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DNA contains the genetic information for the synthesis of proteins and RNA, and it is an indispensable substance in living
organisms. DNA-binding proteins are an enzyme, which can bind with DNA to produce complex proteins, and play an
important role in the functions of a variety of biological molecules. With the continuous development of deep learning, the
introduction of deep learning into DNA-binding proteins for prediction is conducive to improving the speed and accuracy of
DNA-binding protein recognition. In this study, the features and structures of proteins were used to obtain their
representations through graph convolutional networks. A protein prediction model based on graph convolutional network and
contact map was proposed. The method had some advantages by testing various indexes of PDB14189 and PDB2272 on the
benchmark dataset.

1. Introduction

The sequence of a protein determines its structure and
different structures determine different functions. There is
about 18% of the weight of protein in the human body. As
the carrier of life, it plays a very important role in human
production and life. As a major component of life, proteins
are involved in almost all activities of cells, including DNA
replication and transcription, chromatin formation, cell
growth, and a series of activities, all of which cannot be
separated by specific proteins [1]. These proteins that bind
to and interact with DNA are called DNA-binding proteins.
It has a strong affinity with single-stranded DNA, but a small
affinity with double-stranded DNA. Therefore, DNA-
binding proteins are also called helical instability proteins,
single-stranded DNA-binding proteins [2].

With the development of gene sequencing, various
sequencing studies have left many DNA and proteins, includ-
ing DNA-binding proteins. Using machine learning and deep

learning methods to predict DNA-binding proteins has
reached a good level, but there is still room for improvement.

At present, many methods based on machine learning
have emerged to distinguish DNA-binding proteins, which
are divided into structure and sequence methods. Yubo
et al. [3] proposed a DBD-Hunter method that combines
structural comparison with an assessment of statistical
potential to measure the interaction between DNA bases
and protein residues. Zhou et al. [4] used random forest
for classification by adopting amino acid preservation
pattern, potential electrostatic, and other features. However,
these methods are too dependent on the protein structure, so
the practical operation is difficult. Therefore, sequence-based
studies were carried out. Liu et al. [5] proposed a new
method for predicting DNA-binding proteins, IDNA-Pro,
by integrating features into pseudoamino acids from protein
sequences and classifying them through random forest.
Zhao et al. [6] classified DNA-binding proteins based on
the physicochemical properties of amino acids by using
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random forest to recognize the sequence features generated
by PseAcc. Although the method based on machine learn-
ing can identify DNA-binding proteins well, it needs a lot
of human intervention in the process of feature selection
and could not properly grasp the relationship between data
and features. To overcome this difficulty, deep learning
techniques were introduced into protein prediction. Loo
et al. [7] proposed a new prediction method MsDBP, which
input the fused multiscale features into a deep neural net-
work for learning and classification. The classification was
tested with 67% accuracy on a separate dataset PDB2272.
Compared with machine learning method, it can save the
necessary manual intervention, but the prediction result
needs to be improved.

Although there are many methods used to predict DNA-
binding proteins at present, the results still have room for
improvement. The main problem is how to obtain the
high-precision protein structure from the protein sequence,
because the accuracy of protein structure and feature has a
great impact on the prediction results. In addition, the graph
convolution network (GCN) has been widely used in the
research of bioinformatics. Graph composed of nodes and
edges serves as the input of the network without any require-
ments on size and format [8]. In order to improve the accu-
racy of structure and prediction, combining with the current
developing trend of the technology of deep learning, a DNA-
binding protein prediction model based on GCN and
contact map was proposed. The protein graph depends on
the sequence of the results of the comparison, so first intro-
ducing the preprocess of the dataset, including sequence
comparison and filtering; the part of the output is used to
calculate the features, and the other part as the input of
Pconsc4 model [9], which is used to predict protein contact
map, so the inputs of the model are feature matrix and
adjacency matrix. We use them for training and prediction.
The experimental results show that the prediction perfor-
mance of DNA-binding proteins can be obtained by the
method described. The research content of this paper is
shown in Figure 1.

2. Materials and Methods

The prediction of DNA-binding proteins is divided into
three parts: data preprocessing, training model, and testing.
GCN differs from neural networks in that it introduces a
graph structure to represent proteins, which can better rep-
resent the structure of proteins. The main purpose of protein
sequence preprocessing is to obtain the features and struc-
tures of proteins. For the protein processing, the contact
map is obtained by predicting the sequence through
Pconsc4, and its output exactly corresponds to the adjacency
matrix of GCN [10].

