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Abstract

Protein carbonylation is one of the most pervasive oxidative stress-induced post-translational modifications (PTMs), which
plays a significant role in the etiology and progression of several human diseases. It has been regarded as a biomarker of
oxidative stress due to its relatively early formation and stability compared with other oxidative PTMs. Only a subset of
proteins is prone to carbonylation and most carbonyl groups are formed from lysine (K), arginine (R), threonine (T) and
proline (P) residues. Recent advancements in analysis of the PTM by mass spectrometry provided new insights into the
mechanisms of protein carbonylation, such as protein susceptibility and exact modification sites. However, the experimental
approaches to identifying carbonylation sites are costly, time-consuming and capable of processing a limited number of
proteins, and there is no bioinformatics method or tool devoted to predicting carbonylation sites of human proteins so far.
In the paper, a computational method is proposed to identify carbonylation sites of human proteins. The method extracted
four kinds of features and combined the minimum Redundancy Maximum Relevance (mRMR) feature selection criterion
with weighted support vector machine (WSVM) to achieve total accuracies of 85.72%, 85.95%, 83.92% and 85.72% for K, R, T
and P carbonylation site predictions respectively using 10-fold cross-validation. The final optimal feature sets were analysed,
the position-specific composition and hydrophobicity environment of flanking residues of modification sites were
discussed. In addition, a software tool named CarSPred has been developed to facilitate the application of the method.
Datasets and the software involved in the paper are available at https://sourceforge.net/projects/hqlstudio/files/CarSPred-1.
0/.

Citation: Lv H, Han J, Liu J, Zheng J, Liu R, et al. (2014) CarSPred: A Computational Tool for Predicting Carbonylation Sites of Human Proteins. PLoS ONE 9(10):
e111478. doi:10.1371/journal.pone.0111478

Editor: Frederique Lisacek, Swiss Institute of Bioinformatics, Switzerland

Received June 3, 2014; Accepted September 26, 2014; Published October 27, 2014

Copyright: � 2014 Lv et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its
Supporting Information files. The software is available at ?https://sourceforge.net/projects/hqlstudio/files/CarSPred-1.0/.

Funding: This work was supported by grants from National Natural Science Foundation of China (No. 61105021) and Ph.D. Program Foundation of the Ministry of
Education of China (No. 20110201110010). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: jqhan@mail.xjtu.edu.cn (JQH); eeliujun@gmail.com (JL)

Introduction

Oxidative stress is the direct result of imbalance in the

production and degradation of reactive oxygen species (ROS)

and reactive nitrogen species (RNS). It arises while oxidative

intermediates are exceeding detoxification ability of cells [1,2].

Oxidative modification of cellular macromolecules, such as nucleic

acids, proteins, lipids and carbohydrates, may be concomitant and

all seriously deleterious. Proteins are possibly the most immediate

vehicles for inflicting oxidative damage on cells, because they are

often catalysts rather than stoichiometric mediators [3]. Post-

translational modification (PTM) is a chemical modification of

proteins, which occurs naturally and plays pivotal roles in the

regulation of protein function [4]. Oxidative stress can induce

various kinds of PTMs such as hydroxylation, nitration, sulfhy-

drylation, carbonylation and glutathionylation [5]. Among these

PTMs, protein carbonylation has been widely studied and

regarded as a biomarker of oxidative stress due to its relatively

early formation and stability compared with other oxidative stress-

induced protein modifications. Protein carbonyl researches focus

currently on the development and optimization of high-through-

put LC-MS-based methods to identify carbonylated proteins,

modified residues and carbonylation types [6,7,8]. The total level

of carbonylation increases with aging, obesity and external

oxidative stress [9,10]. Human diseases associated with protein

carbonylation include Alzheimer’s disease, chronic lung disease,

chronic renal failure, inflammatory bowel disease, rheumatoid

arthritis, diabetes, sepsis and so on [3,11].

Only a subset of proteins is prone to carbonylation and most

carbonyl groups are formed from lysine (K), arginine (R),

threonine (T) and proline (P) residues [12]. The site-specific

oxidative damage of proteins is now regarded as a major cause of

metabolic dysfunction during pathogenesis [13]. Identification of

the susceptible amino acid residues could provide deeper insights

into the mechanisms of protein carbonylation [14]. Therefore, the

identification and especially the mapping of protein carbonylation

sites are crucial [2]. Mass spectrometry and liquid chromatogra-

phy have been used to analyze protein susceptibility of the

oxidative PTM and exact carbonylation sites recently [2,15]. More

carbonylation sites are found in RKPT-enriched regions and

carbonylation sites have a strong tendency to cluster [12,16,17].

