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1  | INTRODUC TION

Polyandry, where females mate with two or more males, is tax-
onomically widespread (Birkhead & Møller, 1998) despite poten-
tial costs to females, such as wasted time and energy (Watson, 
Arnqvist, & Stallmann, 1998), increased predation risk (Rowe, 1994), 
exposure to disease (Thrall, Antonovics, & Dobson, 2000), and risk 
of injuries (Crudgington & Siva- Jothy, 2000). The maintenance of 

polyandry has been attributed to material (direct) and genetic (in-
direct) benefits for females. Direct benefits include fertility assur-
ance, provision of resources and parental care for the offspring 
(Sheldon 1994). Indirect benefits include genetic incompatibility 
avoidance, increased genetic diversity of offspring, and the en-
hanced survival and reproductive success of offspring (Jennions 
& Petrie, 2000; Neff & Pitcher, 2005; Tregenza & Wedell, 2000). 
Polyandry may also occur in the absence of benefits to females in 
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Abstract
Polyandry, where multiple mating by females results in the temporal and spatial over-
lap of ejaculates from two or more males, is taxonomically widespread and occurs in 
varying frequencies within and among species. In decapods (crabs, lobsters, crayfish, 
and prawns), rates of polyandry are likely to be variable, but the extent to which pat-
terns of multiple paternity reflect multiple mating, and thus are shaped by postmat-
ing processes that bias fertilization toward one or a subset of mated males, is unclear. 
Here, we use microsatellite markers to examine the frequency of multiple mating (the 
presence of spermatophores from two or more males) and patterns of paternity in 
wild populations of western rock lobster (Panulirus cygnus). Our data confirm that 
>45% of females had attached spermatophores arising from at least two males (i.e., 
confirming polyandry), but we found very limited evidence for multiple paternity; 
among 24 clutches sampled in this study, only two arose from fertilizations by two or 
more males. Single inferred paternal genotypes accounted for all remaining progeny 
genotypes in each clutch, including several instances when the mother had been 
shown to mate with two or more males. These findings highlight the need for further 
work to understand whether polyandry is adaptive and to uncover the mechanisms 
underlying postmating paternity biases in this system.
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order to avoid the costs of male harassment (“convenience polyan-
dry”; Thornhill & Alcock, 1983).

A common assumption in the literature in sexual selection is that 
polyandry will inevitably lead to multiple paternity. Indeed, multiple 
paternity, as estimated by assigning parentage of offspring from puta-
tively multiply mated females, is commonly used to estimate the level 
of polyandry in natural populations (Taylor, Price, & Wedell, 2014). Yet, 
polyandry does not always translate into multiple paternity, as a num-
ber of postmating processes can ultimately determine which males are 
successful	at	fertilizing	a	female’s	eggs.	For	example,	polyandry	pro-
vides the scope for postmating episodes of sexual selection in the form 
of	sperm	competition	(Parker,	1970)	and/or	cryptic	choice	(Eberhard,	
1996; Thornhill, 1983), which have the potential to affect fertilization 
outcomes (Pizzari & Wedell, 2013). Sperm competition is the compe-
tition between sperm of different males to fertilize a female’s eggs 
(Parker,	1970),	whereas	cryptic	choice	occurs	when	females	influence	
the outcome of sperm competition (Eberhard, 1996; Thornhill, 1983). 
Sperm competition and cryptic female choice play critical roles in post-
mating sexual selection and have important consequences at both 
population and individual levels (Birkhead & Pizzari, 2002).

