics of RABV and epidemiology of rabies

RABV has a non-segmented and negative-strand RNA genome and its genetic information is 

organized in the form of a helical ribonucleoprotein complex (RNP), in which the linear 

RNA is tightly associated with the viral nucleoprotein. The genome of RABV encodes for 

only five proteins in the order: nucleoprotein (N), phosphoprotein (P), matrix protein (M), 

glycoprotein (G), and the large protein (L, also termed RNA-dependent RNA polymerase, 

RdRp) [1]. The N plays a critical role in viral transcription and replication [7]. The G forms 

approximately 400 trimeric spikes, which are tightly arranged on the surface of the virions 

[8]. The G is a major determinant for RABV neuropathogenicity by binding specific 

receptor(s), entering the nervous system through the endosomal transport pathway [9] via a 

low-pH-induced membrane fusion process [10]. The N-L-P polymerase complex starts 

transcription with the production of a short RNA molecule, the leader RNA, that is neither 

capped nor polyadenylated. Subsequently, mRNAs are produced for N, P, M, G and L. The 

switch between transcription and replication of genomic RNAs are controlled by the level of 

N protein [11]. All transcription and replication events take place in the cytoplasm inside a 

specialized ‘virus factory’, the Negri body [12].

According to the World Health Organization (WHO), approximately 30,000 people die of 

rabies each year in Asia [13]. It is estimated that more than 3 billion people are exposed to 

dog rabies in Asia. One Asian dies every 15 minutes among them 15% are likely to be 

children under 15 years of age. In India, about 15 million people are bitten by dogs every 

year, it has been reported that annually 25,000–30,000 deaths occur due to rabies, and 

around 2,500,000 people undergo PEP. Nepal has one of the highest reported per capita rates 

of human rabies deaths in the world [14]. Rabies is an important public health problem in 

Bangladesh, where nearly 100,000 people were bitten by dogs in 2009 and 3,000 died of 

rabies [13]. In Pakistan, it is estimated about 2,500 deaths occur due to rabies and around 

70,000 people undergo PEP treatment [13]. Rabies causes at least 24,000 deaths per year in 

Africa and the highest death rates are reported in poor rural communities and children [13]. 
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Human rabies has been disappearing from many European and American countries, mainly 

due to the enforced policy of pet vaccination programs.

Animal reservoirs and human exposure

Although all mammals are susceptible to RABV, only a few species are important as 

reservoirs for the disease. Dogs remain the most important reservoirs for rabies in the 

developing countries of Asia and Africa [15]. In the developed nations, dog rabies has been 

eliminated or controlled through mass vaccination during the past 70 years [16]. However, 

wildlife rabies becomes a major concern. In North America, rabies is endemic in raccoons, 

foxes, coyotes and skunks [16] while fox rabies is endemic in Europe [17]. Wolves, jackals, 

and other wild animal species have also been reported as reservoirs in other regions [18, 19]. 

Bats are probably the ultimate reservoirs for RABV [16, 20–22]. In the Americas, a number 

of bat species carry distinct RABV strains [23], whereas in Europe and Australia bats carry 

rabies-related lyssaviruses [15].

Rabies vaccines and PEP

Current human rabies vaccines and PEP

Successful vaccines have been developed for PEP by Louis Pasteur in 1885. The initial 

vaccine was prepared from the rabid rabbit spinal cord (nerve tissue); subsequently, the 

vaccine preparation progressed from nerve tissues to cell cultured RABV. The current PEP 

consists of through cleansing of the wound and timely administration of vaccine and anti-

rabies immunoglobulin (RIG) [5, 24]. PEP can prevent the development of rabies in exposed 

individuals, only when administered immediately after exposure [25]. The aim of 

administering rabies specific antibodies at the site of exposure is to immediately neutralize 

the virus and prevent the virus from entering the CNS [26]. Vaccination is then provided to 

induce the host immune system to combat the virus during the time period between exposure 

and the onset of clinical signs (incubation period). Current vaccines used for rabies 

prophylaxis are inactivated RABV, derived from primary cell cultures. Among the available 

rabies vaccines, WHO regards the human diploid cell vaccine (HDCV) as the gold standard 

[27]. The purified chick embryo cell vaccine (PCECV) is prepared from a fixed strain of 

FLURY LEP grown in primary cultures of chicken fibroblasts, which is used worldwide and 

shown to be equally effective and cheaper than HDCV [28]. Purified Vero cell vaccine 

(PVRV) is the most recent cell culture rabies vaccine, which is currently available in more 

than 100 countries in Europe, Asia, Africa and Latin America. It has been widely and 

routinely used in many countries for both pre- and post-exposure prophylaxis [29, 30]. 