However, the experimental approaches are costly, time-consuming

and capable of processing a limited number of proteins, and there

is no bioinformatics method or tool devoted to predicting
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carbonylation sites of human proteins so far, the only relevant

existing tool named CSPD [12] is just applicable to the

Escherichia coli proteome. A new method and software tool for

predicting carbonylation sites of human proteins seems useful and

necessary.

In this paper, a computational method is proposed to identify

carbonylation sites of human proteins based on amino acid

sequences only. The human carbonylation datasets verified by

experiments were collected from the literature. Four kinds of

features, including position-specific propensity of amino acid and

k-spaced amino acid pair, increment of k-mer diversity, k nearest

neighbor (KNN) scores as well as physicochemical and biochem-

ical properties, were extracted from sample sequences. The

minimum Redundancy Maximum Relevance (mRMR) feature

evaluation criterion [18] and incremental feature selection (IFS)

were used to evaluate the importance of candidate features and

determine the dimension of the final optimal feature sets. Then

weighted support vector machine (WSVM) [19] was employed to

solve the classification problem of unbalanced training samples.

The final optimal feature sets were analysed, the position-specific

composition and hydrophobicity environment of flanking residues

of modification sites were discussed. In addition, the software tool

CarSPred for win32 environment has been developed to facilitate

the application of the method.

Materials and Methods

Datasets
Datasets involve carbonylated protein sequences and K, R, T

and P carbonylation sites of human and other mammals. Because

there is no relevant public database available for protein

carbonylation records so far, carbonylation datasets can only be

obtained by looking up experimental data in the literature. A total

of 230 carbonylated protein sequences as well as 331 K, 131 R,

128 T and 129 P carbonylation sites of human were extracted

from eight sources in proteomic studies. A total of 20 carbonylated

protein sequences as well as 22 K, 13 R, 6 T and 15 P

carbonylation sites of other mammals, such as mouse, rabbit and

bovine, were also collected from four sources. For details, please

refer to Table S1 and Data S1.

Sample preparation
Protein sequences with any confused carbonylation sites were

excluded (Table S2). Then datasets of human carbonylation in

which all the four types of carbonylation sites have been involved

were used for training sample preparation. Due to the close

homology between human proteins and other mammal proteins,

the testing samples were prepared from the remaining datasets of

human and carbonylation data of other mammals.

Positive and negative sample sequences. The carbonyla-

tion sites were used as candidate positive samples. A given residue

has to meet three criteria to be selected as a candidate negative

sample. Firstly, a candidate negative sample must have the same

residue type as known carbonylation sites and could not have been

reported as a positive one. Secondly, it has to be within a protein

that contained known carbonylation sites. Finally, a candidate

negative sample has to be extracted from a dataset in which the

same type of carbonylation site has been involved.

The 6n (n= 5 to 13) flanking residues of these candidate sites

were extracted to prepare sample sequences. The window size was

preset to be from 5 to 13 on the basis of the following points.

Firstly, more carbonylation sites are found in RKPT-enriched

regions. Around the RKPT-enriched region, a specific environ-

ment region is rich in various residues including iron-binding sites

and hydrophobic amino acids. [12,16]. The RKPT-enriched

region was proposed to set to 4 residues long and the window size

of environment region can be up to 29 residues in Maisonneuve’s

study [12]. Rao and Moller suggested that the effective window

size of RKPT-enriched region should be 7 residues [16]. Secondly,

the motif of residues around carbonylation sites has been analyzed

and all the four types of motifs were 21 residues long eventually

[20]. Finally, the position-specific statistical differences between

positive and negative sample sequences of human carbonylation

involved in the study were computed using a web-based analysis

application named Two Sample Logo (TSL) [21]. It is obvious

that the RKPT-enriched degree in613 flanking residue fragments

of carbonylation sites is different (see position-specific composition

analysis section for details). Therefore, taking into account the

strong clustering of carbonylation sites [12,16], the window size n

ranged from 5 to 13 in the paper. The CD-HIT program [22] was

used with a 30% cut-off threshold to remove repetitive and

excessively similar sample sequences. Then the central residue was

excluded because it is always the same in both positive and

negative sample sequences.

