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Alzheimer disease (AD) is a chronic neurodegenerative disease that accounts for
60–70% of dementia and is the sixth leading cause of death in the United States.
The pathogenesis of this debilitating disorder is still not completely understood.
New insights into the pathogenesis of AD are needed in order to develop novel
pharmacologic approaches. In recent years, numerous studies have shown that insulin
resistance plays a significant role in the development of AD. Over 80% of patients
with AD have type II diabetes (T2DM) or abnormal serum glucose, suggesting that the
pathogenic mechanisms of insulin resistance and AD likely overlap. Insulin resistance
increases neuroinflammation, which promotes both amyloid β-protein deposition and
aberrant tau phosphorylation. By increasing production of reactive oxygen species,
insulin resistance triggers amyloid β-protein accumulation. Oxidative stress associated
with insulin resistance also dysregulates glycogen synthase kinase 3-β (GSK-3β),
which leads to increased tau phosphorylation. Both insulin and amyloid β-protein
are metabolized by insulin degrading enzyme (IDE). Defects in this enzyme are the
basis for a strong association between T2DM and AD. This review highlights multiple
pathogenic mechanisms induced by insulin resistance that are implicated in AD. Several
pharmacologic approaches to AD associated with insulin resistance are presented.
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INTRODUCTION

Alzheimer disease (AD) is a chronic degenerative brain disease characterized by memory loss,
cognitive impairment, and loss of activities of daily living (Jha et al., 2019). It is the most common
form of dementia and the sixth leading cause of death in the United States (Wilson et al., 2012;
Heron, 2013). An estimated 5.8 million Americans suffered from AD in 2020 and this number
will triple to nearly 14 million people by 2060 (Matthews et al., 2019). There are no treatments
that effectively stop or reverse AD progression, although some medications temporarily improve
symptoms (Hsu and Marshall, 2017). Notably, the United States Food and Drug Administration
(FDA) approved Aducanumab on June 7th, 2021, the first antibody for the treatment of AD which
reduces amyloid plaques. However, this drug had previously failed to gain FDA approval, because
initial analysis of clinical trial data did not show a significant improvement in patients’ mental
abilities. Phase IV trials are still required to verify its clinical benefits.
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There are two major forms of AD: the sporadic (late-onset)
form, which accounts for most cases, and the familial (early-
onset) form, which is generally associated with the inheritance
of genetic mutations (Bekris et al., 2010). While the cause of most
AD cases is poorly understood (Reitz and Mayeux, 2014), genes
encoding amyloid precursor protein (APP), presenilin 1 and
presenilin 2 account for the majority of early-onset familial AD
cases (Cheignon et al., 2018), whereas apolipoprotein E (APOE) is
the main genetic risk factor in sporadic AD, especially APOE−ε4
(Morris et al., 2014; Clark and Vissel, 2018).

The pathogenesis of AD is multifactorial (Crous-Bou et al.,
2017). Accumulating studies indicate a strong association
between type II diabetes (T2DM) and AD (Kang et al.,
2017). Neuronal insulin signaling pathways are disrupted
in both T2DM and AD and over 80% of AD patients
have T2DM or display abnormal blood glucose levels (Zhao
and Townsend, 2009). Observational studies demonstrate that
T2DM nearly doubles the risk of AD and increases the
likelihood of dementia (Leibson et al., 1997; Luchsinger
et al., 2001; Xu et al., 2009). In addition, APOE4 and
insulin resistance were found to impair cognitive function
in a study of human E4-targeted replacement mice (Johnson
et al., 2017). Multiple studies have also established that
insulin resistance leads to the progression of two main
pathological hallmarks of AD—senile plaques from extracellular
deposition of amyloid β-protein and tau-based neurofibrillary
tangles (NFT) (Ardura-Fabregat et al., 2017). Consequently,
AD may be considered a type of metabolic disease, and
the development of AD therapeutics may benefit from an
understanding of the relationship between AD and insulin
resistance (Kang et al., 2017).