Currently, equine or human rabies immune globulin (ERIG or HRIG) for PEP is prepared 

from pooled sera taken from hyper-immunized horses and humans, respectively. However, 

ERIG can cause serious adverse reactions while HRIG is expensive for patients, particularly 

in the developing countries. In addition, its availability is limited worldwide [31].

Rabies vaccines in pets and wildlife animals

Inactivated RABV vaccines are currently used for routine vaccination of pet animals like 

dogs and cats, however, multiple immunizations have to be carried out to provide sufficient 

immunity throughout the life of the animals [32]. Oral rabies vaccines (live-attenuated or 
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live-recombinant vaccines) have been successfully developed for wildlife and two of them 

are commercially available [33, 34]. Vaccinia virus expressing RABV G (VRG) is found to 

be an effective oral immunogen for raccoons and foxes under laboratory settings and in the 

field[35, 36]. Although VRG is safe and effective in vaccinated animals, its exposure to 

humans can induce skin inflammation and systemic vaccine infections[37]. SAG-2, derived 

from an attenuated Street Alabama Dufferin (SAD) strain, has been successfully used in 

Europe for oral immunization of foxes [38, 39]. SAG-2 has also been shown to be safe, 

immunogenic and effective in dogs in field trails[40]. However, the immunogenicity of 

SAG-2 is low and only low levels of VNA titers are detected in the immunized dogs [41].

Rabies Pathogenesis

Despite the long history of human rabies, its pathogenic process remains poorly understood. 

Most of what we know about the disease process is acquired from investigations conducted 

in experimental animal models. The overall outcome of an exposure to RABV depends in 

part upon the rabies genotype (different strains and mutants) or variant involved, its 

pathogenicity (apoptogenicity, neuroinvasiveness), the dose of virus inoculated (severity of 

exposure), the route as well as the host species and its susceptibility to the particular 

pathogen together with innate and adaptive immune responses of the host [42]. However, 

various studies in animal models indicate that the pathogenic wild-type/street RABV and the 

fixed (laboratory-adapted) RABV evidently behave differently in each step of their life cycle 

in the host. RABV G is the only surface protein of the virion and capable of inducing virus 

neutralizing antibodies (VNA) [43]. The G protein plays an important role in rabies 

pathogenesis [44] by binding to neural receptor such as acetylcholine receptor [45] and 

neural cell adhesion molecules (NCAM) [46] contributing to the exclusive neurotropism and 

neuroinvasiveness of RABV [47]. Virus may enter muscles and replicate at the site of 

inoculation or enter directly into peripheral nerves without prior replication in non-neural 

tissues [48]. It is believed that once virus particles enter the peripheral nervous system and 

start to spread to the CNS, a fatal outcome of the disease is inevitable, though there are some 

reports of rabies survivors. RABV enters motor and/or sensory axons of peripheral nervous 

system and spreads to the CNS by retrograde fast axonal transport at a rate of approximately 

50–200 mm/day [49]. The pathogenic RABV have evolved specific mechanisms to escape 

early immune system recognition in the periphery via limited replication, minimized G 

expression [50, 51], suppression of interferon response, anti-apoptotic stimulation, and 

transportation through neurons only. On the other hand, fixed RABV induces extensive 

inflammation by activating innate immune responses [51–53], induces apoptosis [54], 

replicates to higher levels and express high levels of the G protein [55]. However, the 

mechanism adopted by the fixed RABVs to elicit immune responses and the wild-type 