Sample imbalance correction. The numbers of positive

and negative sample sequences were highly imbalanced, which

easily resulted in inflated evaluation of the method. Therefore, we

randomly chose negative sample sequences for about 6 times to

match the number of positive ones. Eventually, four groups of

residue-type independent training sample sets were prepared

including 266 K, 119 R, 116 T and 114 P positive training sample

sequences as well as 1,802 K, 754 R, 702 T and 716 P negative

Table 1. Carbonylation datasets involved in this paper.

Group Dataset No. of carbonylated proteins No. of carbonylation sites

K R T P

Training samples Original sequences 227a 307 126 128 129

Positive samples 223b 266 119 116 114

Negative samples 223 1,802 754 702 716

Testing samples Original sequences 23c 46 18 6 15

Positive samples 23 34 17 5 12

Negative samples 23 147 93 30 76

aHuman carbonylated proteins from proteomic studies in which all the four types of carbonylation sites were involved.
bFour proteins have been excluded. For details, please refer to Table S2.
cThe remaining carbonylated proteins of human and carbonylated proteins of other mammals.
doi:10.1371/journal.pone.0111478.t001
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training sample sequences. In the same way, 34 K, 17 R, 5 T and

12 P positive testing sample sequences as well as 147 K, 93 R, 30 T

and 76 P negative ones were also prepared. Datasets above are

summarized in Table 1. Training and testing sample sequences

are available in Data S2.

Feature extraction
Four kinds of features were extracted from the sample

sequences. In the feature extraction approach, 21 types of amino

acids were considered including 20 native and one dummy amino

acid X.

Position-specific propensity of amino acid and k-spaced

amino acid pair. The position-specific amino acid propensity

(PSAAP) and k-spaced amino acid pair have been successfully used

in various applications and some new promising approaches of

PTM site prediction [23,24]. In the paper, the k-spaced amino

acid pair is introduced into the standard PSAAP and a new feature

encoding scheme called position-specific propensity of amino acid

and k-spaced amino acid pair (PSPAKSAP) is proposed. In the

PSPAKSAP, the feature vector of a query sample sequence is

constructed by looking up the corresponding parameters in a

Figure 1. Change of average MCC values versus the number of mRMR features and different window sizes using 10-fold cross-
validation (n=6 to 12 only). (A) K carbonylation site prediction, (B) R carbonylation site prediction, (C) T carbonylation site prediction and (D) P
carbonylation site prediction.
doi:10.1371/journal.pone.0111478.g001

Figure 2. ROC curves of the method corresponding to K, R, T
and P carbonylation site predictions using 10-fold cross-
validation.
doi:10.1371/journal.pone.0111478.g002

Prediction of Human Carbonylation Sites
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position-specific propensity matrix. The matrix is given by:

M(i,j)~0, dNEG(j)~0

M(i,j)~
FPOS(i,j){FNEG(i,j)

dNEG(j)
, dNEG(j)=0

8<
: ð1Þ

where M(i,j) is a 2162n and 44162n6(2n-1)/2 matrix for amino

acid and k-spaced amino acid pair respectively, in which 21 and

441 are the numbers of amino acid element types for amino acids

and k-spaced amino acid pairs, and 2n is the residue length of

sample sequences. FPOS(i,j) and FNEG(i,j) denote the absolute

frequency of the i amino acid element appearing at j position in

the positive and negative training sample sets separately. dNEG(j) is

the standard deviation of j column of the absolute frequency

matrix FNEG. It is defined as:

dNEG(j)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm
i~1

(FNEG(i,j){mj)

s
ð2Þ

where m is the total number of rows of FNEG , mj is the average

value of j column of FNEG .

In the section, a 2n-dimensional feature vector and a 2n6(2n–

1)/2-dimensional feature vector corresponding to amino acids and

k-spaced amino acid pairs were extracted separately from each

sample sequence. Therefore, the dimension of PSPAKSAP-based

feature vector is 2n+2n6(2n–1)/2. The PSPAKSAP vector reflects

position-specific propensity of amino acid and k-spaced amino

acid pair.

Increment of k-mer diversity. Based on the theory of the

measure of diversity, the increment of diversity is a measure of the

total uncertainty in a system, by which the similarity level of two

datasets can be quantitatively described. The increment of k-mer

diversity is the increment of diversity of k-mer residue fragments in

a sample sequence.

The standard diversity measure for diversity source

X : fn1,n2, . . . ,ndg is given by [25]:

D(X )~D(n1,n2, . . . ,nd )~N lnN{
Xd
i~1

ni ln ni ð3Þ

where ni is the absolute frequency of the ith state, N~
Xd
i~1

ni.