2.1. The Dataset. The DNA-binding protein dataset selected
is the internationally common dataset. PDB14189 and
PDB2272 were established by Gomes et al. [11]. Among
them, the PDB14189 dataset was divided into 7129 DNA-
binding protein sequences and 7060 DNA-unbinding
protein sequences, and the PDB2272 dataset was divided

into 1153 DNA-binding proteins and 1119 nonbinding pro-
teins. PDB14189 was taken as the training set and PDB2272
as the test set. The dataset is detailed in Table 1 below.
Among them, positive represents DNA-binding proteins,
while negative represents non-DNA-binding proteins.

2.2. Protein Representation. The representation of proteins is
generally divided into spatial structure and feature. The
long-chain stable structure of protein also contains hydro-
gen bonds, hydrophobic bonds, salt bonds, and so on [12].
Each protein contains lots of atoms, if each atom is viewed
as a node, then the protein graph will be very large, which
will increase the pressure of training and is not easy to
achieve. However, there are about hundreds of residues in
a protein, and there is no other spatial information between
residues, so it is more suitable to be used as nodes to repre-
sent structural features. The spatial structure of a protein can
be represented by a contact map; it represents the two-
dimensional structure of the protein; each element in the
matrix represents the probability of contact at the corre-
sponding position [13]; the value is between 0 and 1.
Figure 2 shows a protein contact map.

Predicting the structure of a protein from its sequence is
the purpose of introducing contact map. Specifically, assum-
ing that the length of protein sequence is M, the size of its
contact map is M ∗M. Mði, jÞ represents the probability of
contact between the ith residue and the jth residue. If the
value is less than the threshold value, it can be considered
that they are in contact. Pconsc4 is a fast and efficient
method to predict contact map. Since its output is a proba-
bility value between 0 and 1, the threshold value of 0.5 was
set for the obtained contact maps, and the probability value
greater than or equal to 0.5 was set as 1.The rest were set as
0, so that the structural information of the protein could be
well extracted, corresponding to the adjacency matrix as the
input GCN network [14].

The next step is the extraction of protein features. Since
residues are used as nodes, the properties of residues are
selected as features. Due to the differences in the R group,
different features are displayed, including aromaticity, polar-
ity, and explicit valence [15]. Position-specific scoring
matrix (PSSM) is a commonly used representation of pro-
tein features, in which the results of each element depend
on the results of sequence comparison, and these results
represent the feature of proteins [16]. Other features were
also used, such as the primary thermal coding of the remain-
ing symbols, whether the residue was aromatic, whether the
residue was acidic charged, and whether it was extremely
neutral, etc. [17], as shown in Table 2. In summary, the total
number of features is 54, so the protein’s feature matrix
dimension is ðM, 54Þ.

For PSSM, the basic position frequency matrix (PFM)
[18] is calculated by the number of occurrence of residues
at each position in the sequence of sequence alignment
results. Equation (1) is as follows:

MPFM
k,j = 〠

N

i=1
I Ai,j = k
� �

, ð1Þ
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where A represents a set of alignment sequences equal to
the target protein length, k is the set of residues, i = ð1, 2
⋯ ,NÞ, j = ð1, 2,⋯LÞ, and iðxÞ is the indicator function
when the condition is met or not. Equation (2) is used to
obtain the position probability matrix (PPM):

MPPM
k,j =

MPFM
k,j + p/4ð Þ
N + p

: ð2Þ

In order to prevent the matrix entries from appearing
0, according to human experience, the pseudocount [19]
p was set 0.8, so that PPM was regarded as a part of the
node features.

2.3. Model Architecture. Although traditional convolution
techniques perform well for Euclidean data, they perform
poorly for non-Euclidean data [20]. Therefore, graph convo-
lution technology came into being. For a graph, the edges of
each node are related to other nodes and this information
can be used to capture interdependencies between instances,
so the node can aggregate its own features and its neighbor
features to generate a new representation of the node [21].
With the continuous development of graph learning, there
are many variations, like GAT, GAE, and GGN [22]. All
these network models can extract the feature; for using the
GCN layer, each layer convolution operation is as shown
in Equation (3):

Hl+1 = f Hl, A
� �

= σ D∧−1/2ÂD∧−1/2HlWl+1
� �

: ð3Þ

Among them, A is the adjacency matrix of node features,
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Figure 1: The processing of proteins, including the preprocessing of sequence, the generation of graph structures, and feature extraction,
Pconsc4 was used to extract protein structural information. Finally, protein graph was generated higher-level feature graph through GCN.