The mating systems of decapod crustaceans are highly diverse 
and	 complex	 (Duffy	 &	 Thiel,	 2007;	 Martin,	 Crandall,	 &	 Felder,	
2016). In many species, reproduction is synchronized with the 
molt cycle, with females being receptive only for a limited time 
after	 molting	 (Duffy	 &	 Thiel,	 2007).	 Females	 approaching	 their	
reproductive molt are often guarded by males for one to sev-
eral	days	before	 copulation	 (Duffy	&	Thiel,	2007;	Subramoniam,	
2013). Precopulatory male guarding is considered an evolutionary 
response to time- limited opportunity for fertilization and to the 
need	 to	 protect	 recently	molted	 females	 (Duffy	 &	 Thiel,	 2007).	
In species with external fertilization (e.g., lobsters), males attach 
their spermatophores on the sternal plates of the female’s ceph-
alothorax during mating (Phillips, Cobb, & George, 2012). After 
mating, postmating guarding by the male occurs in some species, 
presumably to reduce the risk that females will mate with other 
males	(Duffy	&	Thiel,	2007).

Parentage studies have revealed that polyandry is widespread 
in decapods and that there is substantial variation in the extent of 
multiple paternity within and among species, ranging from zero in 
the European lobster, Homarus gammarus (Ellis et al., 2015) to 100% 
in the squat lobster, Munida sarsi	(Bailie,	Hynes,	&	Prodohl,	2011).	For	
the most part, however, parentage studies on decapods have been 
conducted on crabs (Baggio et al., 2011; Jensen & Bentzen, 2012; 
Jossart et al., 2014; Koga, Henmi, & Murai, 1993; McKeown & Shaw, 
2008;	 Pardo,	 Riveros,	 Fuentes,	 Rojas-	Hernandez,	 &	 Veliz,	 2016;	
Reaney, Maurer, Backwell, & Linde, 2012; Sainte- Marie, Gosselin, 
Sevigny, & Urbani, 2008). In some cases, where multiple paternity 
has been detected, considerable skews in fertilization success toward 
a single male have been reported (Bailie et al., 2011, 2014; Gosselin, 
Sainte- Marie, & Bernatchez, 2005; Plough, Moran, & Marko, 2014). 
Such skew may result from a range of postmating processes, in-
cluding cryptic female choice (Thiel & Hinojosa, 2003) and sperm 
competition (Diesel, 1990; Sévigny & Sainte- Marie, 1996; Urbani, 
Sainte-	Marie,	 Sévigny,	 Zadworny,	&	Kuhnlein,	 1998).	 For	 example,	
in crabs of the infraorder Brachyura, in which spatial segregation of 
multiple paternal ejaculates has been reported, the anatomical struc-
ture of the spermathecae increases the probability of fertilization 
for the last male, that is, last- male precedence (Jensen & Bentzen, 
2012).	Furthermore,	 in	 freshwater	crayfish,	males	bias	paternity	 in	
their favor by depositing sperm plugs (Holdich, Reeve, Holdich, & 
Lowery,	1988)	diluting	sperm	(Rubolini	et	al.,	2007)	and	removing	or	
displacing	sperm	from	previous	males	 (Villanelli	&	Gherardi,	1998).	
By comparison, we know little about the mating system of lobsters 
(Ellis et al., 2015; Gosselin et al., 2005; Melville- Smith, de Lestang, 
Beale, Groth, & Thompson, 2009; Streiff, Mira, Castro, & Cancela, 
2004), especially regarding female mating strategies and the preva-
lence of polyandry and multiple paternity in natural populations.

The western rock lobster (Panulirus cygnus) is endemic to the 
Indo-	West	Pacific	Ocean	 region	 (see	Figure	1).	 It	 is	 found	 in	 tem-
perate to subtropical waters along the Western Australian coast-
line,	ranging	from	Exmouth	(21°55′	59″S,	114°7′41″E)	in	the	north	
to	 Albany	 in	 the	 south	 (35°1′22″S,	 117°52′53″E)	 (Phillips,	 2013).	
The reproductive behavior and life cycle of P. cygnus is described 
in	 detail	 elsewhere	 (Chittleborough,	 1976;	 Phillips,	 2013).	 Briefly,	
the spawning season commences in early spring, when males attach 
their spermatophores (sperm packets, typically termed “tar spots”) 
to	the	sternums	of	receptive	females.	Fertilization	takes	place	when	
females extrude eggs and scratch the spermatophoric mass to re-
lease motile sperm. Remnants of the attached tar spots remain until 
they are either covered by a second mating or removed during molt-
ing. The life cycle of P. cygnus includes a long (~9–11 months) oceanic 
larval phase, during which planktonic phyllosoma larvae disperse as 
far as 1,500 km offshore. Helped by favorable winds and currents, 
the larvae subsequently return to the continental shelf where the 
final- stage larvae metamorphose into the puerulus (postlarvae) that 
swim toward the shore and settle in shallow reefs. The settled puer-
uli develop into juveniles and subsequently adults in 5–6 years.