RABVs to evade immune system is still not entirely clear. It has been shown that the innate 

immune responses and inflammation in the CNS is associated with BBB permeability 

enhancement [56, 57] in mice infected with fixed RABV but not in those infected with street 

RABV [53, 57, 58]. Current understanding on the striking difference between pathogenic 

and non-pathogenic rabies biology is summarized in the Table 1.
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Rabies management and therapy

Rabies is traditionally considered a uniformly fatal disease after onset of clinical 

manifestations [59, 60]. To this date, there is still no effective therapy for those who develop 

rabies encephalomyelitis. However, there is now increasing evidence that non-lethal 

infection can occur in experimental animals as well as in humans [61–66]. There are many 

rabies case reports, but only a few cases of treated patients have been published. Only a few 

patients with acute illness have been reported to survive [63, 67–71]. The literature 

documents five human rabies survivors prior to 2004 [63, 67–70]. However, all of them 

received rabies vaccine before the onset of the clinical symptoms, but none of them received 

HRIG. High levels of VNA were detected in both serum and CSF, but no RABV or rabies 

antigen was detected. Though only one had a full recovery without any neurological 

complication and all the others had partial recoveries and one of them died within four years 

due to severe complications. It is assumed that the neurological complications may be due to 

post-vaccination encephalomyelitis, which have been reported as a side effect of neuronal 

tissue vaccines [72]. Though these five cases received vaccination before the onset of 

clinical signs, it does not alter the fact that the mortality rate of the disease is 100% once the 

critical stage of incubation period is reached without any treatment.

However, recently there are few reports on rabies recovery. A 15-year-old girl started 

developing a series of neurological symptoms one month after a bat bite exposure [66]. 

VNAs were detected in both serum and CSF upon hospitalization, and subsequently 

increased over time. She was then treated with “Milwaukee Protocol” which includes 

induction of therapeutic coma and administration of combination of antiviral agents, and 

immunotherapies including rabies vaccination, rabies immune globulin, ribavirin, interferon-

α and ketamine. After the treatment, she was discharged from the hospital with neurologic 

deficits[71]. The most recent case was a 15-year-old boy from Brazil, who was attacked by a 

hematophagous bat and developed symptoms a month later. Prior to onset of symptoms, he 

received four doses of rabies vaccine and then was treated with therapeutically induced 

coma and other therapies (“Milwaukee protocol”). However, the patient survived with severe 

neurological sequelae. Out of the 5 survivors, treated with “Milwaukee Protocol” three of 

them had anti-RABV antibodies in CSF prior to treatment. However, since then, there have 

been at least 20 cases in which the main component of “Milwaukee Protocol” have been 

used and fatal outcomes have resulted [73]. The mechanisms involved in the prevention of 

lethal rabies using Milwaukee Protocol is not completely understood thereby, it is regarded 

ineffective and considered scientifically irrational by some rabies experts in treating human 

rabies [73–77].

However, one of the major findings associated with non-lethal infections is that many of the 

survivors had VNA in the serum and /or CSF, and high level of total protein in the CSF, 

which are likely the key to their survivals [64, 65]. Thus, a combination of therapy 

pertaining to the induction of CSF VNA should be considered for the effective clearance of 

rabies viruses from the CNS.
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Immune clearance of RABV from the CNS

It has been thought that it is very difficult to clear RABV once it enters into the CNS [59, 

78]. This assumption began to change when it was demonstrated in rats that RABV can be 

cleared from the CNS by intravenous administration of VNA [25]. Also, it has been 

demonstrated in mice that clearance of RABV from the CNS requires the presence of 

RABV-specific immunity (i.e., VNA) in the CNS and enhancement of BBB permeability 

[79]. BBB is composed of tightly packed endothelial cells, astrocytes end-feet and pericytes 

which selectively exclude most blood-borne substances from entering the brain [80]. It has 

been shown by Roy et al., that the lethal SHBRV infection can be prevented by opening the 

BBB [58]. Failure to open the BBB to deliver immune effectors to CNS leads to lethal rabies 

[57, 81]. These studies indicate the importance of BBB permeability enhancement in RABV 

clearance from CNS.