Table 1: Introduction to the dataset.

Number\dataset PDB14189 PDB2272

Positive 7129 1153

Negative 7060 1119

Total 14189 2272
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Figure 2: The contact map of protein.
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assuming that the node number is m, then its adjacency
matrix is ðm,mÞ, D̂ is the degree of matrix ðm,mÞ, which
represents the connection relationship between residues, D̂
=D + I, I is a unit matrix, considers itself features, Wl+1 is
the first l + 1 layer of weighting matrix, Hl is the output of
the first layer of l, and H0 = X, X is the input of the feature
matrix, Figure 3 shows the architecture of the model.

The protein graph contained much information about
the interactions and positions of each residue pair, which
was important for feature learning and predicting DNA-
binding proteins. It was input into the GCN to extract the
features. After convolution of multiple GCN layers, the
representation of protein was effectively extracted. Then,
the overall features of protein for prediction were obtained.
The prediction includes two full connection layers. The
results were presented as probabilities.

Using GCN to map proteins to the representation of rich
features has also become a method of protein feature extrac-
tion. In addition, there were many factors affecting the
experimental results, such as dropout, epoch, and batch.

Table 2: Node features.

Label Feature Size

1 One-hot encoding of the residue symbol 21

2 Position-specific scoring matrix (PSSM) 21

3 Whether the residue is aliphatic 1

4 Whether the residue is aromatic 1

5 Whether the residue is polar neutral 1

6 Whether the residue is acidic charged 1

7 Whether the residue is basic charged 1

8 Residue weight 1

9 The negative of the logarithm of the dissociation constant for the –COOH group 1

10 The negative of the logarithm of the dissociation constant for the –NH3 group 1

11 The negative of the logarithm of the dissociation constant for any other group in the molecule 1

12 The pH at the isoelectric point 1

13 Hydrophobicity of residue (pH = 2) 1

14 Hydrophobicity of residue (pH = 7) 1

Total 54

... ......
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Figure 3: The structure of the GCN network, graphs of DNA-binding proteins through the GCN to get their representation.

Table 3: The hyperparameter settings using human experience.

Hyperparameter Setting

Epoch 1000

Batch size 128

Learning rate 0.001

Optimizer Adam

The number of convolution layers 3

Fully connected layers after GCN 2

Table 4: Combinations of GCN models on PDB14189.

Model Number of layers
Layer1
(in, out)

Layer2
(in, out)

Layer3
(in, out)

GCN 1 (54,54) — —

GCN 2 (54,54) (54,108) —

GCN 3 (54,54) (54,108) (108,216)
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The setting of some hyperparameters were compared and
determined through experiments.

3. Results and Discussion

The experiment was built on PyTorch [23], an open source
deep learning framework. The GCN model was based on
its PyG implementation [24], PDB14189 was used for testing
to find the optimal super parameters, and PDB2272 was
used to test model performance.

3.1. The Evaluation Index. Accuracy (ACC), Matthews cor-
relation coefficient (MCC), sensitivity (SN), and specificity
(SP) were used as the evaluation indexes of the model [25],
these indexes were widely used in the studies of biological
sequences, as shown in

SN =
TP

TP + FN
,

SP =
TN

TN + FP
,

ACC =
TP + TN

TP + FP + TN + FN
,

MCC =
TP × TN − FP × FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FNð Þ × TN + FPð Þ × TP + FPð Þ × TN + FNð Þp :

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð4Þ

Among them, TP is the number of the correctly pre-
dicted positive samples, TN is the number of the correctly
predicted negative samples, FP is the number of the wrongly
predicted positive samples, and FN is the number of the
wrongly predicted negative samples. SN represents the
percentage of correctly predicted positive samples, SP repre-
sents the percentage of correctly predicted negative samples,
ACC represents the percentage of correctly predicted sam-
ples in total samples, and MCC represents the prediction

quality of the binary classification model, with a range of
½−1, 1�. The larger the MCC is, the better the prediction
quality of the model is.

3.2. The Setting of Hyperparameters. Training an optimal
model requires constantly adjusting the hyperparameters of
the model, which can be modified based on human experi-
ence. Some of the hyperparameters were shown in Table 3.
In this model, according to human experience, the GCN
layer was set to three, dimensions of input and output for
each layer were shown in Table 4. Some other parameters
were compared in the following experiences.