Here we provide new insights into the mating systems and repro-
ductive behavior of P. cygnus, which until now has been limited mainly 

F IGURE  1 The western rock lobster (Panulirus cygnus). 
Photograph courtesy of the Western Australian Department of 
Primary Industry and Regional Development



     |  4527LOO et aL.

to observations conducted under laboratory controlled conditions 
(Chittleborough,	1974,	1976).	Our	recent	work	on	wild	populations	of	
P. cygnus (J. Loo et al. unpubl. data) found evidence of high levels of 
polyandry in natural populations, with up to 52% of mated females 
at some locations carrying spermatophores from two or more males. 
However, this previous study did not genotype fertilized eggs and 
therefore was unable to confirm whether multiple mating translated 
into multiple paternity. In this study, we use microsatellite markers to 
examine patterns of paternity in two wild populations of P. cygnus. By 
focusing on both singly and multiply mated females (i.e., females car-
rying spermatophores from one male or two or more males, respec-
tively), we are able to test whether multiple mating leads to multiple 
paternity. In this way, our study combines data on multiple mating and 
offspring paternity to provide insights into the likely importance of 
postmating sexual selection in this system.

2  | MATERIAL S AND METHODS

2.1 | Sampling

The study was conducted in Rottnest Island, located 18 km west of 
Fremantle,	 in	south-	west	Western	Australia	(32°00′S,	115°30′E).	

Sampling	was	 conducted	 over	 16	days	 in	 February	 2015	 by	 the	
West Australian Department of Primary Industries and Regional 
Development;	Fisheries	Division	as	part	of	their	regular	monitor-
ing	 program.	 Lobsters	were	 sampled	 at	 two	 locations	 (Figure	2),	
using dive and pot- based survey techniques (Bellchambers et al., 
2009).

For	each	lobster	captured	during	these	collections,	the	sex	and	
carapace length (CL, measured to the nearest 0.1 mm using a dial cal-
iper) were recorded. Tissue samples from pleopods were collected 
from all males with a CL >64.5 mm (the minimum CL of a mature 
male reported at Lancelin; Melville- Smith & de Lestang, 2006) and 
from females carrying spermatophores and/or eggs. A small piece of 
spermatophore and a cluster of eggs were removed from females. All 
tissue samples were preserved in 100% ethanol.

2.2 | DNA extraction

Total genomic DNA was extracted from spermatophores using 
DNeasy Blood and Tissue kit (QIAGEN) following the manufac-
turer’s protocol. Total genomic DNA was extracted from pleopods 
and individual eggs using proteinase K digestion followed by a DNA 
extraction method using DNA binding plates (Pall Corporation), as 

F IGURE  2 Map showing the sampling sites at Rottnest Island. The areas shaded green represent marine protection zones
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described in Ivanova, Dewaard, and Hebert (2006). The concentra-
tion and quality of the DNA of each sample was quantified using a 
NanoDrop ND- 1000 spectrophotometer.