For two diversity sources X : fn1,n2, . . . ,ndg and

Y : fm1,m2, . . . ,mdg, the increment of diversity is defined as:

ID(X ,Y )~D(XzY ){D(X ){D(Y ) ð4Þ

where D(XzY ) is the measure of diversity of the mixed source

XzY : fn1zm1,n2zm2, . . . ,ndzmdg. The more similar are the

two sources, the smaller score is the ID.

Figure 3. The distribution of the four kinds of features in the K, R, T, and P optimal feature sets. (A) The number of each kind of features
in the optimal feature sets. (B) The average Maximum Relevance scores of the four kinds of features in the optimal feature sets.
doi:10.1371/journal.pone.0111478.g003

Figure 4. Two-Sample-logos of the position-specific composition of residues surrounding carbonylation and non-carbonylation
sites. It shows position-specific residues enriched and depleted in positive samples of (A) K carbonylation site prediction, (B) R carbonylation site
prediction, (C) T carbonylation site prediction and (D) P carbonylation site prediction, respectively.
doi:10.1371/journal.pone.0111478.g004
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In the paper, the difference in k-mer diversity increment of a

query sample sequence with positive and negative training samples

is given by:

DKMDI~IDk{mer(XQUE ,YPOS){IDk{mer(XQUE ,YNEG),

k~1,2
ð5Þ

where IDk{mer denotes the increment of k-mer diversity,

XQUE : fn1,n2, . . . ,nlgis a diversity vector based on query sample

sequence, YPOS : fn1,n2, . . . ,nlg and YNEG : fn1,n2, . . . ,nlg are

diversity vectors based on the positive and negative training

samples. l~21k, that is to say there are a total of 21 and 441 states

when k is set to 1 and 2 respectively.

In the section, the increment of k-mer (k = 1, 2) diversity was

used to generate a 2-dimensional feature vector for each sample

sequence. It is obvious that the dimension of the vector has

nothing to do with the residue length of sample sequences, because

the increment of k-mer diversity indicates composition information

of k-mer fragments in a sequence and has no relationship with k-

mer fragment position.

KNN scores. The KNN algorithm has been widely applied to

text categorization due to its simple, valid and non-parameter

advantage. Recently, the KNN has also been introduced into the

prediction of PTM sites [26]. To get the KNN score, firstly,

calculate average distances from a query sample to both positive

and negative training sample sequences; secondly, sort the

neighbours by the distances; finally, calculate the KNN scores

which is the percentage of positive neighbours in a number of its

KNNs. In this section, the average distance was based on the

BLOSUM62 substitution matrix [27] and the dummy amino acid

X would be ignored. Chosen k (k = 10n+1, n = 1, 2, ???, 5) as

different values of the number of neighbours to obtain multiple

features. Therefore, a 5-dimentioanl feature vector could be

extracted for each sample sequence. The KNN describes the

similarity of the flanking sequence around a possible carbonylation

site to training sample sequences.

Physicochemical and biochemical properties. AAIndex

is useful in many approaches of PTM site prediction. However, the

Figure 5. The average hydrophobicity at each position (excluding the carbonylation site itself) around carbonylation and non-
carbonylation sites. (A) K carbonylation site prediction, (B) R carbonylation site prediction, (C) T carbonylation site prediction and (D) P
carbonylation site prediction.
doi:10.1371/journal.pone.0111478.g005
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sheer number of properties could potentially cause both compu-

tational tractability and overfitting problems in a classification

approach [28]. Recently, a set of high-quality indices (HQI) were

identified to represent electric properties, hydrophobicity, alpha

and turn propensities, physicochemical properties, residue pro-

pensity, composition, beta propensity and intrinsic propensities of

amino acids using a sophisticated method called consensus fuzzy

clustering [29]. In the section, the normalized HQI8 was

considered for each residue of a given sample sequence to

generate a 2n68-dimentional feature vector. The parameter value

corresponding to residue X was set to 0. This vector reflects

physicochemical and biochemical properties of the residue

fragments around a query carbonylation site.

mRMR and IFS feature selection
The mRMR feature selection criterion is devoted to evaluating

the importance of candidate features, which ranks the features

according to their relevance to the target concerned and the

redundancy among the features themselves. The ranked feature

with a smaller index indicates that it has a better trade-off between

the maximum relevance and minimum redundancy [30]. In this

study, four kinds of features were extracted from each sample

sequence. The total number of these candidate features is 2n+
2n6(2n–1)/2+2+5+2n68. For example, there are a total of 566

candidate features when the window size parameter n= 13. These

features were ranked according to mRMR feature selection

criterion. The IFS curve was used to determine the dimension of

the final optimal feature sets.

