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ABSTRACT

We present a method and web server for predicting
DNA structural features in a high-throughput (HT)
manner for massive sequence data. This approach
provides the framework for the integration of DNA
sequence and shape analyses in genome-wide
studies. The HT methodology uses a sliding-
window approach to mine DNA structural informa-
tion obtained from Monte Carlo simulations. It
requires only nucleotide sequence as input and in-
stantly predicts multiple structural features of DNA
(minor groove width, roll, propeller twist and helix
twist). The results of rigorous validations of the HT
predictions based on DNA structures solved by X-
ray crystallography and NMR spectroscopy,
hydroxyl radical cleavage data, statistical analysis
and cross-validation, and molecular dynamics simu-
lations provide strong confidence in this approach.
The DNAshape web server is freely available at
http://rohslab.cmb.usc.edu/DNAshape/.

INTRODUCTION

An increasing number of structural biology and genomics
studies associate protein–DNA binding with the recogni-
tion of the three-dimensional DNA structure, or ‘DNA
shape’ (1). DNA shape readout (2) plays an important
role in determining the DNA binding preferences of tran-
scription factors (3,4) and other DNA binding proteins
(5–8). Whereas DNA shape is sequence dependent, degen-
eracy in the sequence–structure relationship enables the
formation of very similar shapes by dissimilar sequences

or, in turn, dramatic effects on structure in an extended
region by only a single-nucleotide substitution (9).

In early studies, all of the available crystal structures of
DNA fragments and protein–DNA complexes were
analysed to derive the average conformations for the 10
unique dinucleotides (10). Based on the many more high-
resolution structures that have been solved and analysed
in recent years, it is now apparent that longer DNA
segments must be characterized to capture the sequence–
structure degeneracy of DNA (1). Such structural
information, which can be retrieved from X-ray crystal-
lography or NMR spectroscopy data, ideally provides
information on the three-dimensional structure of a
DNA binding site prior to and after protein binding.
However, such data are unavailable for most sequences
for their unbound or ‘naked’ states (11). Consequently,
molecular simulations are the only available approach to
deduce atomic information on intrinsic DNA structure.

Recent efforts to characterize the structures of all 136
unique tetranucleotides have used all-atom molecular
dynamics (MD) simulations of either 136 dodecamers
(12) or 39 duplexes of 18 base pairs (bp) in length (13).
However, in both designs most tetranucleotides occur only
in the context of a single sequence, which limits the ability
for a statistically robust comparison of the simulation
results with experimental data. Due to their relatively
time-consuming nature, simulation methods make struc-
tural analysis of massive DNA sequence data unfeasible
(see Supplementary Materials and Methods).

We previously improved the efficiency of conform-
ational sampling by reducing the number of degrees of
freedom in the system. Our Monte Carlo (MC)
approach uses collective and internal variables for
each nucleotide (14,15), an analytic chain closure with
associated Jacobians (16) and an implicit solvent
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description (17) to realize improved sampling efficiency.
This approach has enabled us to study a large number
of DNA fragments. Although we successfully applied
our MC approach in various studies of protein–DNA rec-
ognition (3,7,11,18,19), to bring this to the genomic scale,
we have recently developed the methodology for
facilitating MC data in high-throughput (HT) studies of
DNA shape (4,8,18).

Through the mining of atomic resolution data obtained
from MC simulations (14–16) of numerous DNA frag-
ments, our HT approach is designed to predict various
important structural features of DNA for essentially any
length or number of sequences. We applied a prior version
of the underlying method to the minor groove width
(MGW) prediction of Hox-binding sites derived from
HT in vitro assays (18). Here, we present a method that
improves the accuracy of this approach and expands the
prediction to additional DNA structural features. Given
their importance in DNA shape readout, the predicted
features include MGW, Roll, propeller twist (ProT) and
helix twist (HelT) (see Supplementary Figure S1 for sche-
matic representations) (3,14,18). While we emphasize that
protein–DNA recognition is a dynamic process, the pre-
dicted structural features reveal preferred conformations
that are intrinsic to a given DNA sequence. We demon-
strate the robustness of our method through extensive val-
idation with massive experimental and computational
data. Our HT method underlying the DNAshape web
server can be used to predict DNA structural features of
the entire yeast genome at nucleotide resolution in less
than 1 min on a single processor.