Samples were genotyped at seven microsatellite loci, which 
have proven to be polymorphic for P. cygnus: Pcyg03, Pcyg04, 
Pcyg05, Pcyg11, Pcyg15, Pcyg18 (Kennington et al., 2010), and 
S28 (Groth, Lim, de Lestang, Beale, & Melville- Smith, 2009). The 
5′-	end	of	the	forward	primer	from	each	locus	was	labeled	with	a	
fluorescent	tag	(FAM,	NED,	PET,	VIC).	PCRs	were	carried	out	in	a	
5- μl volume with the following conditions: 1 μl of template DNA 
(10 ng), 1× Bioline MyTaq reaction buffer (containing 3 mmol/L 
MgCl2, 1 mmol/L of each dNTP, stabilizers and enhancers), 
0.4 μmol/L of each primer, and 0.1 U/μl MyTaq DNA polymerase 
(Bioline). Amplifications were completed in an Eppendorf thermal 
cycler, after optimization of published annealing temperatures 
(Groth et al., 2009; Kennington et al., 2010). PCR products were 
analyzed	 on	 a	 3700	Genetic	Analyzer	 (Applied	Biosystems,	 Inc),	
using an internal size standard (GS500 LIZ, ABI). Microsatellite al-
leles were identified by their sizes in base pairs using the software 
GENEMARKER v4.0 (SoftGenetics, State College, PA, USA). The 
genotypes of the males (n = 489) were sourced from a previous 
study (J. Loo et al., unpubl. data).

2.3 | Data analysis

The	 program	 MICRO-	CHECKER	 (Van	 Oosterhout,	 Hutchinson,	
Wills, & Shipley, 2004) was used to detect genotyping or scoring 
errors, caused by null alleles, large allele dropout, or stutter peaks 
in the maternal genotypes. Duplicate samples were detected from 
the probability of genotype identity using GENALEX v. 6 (Peakall 
& Smouse, 2006). The probability of identity (PI, the average prob-
ability of different random individuals sharing the same genotype by 
chance) and a more conservative estimate of PI, PIsibs, which takes 
into account the presence of relatives, were also calculated using 
GENALEX. The same software was used to estimate the number of 
alleles and observed and expected heterozygosity for each locus 
from the maternal genotypes. Deviations from random mating were 
characterized using the FIS statistic (inbreeding coefficient). Positive 
and negative FIS values indicate a deficit or excess of heterozygotes 
relative to random mating, respectively. Linkage disequilibrium be-
tween each pair of loci was evaluated by testing the significance 
of association between genotypes. Inbreeding coefficient esti-
mates	were	performed	using	FSTAT	version	2.9.3	software	package	
(Goudet, 2001). The program GENEPOP 3.1 (Raymond & Rousset, 
1995) was used to assess conformity to Hardy- Weinberg equilibrium 
(HWE). Probability values for deviation from HWE were estimated 
using the Markov chain method with 10,000 iterations.

Paternity was investigated by genotyping ~20 fertilized eggs 
obtained from each of the sampled females (see Table 2 for sam-
ple sizes). This level of sampling was based on analytical methods 
for calculating statistical power to detect multiple in highly fecund 
decapods	 (Veliz,	 Duchesne,	 Rojas-	Hernandez,	 &	 Pardo,	 2017),	 al-
though the number of females sampled in our study was below the 

recommended 50 females in that analysis (see Section 4). However, 
power analysis of sampling 20 eggs per female indicates that we had 
the ability to detect multiple spawning more than 99% of the time, if 
the contribution of sperm from two males was roughly equal. Even 
under the scenario of one male contributing the majority of sperm 
used to fertilize the egg mass (e.g., 90% of all sperm) our detection 
probability was still as high as 90%. Three different approaches were 
used to evaluate paternity: initial inference, the GERUD 2.0 soft-
ware package (Jones, 2005), and the COLONY 2.0 software pack-
age	(Wang,	2004;	Wang	&	Santure,	2009).	For	the	initial	inference	
approach, paternal genotypes were inferred from nonmaternal al-
leles observed in the offspring. Multiple paternity was assumed only 
if more than two nonmaternal alleles occurred in more than one 
locus in the offspring, to allow for the possibility of mutation at one 
locus. We analyzed paternity with GERUD using it to reconstruct 
the minimum number of possible paternal genotypes. GERUD uses 
an exhaustive algorithm that takes into account information from 
patterns of Mendelian segregation and genotypic frequencies in 
the population. As GERUD does not accept missing data, the num-
ber	of	loci	used	in	this	study	varied	from	4	to	7.	The	parameter	for	
the maximum number of fathers was set to four, and the runs were 
conducted with known maternal genotypes. Initial inference and 
GERUD assume that males are heterozygotes and that there is no 
allele sharing among fathers or between mother and father(s) and, 
consequently, they may be underestimating the number of fathers. 
Lastly, we used COLONY to assign parentage based on a maximum- 
likelihood model. Unlike GERUD, this program accepts missing data. 
We used the default setting and all runs were performed with known 
maternal genotypes. Inferred paternal genotypes were compared to 
the genotypes of all sampled males. Multiple paternity was inferred 
for a clutch if at least two of the three methods (initial inference, 
GERUD, COLONY) detected more than one father.