WSVM classifier
The support vector machine (SVM) is a supervised machine

learning algorithm based on the statistical learning theory [31].

The basic thought of SVM is to map the original data into a high

dimensional feature space through a nonlinear mapping function

and then construct a hyperplane as a discriminative surface

between positive and negative samples. In this paper, the WSVM

was employed to solve the classification problem of unbalanced

samples, which is available at http://www.csie.ntu.edu.tw/,cjlin/

libsvm/.

Performance assessment
The jack-knife test and n-fold cross-validation are usually used

to assess the performance of a method. Jack-knife test is a leave-

one-out cross-validation approach, which is a special case of n-fold

cross-validation. Breiman and Spector found that 5-fold and 10-

fold cross-validation work better than jack-knife test [32]. In the

paper, 10-fold cross-validation was used to illuminate the

performance of our method. Five standard metrics, including

specificity, sensitivity, total accuracy, Matthew’s correlation

coefficient (MCC) and the area under the Receiver Operating

Characteristic curve (AUC) [33], were adopted to quantitatively

evaluate the predictive capability and reliability of the method.

True positive (TP) and false negative (FN) are the number of

positive data that are predicted to be positive and negative

respectively. Analogously, true negative (TN) and false positive

(FP) are used to denote the number of negative data that are

predicted to be negative and positive respectively. The specificity

(Sp), sensitivity (Sn), total accuracy (TA) and MCCare defined as

the following:

Sn~
TP

TPzFN

Sp~
TN

TNzFP

TA~ TPzTN
TPzTNzFPzFN

MCC~ TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPzFPð Þ TPzFNð Þ TNzFPð Þ TNzFNð Þ

p

8>>>>><
>>>>>:

ð6Þ

Results and Discussion

Quality of datasets
Data quality has an impact on evaluation of the performance of

a method. In the paper, the following steps have been taken to try

to improve quality of datasets. Firstly, data sources. Carbonylation

sites verified by the experiments were extracted from sources as

much as possible (Table S1). Secondly, exclusion of suspicious

data. Protein sequences with any confused carbonylation sites were

excluded (Table S2). Thirdly, preparation of negative samples.

There are three criteria for negative sample preparation. The

rationale is that residues are not known to be carbonylated are

more likely to be true non-carbonylation sites in a proteomic

study, in which the same type of carbonylation site has been

involved. Finally, construction of non-redundant datasets. Repet-

itive and excessively similar sample sequences have been removed.

Carbonylation sites can be verified by experiments. However,

assignment of negative cases can only be tentative, as new

experimental evidence may reveal them to be carbonylated under

a different condition. Although not all these samples are absolutely

true, it is reasonable to believe that a large majority of them are.

Final optimal feature sets
To determine the final optimal feature sets of the method, the

IFS curves of average MCC value versus the number of mRMR

features and different window sizes were plotted using 10-fold

cross-validation based on the training datasets (Fig. 1). It is obvious

that the MCC values corresponding to K, R, T and P

carbonylation site predictions reach the peaks when n= 12,

n = 6, n = 8 and n= 6 as well as the top 98, 21, 17 and 46

features were selected separately. Therefore, the four final optimal

feature sets were eventually chosen to devote to K, R, T and P

carbonylation site identification respectively. Considering that too

many curves easily make a figure unclear, there are only seven

(n= 6 to 12) necessary IFS curves were shown in Fig. 1.

Performance of the method
In the paper, the proposed WSVM classifier was trained and

tested using 10-fold cross-validation based on the training datasets.

The probability results of the ten iterations were spliced into one to

serve the total accuracy computation and ROC analysis. The

proposed method has total accuracies of 85.72%, 85.95%, 83.92%

and 85.72% for K, R, T and P carbonylation site predictions

respectively. ROC curves of the four types of carbonylation sites

were plotted in Fig. 2, the AUC values corresponding to K, R, T

and P carbonylation site identification were 0.6886, 0.7015,

0.7036 and 0.7063 separately.

Following the evaluation using 10-fold cross-validation, the

method was further evaluated based on the independent testing

samples. The total accuracies corresponding to K, R, T and P

carbonylation site predictions were 81.22%, 85.45%, 88.57% and

86.36%. And the AUC were 0.6704, 0.5345, 0.6800 and 0.7873

respectively. It can be seen that, due to the close homology

between human proteins and other mammal proteins, the method

Prediction of Human Carbonylation Sites
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can also be used to predict carbonylation sites of other mammal

proteins to a certain extent.