INSULIN RESISTANCE AND AD

Insulin is essential for metabolic homeostasis in the peripheral
system (Tokarz et al., 2018), but has only been recognized for its
role in regulating amyloid β-protein peptides and the generation
of NFTs in the last few decades (Razay and Wilcock, 1994; Kroner,
2009). Under normal conditions, increased plasma glucose levels
lead to stimulation of pancreatic β-cells to produce insulin,
which decreases glucose levels. As blood glucose falls, counter-
regulatory hormones including epinephrine, norepinephrine and
cortisol from the adrenal glands arrest insulin-mediated glucose
disposal. Insulin is then rapidly degraded in the liver, kidney and
muscles by insulin degrading enzyme (IDE) (Watson and Craft,
2003). The pleiotropic biologic effects of insulin are mediated
via binding and activating insulin receptors (IR) (Boucher
et al., 2014), which are widely distributed in the periphery but
selectively distributed in the central nervous system (CNS),
including the cerebral cortex, hippocampus, hypothalamus and
amygdala (Havrankova et al., 1978; Bosco et al., 2011; Soto et al.,
2019). Insulin binding leads to a conformational change of the IR
resulting in phosphorylation of intracellular IR substrate (IRS)
proteins on tyrosine residues (Saini, 2010). Subsequently, IRS
activates downstream pathways including mitogen-activated
protein kinase (MAPK) and phosphatidylinositol-3-kinase

(PI3K) (Gabbouj et al., 2019), which are important for mitogenic
and metabolic functions (Plum et al., 2005).

However, in insulin resistance, cells fail to respond to
insulin causing elevated blood glucose and effects on muscle,
liver and brain (Kroner, 2009; Zhao and Townsend, 2009).
Pancreatic β-cells produce more insulin in response to high blood
glucose (hyperglycemia) resulting in hyperinsulinemia (high
blood insulin), eventually leading to T2DM (Heydemann, 2016).
Decreased levels of insulin and IR are found in the cerebrospinal
fluid (CSF) of AD patients due to long-term peripheral
hyperinsulinemia and decreased insulin transport across the
blood-brain barrier (BBB) (Craft et al., 1998; Rivera et al., 2005;
Steen et al., 2005; Gil-Bea et al., 2010; Stanley et al., 2016).

Accruing evidence shows that insulin facilitates memory and
cognition under normal conditions (Watson et al., 2009; Tokarz
et al., 2018) whereas chronic hyperinsulinemia impairs them (Lee
et al., 2016). For instance, fructose-induced insulin-resistant rat
models show impaired spatial learning in the water-maze test
(Sachdeva et al., 2019). Moreover, intranasal insulin improves
memory in humans (Benedict et al., 2008; Krug et al., 2010).
Insulin resistance may accelerate the progression of senile plaques
and NFTs via multiple mechanisms, resulting in cognitive decline,
impaired long-term potentiation (LTP) and associated metabolic
disease. A summary of the feed forward loop of insulin resistance
and AD pathogenesis is provided in Figure 1.

Neuroinflammation Induced by Insulin
Resistance in AD
The current consensus is that neuroinflammation plays a pivotal
role in AD progression (Wang W. Y. et al., 2015), which is
supported by results from APP transgenic mouse models in
which injection of lipopolysaccharide (LPS, TLR4 activator)
triggers neuroinflammation with two cellular hallmarks of AD
in the brain, amyloid β-protein deposition (Lee et al., 2008; Go
et al., 2016) and tau hyperphosphorylation (Kitazawa et al., 2005;
Lee et al., 2010). Amyloid β-protein is the product of consecutive
cleavage of APP by enzymes β-secretase (BACE) and γ-secretase.
Processing of APP yields multiple forms of the protein; the 40
and 42 amino acid residue products are the most common forms
(O’Brien and Wong, 2011). High levels of monomeric amyloid
β-protein have a propensity to aggregate into fibrils and then
plaques, resulting in neurodegeneration and induction of tau
pathology (Mouchlis et al., 2020).

Inflammation is involved in activation of microglial
cells, which are primarily responsible for amyloid β-protein
phagocytosis. Microglia are brain-resident immune cells
responsible for promoting phagocytotic clearance as well
as providing trophic support to ensure tissue repair and
cerebral homeostasis (Sarlus and Heneka, 2017). They also
play a role in higher cognitive functions, such as learning
and memory in the adult brain, and are involved in the
pathogenesis of neurodegenerative diseases like AD. In the
early stages of AD, activated microglia repair damaged tissue
and decrease amyloid β-protein accumulation. However,
chronic microglial activation induced by inflammation leads
to release of inflammatory mediators and accumulation
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FIGURE 1 | Feed forward loop of insulin resistance and Alzheimer disease. Both insulin resistance and Alzheimer disease lead to activation of nuclear factor kappa B
(NF-κB), increased cytokine secretion and increased reactive oxygen species (ROS) levels, triggering increased amyloid beta (amyloid β) and tau
hyperphosphorylation. In addition, insulin resistance lowers levels of insulin degrading enzyme (IDE), resulting in impaired amyloid β phagocytosis. Higher levels of
amyloid β, in turn, leads to decreased expression of the insulin receptor, which results in insulin resistance, creating a vicious cycle.