By using experimental autoimmune encephalomyelitis disease model

The presence of BBB presents a huge challenge for effective delivery of therapeutic agents 

to the CNS. Many potential drugs against neurological diseases, which are effective at the 

site of action, have failed, due to their inability to cross the BBB to reach the CNS [82]. 

Understanding the mechanism involved in triggering the BBB permeability changes in mice 

clearing RABV and mice developing the CNS inflammatory disease in experimental 

autoimmune encephalomyelitis (EAE) might provide insight into how the therapeutic agents 

can be delivered across the BBB without neuropathological complications [56]. EAE is an 

animal model of multiple sclerosis (MS). MS is a chronic autoimmune disease of the CNS 

characterized by the breakdown of BBB and accumulation of inflammatory infiltrates in the 

CNS [83, 84]. Many similarities exist between the MS and rabies in terms of CNS immune 

pathology i.e. inflammation and demyelination[85]. However, in EAE elevated BBB 

permeability is associated with the development of neurological disease but not during the 

clearance of attenuated RABV from the CNS tissues. Comparison of therapeutic immune 

clearance of RABV and CNS autoimmunity (EAE) indicates that BBB permeability changes 

can occur in the absence of neuropathology provided that cell invasion is restricted [56]. 

Also, it is known that the BBB permeability changes, collaboration of VNA and 

inflammation in the CNS plays a crucial role in the clearance of RABV from the CNS. 

Opening of BBB using EAE models can be exploited for the RABV clearance from the CNS 

by the safe passage of peripheral VNA and other immune effectors across the CNS [60].

By using attenuated RABVs

Laboratory-attenuated RABVs have been used for developing animal vaccines and for 

studying rabies immunology. Many of these attenuated RABVs can spread to the CNS from 

the peripheral site of inoculation but can be cleared by specific immune responses provided 

the immune effectors must cross the BBB. Studies by Hooper et al., [86] showed that mice 

lacking either B and T cells or B cells alone developed a progressive disease and succumbed 

to infection when infected with attenuated RABV (CVS-F3). However, mice lacking either 

CD8+ T cells, IFN receptors, or C3 and C4 complement components had no significant 

differences from normal mice in the development of disease. These studies confirm that 

rabies VNA is an absolute requirement for the clearance of an established RABV infection. 
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Subsequently, it has been shown by Roy et al., [57] that the induction of innate and adaptive 

immunity are indistinguishable between mice infected with highly lethal SHRBV and mice 

infected with attenuated RABV (CVS-F3). Though, CVS-F3 and SHBRV could spread to 

the CNS tissues from peripheral sites of inoculation but only the attenuated RABV could be 

cleared from the CNS, whereas the SHBRV infected mice succumb to the disease. It is 

found that the specific deficit in the SHBRV-infected mice, is an inability to enhance BBB 

permeability and to deliver the immune effectors to the CNS, indicating that the failure to 

open the BBB to deliver immune effectors to the CNS leads to the lethal outcome in mice 

[58].

By using recombinant RABVs expressing three copies of the G

In the past, vaccine virus were attenuated and selected by conventional method of serial 

passaging in vivo and in vitro, but recent advancement in biotechnology allows us develop 

highly attenuated live recombinant RABV by manipulating its genome targeting specific 

genetic elements that accounts for pathogenicity and immunogenicity using reverse genetics 

approach [87]. Using the reverse genetic technology, it has been shown in a fixed RV strain 

SADB19, that the changes in the single amino acid in the glycoprotein gene at position 

333Arg → Glu completely abolished the pathogenicity in immunocompetent mice after 

intracranial (i.c.) inoculation [88]. Furthermore, change at position at 194Asn → Ser 

mutation prevents the reversion to pathogenic phenotype [89]. Duplication or triplication of 

this mutant G gene significantly enhanced the immunogenicity of the vaccine through higher 

G protein expression [90] and also decreased the chances of reversion to pathogenic 

phenotype [91]. Though, TriGAS is shown to be more effective than conventional rabies 

vaccines in inducing RABV-specific immunity, as well as in promoting immune effector 

delivery to CNS tissues, but it is also shown to effectively protect mice as late as 4 days after 

infection with lethal dose of wild-type RABV [92]. Like the CVS-F3, TriGAS has been 

shown to enhance the BBB permeability and stimulate a robust immune response for 

effective clearance of RABV from the CNS [93]. Transcriptome analysis revealed that the 

host-pathogen responses are responsible for RABV clearance including rapid production of 

VNA and the induction of factors that promote the activity of immune effectors in the brain 

[93], thus TriGAS can also be used as a tool for rabies therapy.