METHODOLOGY

DNA shape features at a single-nucleotide position are
determined by the sequence context of the corresponding
bp. The context can include the immediate neighbors of a
bp or a larger number of adjacent bp. Given that penta-
mers account for the nearest and next-nearest neighbors of
their central positions, a pentamer model is a reasonably
simplified approach that takes sequence context into
account. Thus, the structural features at each bp
position can be characterized as a function of its penta-
meric environment. Assuming that the structure of each of
the 512 unique pentamers is known, we can use a ‘sliding
pentamer model’ to derive the structural features of DNA
molecules of any length and with any sequence in an
instant manner (Figure 1A).

To assemble the pentamer data, we generated a large
training dataset of MC trajectories for 2121 different
DNA fragments of 12–27 bp in length (see
Supplementary Table S1 for list of sequences and
Supplementary Materials and Methods for further
details on MC method). Our MC data provide full
coverage of all 512 unique pentamers, each occurring on
average 44 times in the training dataset. The multiple oc-
currence of each pentamer in different sequence contexts is
used to account for the effect of the flanking sequences
through averaging.

For each MC prediction, the structural features at
single-nucleotide resolution were analysed with Curves
(20). We used a modified definition for assigning MGW
measurements to a bp, in which the MGW definition is
independent of the usage of strand 1 or 2 of the DNA
duplex as the leading strand. Specifically, the MGW at a
given bp was calculated by averaging groove width meas-
urements over three levels [�1, 0, +1] surrounding the
plane of a given bp, with levels 0 and +1 representing
the first two levels calculated by Curves (20) for a nucleo-
tide, and �1 being the last level of the preceding nucleo-
tide. This definition includes 50 and 30 inter-bp values and
defines MGW as a direction-independent measure.
Using a sliding-pentamer window, we decomposed each

MC prediction into a set of overlapping pentamers
(Figure 1A). All occurrences of a given pentamer in our
MC dataset were collected and the average structural
features were calculated for the central bp (MGW and
ProT) or the two central bp steps (Roll and HelT).
These average structural parameters for each pentamer
were stored in a query table, with the pentamer sequence
serving as the search key (Figure 1A). The data could then
be used to predict DNA shape features of arbitrary
sequences.

WEB SERVER

The input is a nucleotide sequence ranging from 5 to 106

bp in length. Multiple sequences can be entered, either one
sequence per line or in FASTA format.
The output data are predicted values for MGW and

ProT as a function of bp and for Roll and HelT as a
function of bp steps (Supplementary Figure S1).
Structural features are predicted for the entire sequence
except for the two terminal bp or one bp step at each
end. Predictions for the different structural features are
organized in individual tabs. Our server provides actual
values in text format along with plots visualizing the struc-
tural features of every analysed sequence as a function of
the nucleotide sequence.

VALIDATION

We compared DNA shape predictions for seven DNA
binding sites that exhibit Fis-binding affinities differing
by three orders of magnitude (6). The Fis protein binds
various DNA sequences with the binding affinity depend-
ing on MGW in the central region of its binding site (6).
The predicted MGW, averaged over the region of the five
central nucleotides, correlates with the logarithm of
binding affinity with R2=0.65 (Figure 1B). When we
excluded a particular sequence with a central TpA
‘hinge’ step (denoted F25; see Supplementary Table S2
for list of sequences) due to its high flexibility (1), the
correlation is even stronger with R2=0.99 (Figure 1B).
This finding suggests a future application of DNA shape
analysis in predicting binding affinity. For the two se-
quences with the highest and lowest binding affinities
(6), the MGW predictions of the DNA targets show that
the high-affinity site assumes a groove geometry in its
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unbound state similar to that observed in the complex
(Figure 1C). In contrast, the low-affinity site must be
deformed upon binding (Figure 1D).
We explicitly demonstrate the performance of our pre-