of danger-associated molecular patterns (DAMPs), which
limits amyloid β-protein clearance, leading to more plaque
accumulation, neuronal dysfunction and death (Clark and
Vissel, 2015; Wang W. Y. et al., 2015; Brabazon et al., 2018).
This hypothesis is supported by a longitudinal study showing
increased levels of microglial activation in both mild cognitive
impairment (MCI) and AD patients compared to controls,
but a reduction in microglial activation following an initial
peak in MCI patients (Fan et al., 2017). These data suggest
that early microglial activation leads to a protective phenotype
which can later turn into a pro-inflammatory picture due
to failure of amyloid β-protein clearance and progressive
neuronal damage.

Insulin resistance results in microglial activation and
inflammation (McCaulley and Grush, 2017) by inducing the
activation of resting (ramified) microglia and changes in
cellular morphology, surface phenotype, secretary mediators
and proliferative responses (Sarlus and Heneka, 2017). One
common molecular pathology shared by insulin resistance
and AD is increased levels of advanced glycation end products
(AGEs) (Zhao and Townsend, 2009). Binding of AGEs to

their cellular receptors (RAGE) not only upregulates glycogen
synthase kinase 3β (GSK-3β), causing tau hyperphosphorylation
(Peng et al., 2007; Li et al., 2012a,b), but also activates the
NF-κB pathway, which produces reactive oxygen species
(ROS) and pro-inflammatory cytokines [interleukin (IL)-6,
IL-1β, TNF] (Kandimalla et al., 2017). These cytokines are
observed to increase accumulation of amyloid β-protein
in AD by two mechanisms: (1) increased levels of pro-
inflammatory cytokines inhibit phagocytosis of amyloid
β-protein in AD brains thereby hindering the removal of
plaque by resident microglia; (2) TNF has been shown to
upregulate the production of amyloid β-protein via activation
of the c-Jun N-terminal kinase (JNK)-dependent MAPK
pathway, which promotes phosphorylation and cleavage
of APP (Liaoi et al., 2004; McAlpine and Tansey, 2008;
Colombo et al., 2009; Montgomery et al., 2011; Cheng
et al., 2014; Ahn et al., 2016; Decourt et al., 2017; Zhang
et al., 2019). In addition, activation of the NF-κB pathway
further increases BACE expression, resulting in increased
production of amyloid β-protein (Guglielmotto et al., 2012;
Cai et al., 2016). High levels of amyloid β-protein cause
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IR downregulation via internalization, desensitization or
direct substrate competition, which ultimately turn into
insulin resistance (Xie et al., 2002; Mullins et al., 2017).
Moreover, amyloid β-protein triggers Ca2+ influx, which
not only causes hyperphosphorylation of tau protein (Bosco
et al., 2011) via GSK-3β, but also inhibits IR tyrosine kinase
signaling. The increased levels of Ca2+ stimulate Ca2+-
dependent serine/threonine protein kinases (PKC, Akt), which
phosphorylate IRs and insulin resistance substrate (IRS) and
thus negatively regulate IRs in the brain (Zhao and Townsend,
2009). Taken together, insulin resistance, neuroinflammation
and exacerbation of amyloid β-protein and tau form a feed-
forward loop in AD pathogenesis. Imbalance induced by
any of these factors will facilitate AD progression, resulting
in neurotoxicity, neurodegeneration and induction of a
negative effect on IRs.

Oxidative Stress Induced by Insulin
Resistance in AD
Growing evidence suggests that insulin/insulin-like growth factor
(IGF) signaling is strongly associated with oxidative stress.
Brain insulin/IGF resistance may contribute to impairments
in glucose utilization and disruption of energy metabolism,
resulting in production of ROS, DNA damage and mitochondrial
dysfunction, eventually causing pro-apoptosis, pro-inflammation
and amyloid β-protein cascades (de la Monte, 2014). Imbalance
between the production of ROS and antioxidant defenses
leads to oxidative stress which not only damages cells
but also alters signaling pathways (Hurrle and Hsu, 2017).
Oxidative stress has been implicated in AD and several
studies have reported that it plays an important role in tau
hyperphosphorylation and APP-amyloid β-protein accumulation
(Huang et al., 2016).