3.3. Model Performance when Selecting Different Dropouts.
After protein feature extraction, in order to better improve
the accuracy of classification, two full connection layers were
added to the ends to improve the learning ability of the
model. In the fully connected layer, in order to avoid overfit-
ting of the model, dropout was introduced to shut down
some neurons with a probability value. Different probability
values will affect the performance of prediction. To evaluate
the impact of different dropout values, Figure 4 shows the
performance of the model according to different dropout
values. When the dropout is 0.2, the model has the highest
performance compared to other parameters.

3.4. Whether PSSM Is Included in Feature Selection. The
selection of protein feature greatly affects the accuracy of
prediction. Since the dimension of PSSM matrix constructed
by features was very small, the experiment was carried out
with PSSM or without PSSM. Figure 4 shows the results of
various indicators under the condition. PSSM depends on
the sequence correlation results, which contains much
evolutionary information about the sequence, and ultimately
determines the protein features. As can be seen from
Figure 5, PSSM can effectively represent the features of
proteins and effectively improve the prediction performance.
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3.5. Analysis of Experimental Results. In the independent test
dataset, PDB14189 was used as the training dataset to train
the model, and PDB2272 was used as the test dataset.
According to the optimal experimental parameters, the final
DNA-binding protein classification model was constructed:
the number of GCN layers were three, dropout was
0.2, PSSM was selected as the feature, the input and
output dimensions of each layer were ð54, 54Þ, ð54,108Þ,
and ð108,216Þ. Other methods were compared with the
method, and the method reached ACC (78.49%), SN
(92.59%), SP (64.15%), and MCC (59.27%). Under certain
conditions, the method has certain advantages compared
with the existing methods, as shown in Table 5.

4. Conclusions

DNA-binding proteins are enzymes, which can bind with
DNA to produce complex proteins and play important roles
in the functions of a variety of biological molecules. In order
to improve the accuracy of prediction of DNA-binding
protein, a DNA-binding protein prediction model based on
GCN and contact map was proposed. In this model, the
dataset was preprocessed by sequence alignment; then, the
structural information is extracted by Pconsc4 model; PSSM
and some biological characteristics are used as features.
Finally, the GCN model was constructed to train and predict

DNA-binding protein data. The protein graph contained
information about the interactions and positions of each
residue pair, which was important for feature learning and
predicting binding proteins. The protein graph was input
into the GCN to extract the features, and the prediction
included two full connection layers. Using GCN to map pro-
teins to the representation of rich features has also become a
method of protein feature extraction. Through training and
parameter tuning, the performance of GCN model was
better than some existing methods. It also provides some
thoughts for other fields of biological information.

In the future, we plan to carry out a research on feature
extraction and network model to improve the accuracy of
DNA-binding proteins and related prediction. Different
biological features can be combined, and methods such as
attention mechanism can be considered to improve the
model, in order to achieve the goal of improving the predic-
tion effect and other indicators.
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Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This paper is supported by the National Natural Science
Foundation of China (61902272, 62073231, 61772357,
62176175, 61876217, and 61902271), National Research
Project (2020YFC2006602), and Provincial Key Laboratory
for Computer Information Processing Technology, Soochow
University (KJS2166).

0.74
0.72

0.7
0.68
0.66AC

C

M
CC

SPSN

0.64
0.62

0.6
0.58

With PSSM With PSSMWithout PSSM Without PSSM

With PSSM Without PSSMWith PSSM Without PSSM

0.5

0.4
0.45

0.35
0.3

0.25
0.2

0.1
0.15

0.05
0

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

00.64
0.66
0.68

0.7
0.72
0.74
0.76
0.78

0.8
0.82

Figure 5: Comparison of performance results with or without PSSM.

Table 5: Comparison between the proposed method and existing
methods on PDB2272.

Methods ACC (%) MCC (%) SN (%) SP (%)

Qu et al. [26] 48.33 3.34 48.31 48.35

Local-DPP [27] 50.57 4.56 8.76 93.66

Pse-DNA-Pro [28] 61.88 24.30 75.28 48.08

DPP-Pse-AAC [29] 58.10 16.25 56.63 59.61

Ms-DBP [30] 66.99 33.97 70.69 63.18

GCN-method 78.49 59.27 92.59 64.15
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