dictions for the Dickerson dodecamer of the palindromic
sequence CGCGAATTCGCG, which is the experimen-
tally most extensively studied DNA molecule (11).
Crystal-packing effects lead to an asymmetric X-ray struc-
ture of this molecule, which we can eliminate through
symmetrization due to the palindromic symmetry of
its sequence (14). The refinement of NMR structures
requires numerous NOE constraints, which are sparse in
DNA (11), but additional NMR data can be derived from
residual dipolar coupling (RDC) (21). The sequence-
dependent patterns of the MGW, Roll, ProT and HelT
predictions obtained with our HT server agree very well
with average measurements of shape features for 8 X-ray
and 10 NMR structures (Figure 2; see Supplementary
Table S3 for PDB IDs). We also compared the HT
prediction of structural features for the Dickerson
dodecamer with data from a 100-ns MD simulation (see
Supplementary Materials and Methods for details on MD
protocol). The HT and MC predictions are consistent with

the MD data, particularly for the sequence-dependent
patterns of all four predicted DNA shape parameters
(Supplementary Figure S2). We recently also
demonstrated the high correlation of the MC prediction
for MGW of the Dickerson dodecamer with hydroxyl
radical (OH) cleavage intensity measurements (19).

We next focused on the MGW of the DNA binding sites
of six proteins for which we previously established the
importance of minor groove shape readout (1). The HT
predictions show very good agreement with MC predic-
tions of the MGW profiles (Figure 3). Because our HT
method essentially yields the average results of multiple
MC predictions (thereby decreasing the impact of poten-
tial sampling artifacts), the HT predictions tend to lack
extreme variations in structural features that are exhibited
by MC or MD simulations (Supplementary Figure S2).
We also validated our HT predictions with the crystal
structures of protein–DNA complexes for these six
examples (1). The MGW maxima observed in the crystal
structures assume more extreme values due to crystal-
packing effects compared to the 5.8 Å B-DNA average.
Nevertheless, our HT method predicted the MGW
patterns observed in the six crystal structures very well,

Figure 1. Pentamer model for HT prediction and validation of the HT approach using Fis-binding sites. (A) MC predictions were mined with a
sliding-pentamer window, and a query table of average structural features characterizing either the central bp (e.g., MGW) or the two central bp
steps (e.g., Roll) of a pentamer was assembled to predict the structural features of any length of DNA. (B) HT predictions of the average MGW over
the five central bp of seven Fis-binding sites (6) correlate with the logarithm of binding affinity (red). The predictive power further increases for six
sequences (blue) after one sequence with a TpA step is removed (F25; Supplementary Table S2). The MGW as a function of sequence is predicted for
(C) high-affinity (Kd=0.2 nM) and (D) low-affinity (Kd=140 nM) binding sites using the HT (blue) and MC (red) approaches and compared with
X-ray data (green) of protein–DNA complexes (PDB IDs in Supplementary Materials and Methods). The large positive MGW values observed in X-
ray data are usually due to crystal packing and are not observed in solution. Spearman’s rank correlation coefficients (r) demonstrate the statistical
similarity between the predicted and experimental MGW profiles.
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as indicated by the Spearman’s rank correlation coeffi-
cients (range 0.49–0.93).

OH-cleavage intensity is a qualitative measure for
MGW in solution. OH-cleavage intensities, which origin-
ate from nucleotides on each strand that are closest across
the minor groove, have been compiled in the ORChID2
server (19) through a sliding-window approach similar to
the one described here. This server enables the prediction
of OH-cleavage patterns for DNA duplexes of any length.
ORChID2 data (19) were used to validate HT predictions
of large numbers of sequences. We predicted the average
MGW profiles of 23 076 yeast (22) and 25 654 fly (23)
in vivo nucleosome binding sites, respectively. The HT pre-
dictions of MGW are highly consistent with the OH data
for the same sequence datasets (Spearman’s rank correl-
ation coefficients of 0.82 and 0.67, respectively) and
exhibit a 10-bp periodicity (Figure 4), consistent with the
results of known dinucleotide analyses (24,25), suggesting
that DNA shape is recognized by histones (1).