Tau protein, a major microtubule-associated protein in
the brain, functions mainly to maintain the stability of
microtubules in neurons and other cells as well as facilitate
cell differentiation and polarization (Mouchlis et al., 2020).
According to the tau hypothesis, hyperphosphorylated tau
pairs with other strands of tau protein and then forms
NFT in neuronal cell bodies, which eventually induces
microtubule dysregulation (Iqbal et al., 2005), causing
impaired communication between neurons and even cell
death (Bosco et al., 2011; Kametani and Hasegawa, 2018).
As mentioned above, insulin resistance causes production of
ROS via the activation of the AGE/RAGE pathway, inducing
various stress sensitive signaling pathways, such as NF-κB,
JNK/SAPK, p38 MAPK, and Akt pathway in particular (Rains
and Jain, 2011). Increased oxidative stress inactivates the Akt
pathway, concomitantly to downstream activation of GSK3 and
subsequent hyperphosphorylation of tau protein (Bloch-Damti
and Bashan, 2005; Hambright et al., 2015; Zhao et al., 2017; Ciotti
et al., 2020).

Insulin resistance is also involved in APP-amyloid β-protein
accumulation. APP-amyloid β-protein toxic fibrils, in turn,
impair insulin signaling by downregulating IRs (Lee et al.,
2013). Metal ions, such as zinc and copper bind to amyloid

β-protein peptides and catalyze the production of ROS, which
causes oxidative damage affecting both amyloid β-protein peptide
and surrounding biomolecules, such as proteins and lipids
(Cheignon et al., 2018). Both tau hyperphosphorylation and
amyloid β-protein accumulation contribute to the positive
feedback mechanism that exacerbates insulin/IGF resistance
through increased oxidative stress, neurotoxicity and synaptic
dysfunction (Lee et al., 2013).

Decreased Degradation of Amyloid
β-Protein Induced by Insulin Resistance
via IDE
Insulin is inactivated by IDE, also known as insulin protease
(Manolopoulou et al., 2009; Song et al., 2018). IDE is widely
distributed in many organs including liver, pancreas, brain
and in diverse cellular compartments (Hulse et al., 2009).
Accumulating studies have expanded the list of substrates and
potential physiological roles of IDE, which includes degradation
of multiple bioactive peptides, such as glucagon, IGF-2, and
amyloid β-protein (Tang, 2016).

Amyloid β-protein forms various oligomers, leading to
fibrils that then aggregate into plaques (Chen et al., 2017),
which interrupt normal brain functions. Furthermore, soluble
oligomeric forms of amyloid β-protein are the primary toxic
species (Haass and Selkoe, 2007; Selkoe and Hardy, 2016) that
have been shown to cause synaptic damage and neuronal cell
death in both an APP knock-out mouse model and post-mortem
human brains from patients with AD (Ding et al., 2019; Rolland
et al., 2020). IDE is able to degrade both extracellular and
intracellular amyloid β-protein, which protects against formation
of these toxic oligomers. In addition, IDE functions as a
“dead-end chaperone,” preventing formation of toxic α-synuclein
aggregates which can form a stable complex with amyloid β-
protein (Sharma et al., 2015). α-synuclein is implicated in the
pathophysiology of AD because high levels of α-synuclein are
detected in the CSF of patients with MCI and AD (Twohig et al.,
2018; Twohig and Nielsen, 2019).

Because insulin and amyloid β-protein are competing
substrates for IDE, IDE defects are not only involved in the
development of AD but also the basis for a strong association
between T2DM and AD. Hyperinsulinemia may downregulate
insulin uptake across the BBB and reduce levels of insulin
in the brain because of saturation at supraphysiological levels
(Reitz and Mayeux, 2014). This may result in decreased
levels of IDE (Abdul-Hay et al., 2011; Protzek et al., 2016;
Kang et al., 2017), causing decreased degradation of amyloid
β-protein and increased deposits of amyloid β-protein (Li
et al., 2018). In addition, increased levels of IDE are detected
in post-mortem human brains from patients with moderate
stage AD (Braak 3–4) whereas significantly reduced level
of IDE are found in severe AD (Braak 5–6) (Delikkaya
et al., 2019), suggesting that IDE is affected by insulin
deficiency and insulin resistance in the early and moderate
stages of AD. The development of IDE modulators may
be a novel therapeutic approach to both T2DM and AD
(Pivovarova et al., 2016).
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TABLE 1 | Various potential treatments for Alzheimer’s disease with insulin resistance.