By using recombinant RABVs expressing immune stimulating agents

Studies from our laboratory indicate that recruitment and/or activation of DCs plays an 

important role in enhancing protective immunity against RABV infection [94–96]. Insertion 

of innate immunity genes like cytokine/chemokine into vaccine candidates has been reported 

to increase vaccine immunogenicity by recruitment and/ or activation of DCs and B cells 

[96–98]. It has been found that intracerebral administration of recombinant RABV 

expressing GM-CSF effectively protected mice as late as 5 days after infection with wild-

type RABV [95]. Administration of this rRABV by peripheral routes was not as effective. 

Intracerebral injection of this rRABV not only resulted in the production of VNA, but also in 

the enhancement of BBB permeability. However, enhancement of the BBB permeability 

alone is not sufficient to protect mice from developing rabies since administration of a 

chemokine, MCP-1, enhanced the BBB permeability, but did not significantly increase the 

survival rate in mice infected with wt RABV, when compared to those infected with wt 
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RABV without MCP-1 treatment [96]. On the other hand, immunization with an inactivated 

RABV preparation 5 days after infection with street RABV did not increase significantly the 

survival rate either despite the fact that VNA was produced in the periphery. Yet, 

administration of MCP-1 (which can transiently enhance the BBB permeability) in mice 

immunized with inactivated RABV significantly improved the survival rate in mice infected 

with street RABV [96]. Thus the combined effects of enhancement of BBB permeability and 

the production of VNA are required for clearance of RABV from the CNS and prevention of 

mice from developing rabies. Also, it has been considered that VNA produced in situ by the 

invading B cells at the CNS is important in clearing RABV from the CNS, rather than VNA 

produced in the periphery and then transported into the CNS [79].

By intrathecal administration of RABV vaccines

It has been shown by Baer et al., in early 1970s that the intrathe-cal administration of 

attenuated rabies vaccine in dogs, not only induced VNA in the CSF, but also prolonged the 

morbidity [99]. Recently, it has been shown that the intrathecal inoculation of rabies 

vaccines directly into the CSF of rabbits showing neuromuscular symptoms of rabies, led to 

the clearance of RABV from the CNS and their survival [100]. Thus, these studies provide 

evidence of RBAV clearance from CNS and possible therapy for rabies using intrathecal 

RABV immunization.

By administration of VNA and transient opening of BBB transiently using MCP-1

Although, the live-attenuated RABVs (described above) are capable of clearing rabies virus 

from the CNS and thus could be used as possible agent for rabies therapy, however it poses 

safety concerns for human use and investigation of alternative methods without safety 

concerns are needed. Recent studies, however, indicates that intravenous administration of 

VNA together with MCP-1 that can transiently enhance the BBB permeability modulating 

agent resulted in the clearance of RABV from the CNS and prevented the development of 

rabies when given 5 days post infection with wt RABV [101]. As shown in the Figure. 1, 

untreated, B-cell deficient or C57BL/6J (immunocompetent/ background) mice all died by 

12-14 dpi. However, 80% of the immunocompetent mice treated with serum containing 

VNA and MCP-1 survived. It is also observed that, only 25% of the B-cell deficient mice 

survived the lethal rabies challenge after treatment with serum containing VNA and MCP-1 

at 5 dpi despite the fact that VNA remained in high titers in the serum. Considering the 

transient effects of MCP-1 on BBB permeability, an additional dose of MCP-1 at 7 dpi, 

significantly enhanced the survival rate from 25% to 78% (Figure. 1). Thus, it is 

demonstrated that, VNAs administered in the periphery can clear lethal RABV from the 

CNS in both immunocompetent and immunocompromised mice as long as the BBB 

permeability remains enhanced [101]. These studies may provide the foundation for 

developing VNA therapy for clinical rabies.