Overall, the predictive power of the method is still weak. In

addition to the method itself, it may be due to the following

reasons. Firstly, assignment of negative carbonylation sites can

only be tentative, some carbonylatable residues, which may be

revealed to be carbonylated under a different condition in

subsequent proteomic studies, are assumed to be negative samples.

Secondly, to some degree, the limitation of training sample size

might affect the validity of absolute frequency-dependent features

involved in the paper.

Feature analysis
The distribution of the number of each kind of features in the K,

R, T and P optimal feature sets was investigated and shown in

Fig. 3A. In the 98 optimal features devoted to the prediction of K

carbonylation sites, 32 were from the PSPAKSAP, 1 from

increment of k-mer diversity, 5 from KNN scores, and 60 from

physicochemical and biochemical properties. Likewise, all the four

kinds of features have made contributions to the predictions of R,

T and P carbonylation sites. However, the total dimensions of the

four kinds of features are very different, only the number of each

kind of features in the optimal feature sets is not enough to rely on.

Therefore, the average Maximum Relevance scores of the four

kinds of features in the optimal feature sets were computed

(Fig. 3B). Two types of scores can be generated by mRMR

program, one is mRMR score and the other is the Maximum

Relevance score. The final optimal feature sets consist of four

kinds of features, these features could be divided into four groups.

The average Maximum Relevance score of each kind of features is

an average value of Maximum Relevance scores of features in the

corresponding group. Considering the number and average

Maximum Relevance score, it was inferred that the PSPAKSAP

plays a more important role in the carbonylation site prediction.

Position-specific composition analysis
The position-specific sequence characteristics are important

conserved features in the mRMR feature list. Therefore, the web-

based analysis application TSL [21] was used to analyse the

position-specific composition of amino acids surrounding carbon-

ylation and non-carbonylation sites. TSL was running with default

parameter options, two sample t-test was chosen and the P-value

threshold was assigned to 0.05. The statistical significance was

calculated for each residue in the flanking sequences of modifi-

cation sites and graphically represented. Statistically significant

residues were plotted using the size of the residue symbol that is

proportional to the difference of position-specific composition of

amino acids between positive and negative samples. Graphical

residues were separated in two groups, enriched and depleted in

the positive samples.

The position-specific statistical differences between positive and

negative sample sequences of human carbonylation sites were

given in Fig. 4. It is obvious that these differences vary according

to the modification residue type, but the K, R, T and P

carbonylation sites are all prone to be in RKPT-enriched regions,

which is consistent with Maisonneuve and Rao’s studies. [12,16].

It is noteworthy that the work by Maisonneuve was designed for

the prokaryotic Escherichia coli and more species were involved

later in Rao’s study. So this is likely to be an important and general

rule for carbonylation sites. Furthermore, it can be seen from

Fig. 4 that the enrichment degree of K residue in the upstream of

K carbonylation site is high than that in the downstream, and

likewise the R, T and P carbonylation sites. Therefore, for the

residue with the same type as the carbonylation site,the

enrichment degree in the upstream is significantly high than that

in the downstream.

Hydrophobicity environment analysis
The hydrophobicity environment of carbonylation sites has

been discussed in the previous work [12,16]. It may play an

important role in protein carbonylation. Therefore, average

hydrophobicity at each position around carbonylation and non-

carbonylation sites was computed using the normalized hydro-

phobicity index of HQI (Fig. 5). It can been seen that hydropho-

bicity environment of carbonylation sites is not significantly

different from non-carbonylation sites, which is in line with Rao’s

study [16]. However, the hydrophobicity difference at certain

upstream positions (26,22) is remarkable for all the K, R, T and

P carbonylation sites. This investigation proves that the informa-

tive HQI can contribute to distinguishing carbonylation and non-

carbonylation sites. The position-specific difference of hydropho-

bicity still needs further verification due to the sample size

limitation.

CarSPred software
In order to facilitate the application of this method, software

named CarSPred 1.0 for win32 environment has been developed.

This tool consists of four modules which are devoted to K, R, T

and P carbonylation site predictions of query protein sequences

separately. All of them receive sequences or file in FASTA format

as input. For output, list and file are optional, the annotations will

clearly indicate the precise locations and probabilities of putative

carbonylation sites. For details, please refer to the manual coming

with the software.
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