In addition to the paternity analysis, inferred paternal genotypes 
for each clutch were compared to the genotype of the spermato-
phore attached to the corresponding mother. Genotype matching 
was carried out using the genotype identity option in GENALEX.

3  | RESULTS

A total of 25 females carrying eggs (15 from Armstrong Bay and 10 
from Kingston Reef) were genotyped. Based on genotype identity, 
one female from Kingston Reef was sampled twice. Of the remaining 
24 females, 11 (~46%) had attached spermatophores with genotypes 
consisting of more than two alleles at a locus, indicating the presence 
of DNA from more than one male. (Note that we have previously 
confirmed that spermatophores consisting of multiple genotypes are 
unlikely to result from genotyping errors or contamination of female 
DNA and are therefore likely to result from multiple mating; J. Loo 
et al., unpubl. data.) A further five females had spermatophores with 
genotypes from a single male that did not match the genotype of 
the inferred sire, suggesting that these females had also mated with 
two or more males during the reproductive season. The maternal 
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genotypes showed no evidence of null alleles, and there were no 
significant deviations from HWE at any locus (p > .05 in all cases). 
The probability of sampling identical maternal genotypes (PI) was 
3.5 × 10−7, and a more conservative estimate of PI, which takes into 
account the presence of relatives, PIsibs, was 5.2 × 10−3. The number 
of alleles per locus ranged from 2 to 26, with observed heterozygo-
sity	ranging	from	0.042	to	0.917	(Table	1).

Based on initial inference, only one of 24 clutches showed mul-
tiple paternity. According to initial inference and GERUD, the mini-
mum number of sires per clutch was one in 22 cases, with two cases 
of multiple paternity detected (minimum number of sires of two and 
three). The analysis in COLONY suggested three instances of multi-
ple	paternity	(Table	2).	Following	a	consensus	approach,	multiple	pa-
ternity was identified only in the two clutches where at least two of 
the three methods used detected more than one sire. Interestingly, 
none of the 489 males that were sampled in this study was identified 
by COLONY as being a putative father of the 24 clutches examined.

Inferred paternal genotypes (from fertilized eggs) were com-
pared with the genotypes of the spermatophores collected from 
the corresponding egg- carrying females (Table 2). Of these, eight 
(33%) matched the genotype of the spermatophore attached to the 
mother. The remaining inferred paternal genotypes did not match 
the	genotype	of	 the	spermatophore	attached	to	the	mother	 (17%)	
or could not be compared to the genotype of the spermatophore 
attached to the mother because the spermatophore contained ejac-
ulates from more than one male.

4  | DISCUSSION

Our study confirms that while multiple mating by female P. cygnus 
is relatively common, incidences of multiple paternity are extremely 
rare. We found that spermatophores attached to females often 
came from two or more males, confirming our previous evidence 
that polyandry is widespread in natural populations of P. cygnus (J. 
Loo et al., unpubl. data). Despite this evidence for female multiple 
mating, however, we found limited evidence of multiple paternity.