Animal model for rabies therapy/treatment

Mice have been used extensively as an animal model in deciphering rabies pathogenesis and 

also for the development of vaccines because of their shorter incubation and disease periods 

and they are available cheaply in large numbers. Although the mouse model is very useful to 
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test the efficacy of RABV vaccines administered prior to challenge, but it is not a suitable 

model for developing therapy for clinical rabies because of the shorter incubation and 

disease periods. Dogs are one of the natural hosts for rabies and the incubation period (1–3 

months) and disease process (3–7days) in dogs are very similar to those recorded in humans, 

thus serving the best suited animal model especially for the development of rabies therapy 

for humans. Our recent studies indicate that the dogs which succumbed to rabies had severe 

inflammation in the CNS and little or no VNA in the serum or CSF. On the other hand, the 

dogs which recovered rabies had high level of VNA in the CSF. Therefore it is evident that 

the production of VNA within the CNS or invasion of VNA from the periphery into the CNS 

via compromised BBB is important for clearing the virus infection from the CNS [102]. 

Also, studies in mice indicate that the direct administration of VNA along with the 

enhancement of BBB permeability can clear the RABV from the CNS. Thus, dogs would be 

an apt model to apply the acquired from mouse/ other studies. Our current understanding of 

rabies virus clearance is illustrated in Figure. 2 for effective treatment of clinical rabies.

Future research directions for rabies treatment

Immune clearance of RABV from CNS using bi-specific antibodies

Although drugs have been found to breach the BBB integrity, there are several issues 

regarding compromising the BBB, one of which is the unwanted immune molecules that 

enter into the CNS from the periphery may lead to neurological complications. It has been 

shown in experimental cerebral malaria, vascular leakage is closely associated with brain 

edema, coma and death [103]. The most acknowledged approach to treat rabies is to avoid 

meddling with BBB, by using bi-specific antibodies that can cross BBB without altering its 

function. It has been shown in mice, that a bi-specific antibody [one arm specific to TfR 

(transferrinreceptor) but rather and other arm is specific to enzyme β-secretase] can 

efficiently cross the BBB and reduced the accumulation of amyloid-β peptide in the CNS 

[104]. Therefore it is plausible to construct a bi-specific antibody, one arm recognizing the 

TfR, which is highly expressed by the endothelial cells that make up the BBB and other arm 

recognizing rabies G protein (with neutralizing ability). Thus, such bi-specific antibodies 

which retain the ability to cross the BBB and to neutralize RABVs in the CNS would help us 

to establish an effective therapy for rabies in humans.

Neuroprotective therapy for rabies

Although, RABV clearance from CNS is the first and crucial step towards rabies treatment, 

however it is equally important to ameliorate the neuronal injury for complete recovery from 

rabies. Despite extensive investigation, the mechanism by which RABV infection causes 

neurological disease and damage is still not completely understood. It is shown that RABV 

infection causes dysfunction of ions channels, such as reduction in sodium and potassium 

channels [105, 106]. Also, there are evidence of impaired release of neurotransmitters such 

as serotonin, norepinephrine and dopamine at synaptic junctions which could result in 

functional impairment [3]. Investigation of structural alterations of neuronal processes in 

rabies infection showed severe destruction and disorganization of neuronal processes in mice 

infected with pathogenic but not in attenuated rabies virus. Detailed structural analysis using 

electron microscopy indicates loss of synaptic structures and vesicles, suggesting pathogenic 
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RABV infection causes degeneration of neuronal processes by disrupting cytoskeletal 

integrity [107]. All these evidence indicate that rabies infection causes severe damages to 

neurons. Though, it is unclear whether the rabies induced neuronal damages are reversible 

but it is critical to ameliorate the neuronal injury, as a part of rabies therapy for complete 

recovery.

It is self-evident that the adult mammalian brain and spinal cord do not regenerate after 

injury or damage, but recent discoveries have forced a reconsideration of this accepted 

principle. As reported by Cajal in 1928 that the adult CNS neurons could regrow if they 

were provided access to permissive environment of a conditioned sciatic nerve [108]. 