In addition to the MGW comparison, we validated the
HT prediction of ProT, Roll and HelT for five additional
examples of protein–DNA binding sites (Supplementary
Figures S3–S7). All four DNA shape parameters of these
DNA targets are well predicted with our HT approach,
according to Spearman’s rank correlation coefficients.
Interestingly, the overestimation of MGW and

underestimation of HelT that are generally reported for
MD simulations (13,26,27) are not observed when our HT
method is used.
We also performed the massive validation of our HT

predictions using all available experimental DNA struc-
tures from the Protein Data Bank (PDB). We collected
structures from previously characterized datasets (19)
solved by X-ray crystallography (760 bound DNAs; 46
unbound DNAs) and NMR spectroscopy (90 unbound
DNAs) as validation datasets (see Supplementary Table
S3 for list of PDB IDs). Only structures with at least one
helical turn and no chemical modifications were included.
We organized the predicted and experimentally-derived
shape parameters into separate ‘structural feature
vectors’. The elements of each vector were ordered by
the position of each bp (MGW and Roll) or bp step
(ProT and HelT) to which they corresponded.
We evaluated the correlation between these vectors to

obtain a quantitative measure of agreement between our
HT predictions and the experimental structures. For this
comparison to be meaningful, however, two problems
needed to be addressed. First, for structures of short
length and with minor structural variations, quantitative
comparisons of the HT prediction with experimental
measurements are vulnerable to small fluctuations.
Second, some experimental structures exhibit drastic

Figure 2. Validation of HT predictions using the Dickerson dodecamer. Structural features (A) MGW, (B) Roll, (C) ProT and (D) HelT of the
palindromic Dickerson dodecamer are predicted with the HT (blue) and MC (red) approaches. These features are compared with the symmetrized
average profiles derived from eight crystal structures (green) without chemical modifications and the average profiles derived from 10 NMR struc-
tures (purple) using RDC (PDB IDs in Supplementary Table S3). The more extreme HelT values observed in X-ray data are usually due to crystal
packing and are not observed in solution. Spearman’s rank correlation coefficients (r) demonstrate the statistical similarity between the predicted and
experimental structural feature profiles, which we symmetrized according to the palindromic sequence.
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deformations, mainly due to crystal packing but in some
cases also induced by protein binding. Such deformations
yield unusual structural features particularly in end
regions that are not observed in solution.
To address these issues, we identified regions of extreme

deformations in experimental structures, which satisfied
one of the following criteria: (i) MGW> 8.5 Å or< 1.5 Å
(�5.8 Å in B-DNA); (ii) HelT> 45� (�35� in B-DNA);
and (iii) jRollj> 20� (�0� in B-DNA). We removed the
elements of the structural feature vectors corresponding
to these deformed regions. The 3-bp flanks 50 or 30 of a
deformed region were also removed from the validation
dataset. For each of the structural features (MGW, Roll,
ProT and HelT), we concatenated the structural feature
vectors from all structures into one single vector. As a
result of the concatenation, each structural feature
vector can contain elements that represent up to
3000 bp, depending on the size of the validation dataset.
We then calculated Spearman’s rank correlation coeffi-
cients between the structural feature vectors to obtain a
quantitative measure of agreement between the HT pre-
dictions and experimental structures (Supplementary
Table S4).
For the largest dataset of bound DNAs derived from

X-ray data, we achieved Spearman’s rank correlation co-
efficients of 0.67 for MGW, 0.63 for Roll, 0.55 for ProT
and 0.54 for HelT. Some features were less well predicted
in unbound DNA structures, with the exception of the
unbound Dickerson dodecamer that shows excellent
agreement (Spearman’s rank correlation coefficients of
1.0 for MGW, 0.63 for Roll, 0.95 for ProT and 0.54 for
HelT for X-ray data and 1.0 for MGW, 0.95 for Roll, 0.95

for ProT and 0.95 for HelT for NMR data;
Supplementary Table S4). This observation is due to
(i) the much smaller datasets of experimental structures
for unbound DNAs versus protein-bound DNAs; (ii) the
stronger crystal-packing deformations of unbound DNAs
compared to DNAs in complexes; and (iii) the smaller
number of available NMR-derived constraints for DNA
(11). The latter two effects were not observed for the
Dickerson dodecamer, and the accuracy of HT prediction
for this particular form of unbound DNA is comparable
and even superior to that for bound DNAs. This result
can be explained by the removal of crystal-packing effects
through symmetrization according to the palindromic
sequence (14). With regard to the NMR structures of
unbound DNAs, the Dickerson dodecamer is the only
sequence for which RDC data were used in the structural
refinement (21). The Spearman’s rank correlation coeffi-
cients for HelT between HT predictions and experimental
data are lower for X-ray than for NMR data. This finding
is likely due to the extreme values of HelT seen in crystal
structures, which are not observed in solution-state NMR
structures (Figure 2D).