One simple explanation for the disparity between patterns 
of female multiple mating and the incidence of multiple paternity 
is that our sampling protocol may have resulted in low statistical 
power.	Recently,	Veliz	et	al.	(2017)	developed	an	analytical	method	
that assessed the statistical power to detect multiple paternity in 
crabs. According to their analysis, sampling 20 eggs from n = 50 fe-
males yields very high statistical power to detect multiple paternity, 
even in highly fecund species with 1 × 106 eggs per clutch. In our 
study, we were restricted to approx. half this number of females, 
possibly restricting our ability to fully detect cases of multiple pa-
ternity.	However,	Veliz	et	al.	(2017)	also	found	that	studies	employ-
ing reduced levels of sampling (in terms of clutch size and number 
of females sampled) also had high power (~98%) to detect multiple 
paternity. In the present study, we suspect that even if we had im-
proved our statistical power with greater levels of sampling, based 
on our power analysis, cases of multiple paternity would still have 
been rare and/or paternity would have been heavily skewed toward 
a single male in most cases.

A second possible explanation for the disparity between pat-
terns of female multiple mating and the incidence of multiple pater-
nity is that females mate consecutively with individual males each 
time they produce a batch of eggs, and that our observed patterns 
of (largely single) paternity reflect a pattern of serial monogamy over 
the course of the breeding season. As we note above, in P. cygnus 
mating entails the attachment of the male’s spermatophore (tar spot) 
to the underside of the female, which is partially eroded by the fe-
male during fertilization and is only sloughed off in the following 
molting. Subsequent matings within the same reproductive season 
(molt cycle) involve a male depositing a fresh spermatophoric mass 
on top of the previously eroded (used) spermatophore (de Lestang & 
Melville- Smith, 2006). This can lead to the spermatophoric mass on a 
female being dominated by a single sire (by virtue of their positioning 
and numerical supremacy) while still containing the DNA from mul-
tiple sires. This is reflected by the high incidence of multiple mating 
and low occurrence of multiple paternity. However, when double 
spawning has been observed, it is more likely to occur in the larger 
females	(Chittleborough,	1976;	Chubb,	1991;	de	Lestang	&	Melville-	
Smith, 2006). This pattern of larger females spawning twice in a sea-
son	has	also	been	observed	in	other	spiny	lobsters	(Briones-	Fourzán	
& Lozano- Alvarez, 1992; Gomez, Junio, & Bermas, 1994; Macfarlane 
& Moore, 1986). While these observations support the idea of serial 
monogamous matings, we have confirmed elsewhere that females 
carrying spermatophores from more than one male had a wide range 
of body sizes (carapace length 69.5–106.5 mm) and there was no ev-
idence of higher rates of multiple mating in larger females (J. Loo 
et al., unpubl. data).

A final explanation for the high levels of polyandry observed in 
this study is that females mate with multiple males between fertil-
ization events and sperm competition and/or female cryptic choice 
function to refine fertilization success in favor of a subset of mated 
males. This explanation also accounts for the disparity between 
patterns of multiple mating (high incidence) and multiple paternity 
(low incidence). In species where females store spermatophores 