Aguyao et al., replicated these studies with new methods that confirmed the regenerative 

capabilities of adult neurons [109]. It is clear from these findings that the failure for CNS 

neuron to regenerate is not an intrinsic deficit, but rather a characteristic feature of the 

damaged environment that did not support regeneration. In the past few years the elements 

promotes neurons regeneration or inhibition have been discovered. Neurotrophins (NT) 

which includes, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), 

NT-3, NT-4/5, and NT-6, are a family of closely related proteins that were first identified as 

survival factors for sympathetic and sensory neurons and since have been shown to control 

survival, development and function of neurons in both central and peripheral nervous system 

[110]. Beside these, they are believed to be at least partially responsible for axon guidance 

and maintenance of CNS integrity [111–113]. Thus, these studies highlight the importance 

of NT on neuronal survival and regeneration. It would be interesting to explore the beneficial 

effect of “neurotrophins” in rabies therapy, by generating a chimeric attenuated RABV 

expressing BDNF or NGF. Such chimeric attenuated viruses could play dual role on virus 

clearance from CNS and also could provide a permissive environment for the rejuvenation of 

neurons. Such studies in animal models aimed at treating rabies using novel approaches 

would contribute to the establishment of an effective therapy for human rabies.

Conclusion

The intent of this review is to provide insight into the current understanding of rabies 

pathogenesis for the purpose of developing and evaluating efficient treatments. Despite 

significant progress, rabies remains an important global disease. Successful vaccines have 

been developed for post-exposure prophylaxis. Yet, PEP is ineffective once clinical signs 

have appeared indicating active virus replication in the CNS. Recent studies aimed at 

improving the efficacy of PEP of rabies or clearance of virus from the CNS indicate that the 

presence of RABV-specific immunity (VNA) in the CNS and the transient opening of BBB 

permeability is an absolute requirement for effective virus clearance from the CNS. In 

principle, it has been shown in mice that various live-attenuated rRABVs like TriGAS or 

rRABVs expressing chemokine/ cytokines can induce high levels of VNA in the serum and 

are also capable of transiently opening BBB, resulting in the clearance of RABV from CNS 

and prevention of mice from developing rabies. Intravenous administration of VNA and 

MCP-1 (shown to transiently open up BBB) can clear lethal RABV from the CNS in both 

immunocompetent and immunocompromised mice, as late as 5 days after lethal challenge. 

However, for an effective treatment and recovery, it is not only important to clear the virus 

from CNS but also to ameliorate the neuronal injury induced by the viral infection. 
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Therefore, a combination of therapy including antiviral therapy, immunotherapy and 

neuroprotective therapy should be an important area of research for the treatment of rabies. 

Such studies in animal models aimed at treating rabies using novel approaches would 

contribute to the establishment of an effective therapy for human rabies.
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Figure 1. 
Rabies treatment by peripheral administration of VNA and MCP-1 and its protective efficacy 

in immunocompetent and B-cell deficient mice treated 5 days after lethal challenge. Normal 

and B-cell deficient mice were infected i.m with DRV and then treated with serum 

containing rabies-antibodies (Ab) in conjunction with MCP-1 at 5dpi or at both 5 and 7 dpi.
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Figure 2. 
Illustration of RABV clearance from CNS that requires transient opening of the BBB, which 

allows the entry of immune effectors (VNA) from the periphery.
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Table 1

Striking difference between pathogenic and non-pathogenic RABV biology.

Non-pathogenic virus (fixed/lab-adapted) Pathogenic virus (street/wild-type) References

Cellular Tropism Not exclusively neuronal Highly neuronal (47, 114)

Glycoprotein Expression Levels High Low (55, 114)

Replication (titer) High Low -47

Apoptosis High Low (114, 115)

Interferon sensitivity Resistant Highly sensitive -98

Immune System Activates innate/adaptive immunity Evades innate/adaptive immunity (51, 116, 117)

Blood-brain-barrier (BBB) permeability Enhances Little or no change (53, 56–58, 
79, 81, 92)
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