We further investigated the HT prediction of Roll
and HelT for the 10 unique dinucleotides. The dinucleo-
tide-specific pattern of these helical parameters is well
captured by HT predictions compared to X-ray data
(Supplementary Figure S8). In particular, the MC-based
HT method accurately predicts the average HelT over all
dinucleotides with an average value of 34.4�. This value
differs by only 0.2� from the average value derived from
the largest validation dataset of 760 crystal structures of
bound DNAs with an average occurrence of 262 times of

Figure 3. Validation of HT predictions using protein–DNA binding sites. (A–F) MGW for the DNA binding sites of six proteins, for which DNA
shape readout was previously observed (1), are predicted using the HT (blue) and MC (red) approaches and compared with X-ray data (green) of
protein–DNA complexes (PDB IDs in Supplementary Materials and Methods). The large positive MGW values observed in X-ray data are usually
due to crystal packing and are not observed in solution. Therefore, qualitative MGW patterns (minima versus maxima) are the more essential
characteristics compared to actual values. The MGW minima correlate with regions of enhanced negative electrostatic potential, thus providing
binding sites for basic arginine side chains (1). Spearman’s rank correlation coefficients (r) demonstrate the statistical similarity between the predicted
and experimental MGW profiles.
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each of the 10 unique dinucleotides. It is noteworthy that
HelT is correctly predicted for the CpA, CpG and TpA
dinucleotides, for which MD simulations, even with
revised force fields (28), report very low HelT values (13).

In addition to performing the validations with experi-
mental data, we used leave-one-out cross-validation to test
whether a pentamer is the appropriate size of a sliding
window for mining MC data. In each round of cross-val-
idation, we removed one of the 2121 sequences. Then, we
recompiled the pentamer query table for the HT method
with the remaining MC data and used it to predict the
structural feature vectors of the removed sequence.
These steps were repeated for each sequence in our
training dataset. Structural feature vectors derived from
the HT and MC predictions were then concatenated and
compared by Spearman’s rank correlation. The resulting
correlation coefficients for the respective feature vectors
are 0.85 for MGW, 0.92 for Roll, 0.96 for ProT and
0.94 for HelT. These very high correlation coefficients
demonstrate that the pentamer model is sufficient to
capture the determinants of the MC-predicted DNA
shape features.

CONCLUSIONS

Our previous work and that by others established MGW
as an important feature of DNA shape (1,2). However,
prior to the development of the DNAshape web server,
DNA structural features could not be analysed for large
sequence datasets in a HT manner. To embrace the chal-
lenges of the genomic era and to be able to infer various
DNA structural features that play a role in DNA shape
readout, we present a HT approach to derive DNA struc-
tural features from massive sequence data. The HT
method is based on the assumption that pentanucleotides
can be used to describe the sequence–structure degeneracy

of the double helix with sufficient accuracy. The
DNAshape web server and its underlying HT method-
ology predict, for the first time, structural features of
DNA that are currently established as important
elements for protein–DNA recognition (1–3,14,18). The
rapid progress in making HT sequencing data available
can now realistically be coupled with structural analyses.
Providing structural information in a HT manner and at
genomic scale will be the necessary basis for a better
understanding of protein–DNA binding specificity.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–4, Supplementary Figures 1–8,
Supplementary Materials and Methods and
Supplementary References [29,30].
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Figure 4. Validation of HT predictions using nucleosome binding sites. The MGW is predicted for (A) 23 076 yeast and (B) 25 654 fly in vivo
nucleosome binding sites (22,23), and its average is compared with previously published OH-cleavage data derived from ORChID2 (19). HT
predictions of MGW (blue) and OH-cleavage intensity (orange) are highly correlated, both revealing the 10-bp periodicity observed in dinucleotide
propensity (1). Spearman’s rank correlation coefficients (r) demonstrate the statistical similarity between the predicted MGW and OH-cleavage
intensity profiles.
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