TABLE  1 Genetic variation at microsatellite loci used in this 
study

Locus n Na HO HE FIS

Pcyg03 24 5 0.250 0.323 0.25

Pcyg04 24 26 0.917 0.953 0.06

Pcyg05 24 7 0.708 0.710 0.02

Pcyg11 23 8 0.826 0.733 −0.11

Pcyg15 24 2 0.375 0.430 0.15

Pcyg18 24 2 0.042 0.041 0.00

S28 24 9 0.625 0.641 0.05

W25 22 9 0.591 0.543 −0.06

Estimates are based on maternal genotypes pooled across locations. n, 
sample size; Na, number of alleles; HO, observed heterozygosity; HE, ex-
pected heterozygosity; and FIS inbreeding coefficient (p > .05 for all).
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externally, sperm competition can occur when a male displaces or 
removes	 the	 spermatophore	 from	 the	 female.	 For	 example,	 in	 the	
freshwater crayfish Austropotamobius italicus, males remove and 
consume all (or most) of the spermatophores from previously mated 
males	before	releasing	their	own	sperm	(Galeotti	et	al.,	2007).	The	
occurrence of cryptic female choice is often more difficult to infer 
due to the diversity of possible underlying mechanisms and their in-
teractions	with	sperm	competition	(reviewed	by	Firman,	Gasparini,	
Manier,	&	Pizzari,	2017).	Consequently,	evidence	of	cryptic	female	
choice in decapods is limited, but compelling examples of the phe-
nomenon come from studies of other marine species with external 
sperm deposition (e.g., Japanese pygmy squid, Idiosepius paradoxus; 
Sato,	Yoshida,	&	Kasugai,	2017)	and	external	fertilization	(ocellated	
wrasse, Symphodus ocellatus; Alonzo, Stiver, & Marsh- Rollo, 2016). 
Cryptic female choice has been proposed in decapods based on 
behavioral observations, including failed copulations (Bauer, 1996; 

Diesel, 1990; Ra’anan & Sagi, 1985) and delayed oviposition (Thiel 
& Hinojosa, 2003). However, such observations do not demon-
strate cryptic female choice by themselves. More direct evidence 
of cryptic female choice in decapods comes from observations of 
females	 removing	 or	 displacing	 spermatophores.	 For	 example,	 re-
moval of sperm has been reported for rock shrimps, R. typus (Thiel & 
Hinojosa, 2003) and anecdotally in the spiny lobster Panulirus gutta-
tus	(Magallon-	Gayon,	Briones-	Fourzan,	&	Lozano-	Alvarez,	2011).	In	
P. cygnus, spermatophores are attached externally to the female and 
fertilization is temporally decoupled from mating, suggesting that 
there is some opportunity for cryptic female choice in this system. 
We clearly require further observational and/or experimental stud-
ies to identify the mechanisms that generate paternity biases in this 
system.

In summary, this study revealed limited evidence of multi-
ple paternity in P. cygnus, despite the high frequency of multiple 

TABLE  2 Minimum number of sires per clutch as estimated by initial inference, GERUD 2.0 and COLONY 2.0 runs with known maternal 
genotype

Clutch

No. of 
embryos 
analyzed Initial inference GERUD 2.0 COLONY 2.0

Spermatophore matched 
inferred parent Multiple paternity

Kingston Reef

1 20 1 1 1 Yes No

2 20 1 1 1 POLY No

3 40 1 1 1 No No

4 20 1 1 1 Yes No

5 19 1 1 1 Yes No

6 18 1 1 2 POLY No

7 19 1 1 1 POLY No

8 20 3 3 3 No Yes

9 20 1 1 1 POLY No

Armstrong Bay

1 18 1 1 1 Yes No

2 20 1 1 1 Yes No

3 19 1 1 1 POLY No

4 19 1 1 1 No No

5 19 1 1 1 POLY No

6 20 1 1 1 Yes No

7 20 1 2 2 POLY Yes

8 18 1 1 1 No No

9 19 1 1 1 POLY No

10 20 1 1 1 Yes No

11 20 1 1 1 Yes No

12 19 1 1 1 No No

13 20 1 1 1 POLY No

14 20 1 1 1 POLY No

15 20 1 1 1 POLY No

POLY indicates cases of polyandry where the spermatophore consisted of more than one genotype (i.e., three or more alleles at least one locus). Criteria 
to determine multiple paternity: detection of a minimum of two sires per clutch by at least two of the three methods.
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mating. This suggests that although females mated with more than 
one male, fertilization was attained by only a subset (one or two) 
of these males. We have yet to determine whether female multiple 
mating is adaptive (e.g., because it enables females to ensure that 
sperm from intrinsically “good” males win the race to fertilize their 
eggs;	 Curtsinger,	 1991;	 Yasui,	 1997)	 or	 is	 a	 by-	product	 of	 accu-
mulated matings that take place throughout the breeding season. 
However, our observations of high levels of female multiple mating 
reveal the potential for postmating sexual selection to operate in 
this system. We eagerly await follow- up studies designed to eluci-
date such mechanisms and test for possible reproductive benefits 
of polyandry.
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