Drug Classification Benefits

Anti-diabetic drugs Metformin Biguanide First-line medication for T2DM; anti-inflammation; ↓ Aβ aggregation

Liraglutide GLP-1 agonist ↑ Insulin secretion; ↓ Aβ accumulation and ↓ tau hyperphosphorylation

Intranasal insulin – Crosses BBB, improves cognitive functions and memory

Anti-inflammatory drugs Tolfenamic Acid Fenamate NSAIDs Anti-inflammation via inhibition of NF-κB pathway; cognition enhancement via↓
Aβ and tau phosphorylation

Mefenamic Acid Fenamate NSAIDs Anti-inflammation via inhibition of NLRP3 inflammasome; improve Aβ-induced
learning and memory impairments

Etanercept TNF-α inhibitors Anti-inflammation; ↓ Aβ to ↓ risk of AD

Antioxidant drugs Vitamin C and E Antioxidant ↓ Neuronal loss and Aβ; ↓ oxidative stress and tau-induced neurotoxicity

Thiazolidinediones (TZDs) Rosiglitazone – ↑ Insulin sensitivity; ↓ Aβ levels; improves cognitive functions

Pioglitazone – ↑ Insulin sensitivity; ↓ Aβ levels via downregulation of APP and BACE1

POTENTIAL TREATMENTS OF INSULIN
RESISTANCE IN AD

Potential drug therapies for AD based on the association between
insulin resistance and AD are listed in Table 1.

Anti-diabetic Drugs
Metformin, a biguanide antihyperglycemic agent which is
the first-line medication for T2DM, attenuates inflammation,
reduces risk of metabolic syndrome (Li et al., 2015) and may
decrease risk of dementia and improve cognitive function.
A meta-analysis showed that metformin was beneficial to diabetes
patients with dementia or AD (Lin et al., 2018). Interestingly,
T2DM patients with long-term use of metformin have been
reported to slightly increase the risk of AD (Imfeld et al.,
2012) due to metformin-induced vitamin B12 deficiency (Aroda
et al., 2016; Campbell et al., 2018). Vitamin B12 deficiency has
been reported to increase risk of AD, although the mechanism
behind this association is uncertain (Abyad, 2002; Health Quality
Ontario., 2013).

Liraglutide, a glucagon-like peptide-1 (GLP-1) receptor
agonist, is used to treat T2DM and obesity by increasing insulin
release from the pancreas as well as decreasing excessive glucagon
release (Femminella et al., 2019). Recent studies have indicated
that liraglutide may attenuate cognitive impairment. In vitro
investigation has shown that liraglutide regulates neuronal
insulin signaling and BACE-1 activity to suppress accumulation
of amyloid β-protein and hyperphosphorylation of tau protein
(Jantrapirom et al., 2020). Also, it prevents loss of brain
insulin receptors and synapses and reverses cognitive impairment
induced by amyloid β-protein oligomers in mouse hippocampi
(Batista et al., 2018).

Intranasal insulin provides a potential pharmacological
strategy to treat AD. Although there are different routes of
administration for insulin, such as subcutaneous, intramuscular,
and oral (Henkin, 2010), intranasal insulin has the advantage
of penetrating the BBB and accessing the CNS because
of the direct neuroanatomical connections between the
olfactory nerves and the brain (de la Monte, 2013) which
are beneficial for treating neurodegenerative and psychiatric
disease (Hanson and Frey, 2008). More and more clinical

studies have shown that intranasal insulin effectively
improves cognitive function and memory (Benedict et al.,
2008; Hallschmid et al., 2008; Krug et al., 2010), although
a newly released study contradicts this finding (Craft
et al., 2020). Thus, more direct experimental and clinical
evidence are needed to investigate the safety and efficacy of
intranasal insulin.

Anti-inflammatory Drugs
In 2020, 18% of agents in Phase III trials and 15% of
agents in Phase II trials targeted inflammation to treat AD
(Cummings et al., 2020). This is because a number of
epidemiologic studies have reported that anti-inflammatory
medication lowers the risk of cognitive impairment and AD.
Although the effect of non-steroidal anti-inflammatory drugs
(NSAIDs) in AD is under debate (Wang J. et al., 2015;
Zhang et al., 2018), fenamate NSAIDS have aroused people’s
attention. These compounds selectively inhibit the NLRP3
inflammasome, which is implicated in inflammatory diseases
including AD and T2DM, via the inhibition of volume-regulated
anion channels (VRACs). The anti-inflammatory effects of
two drugs in this class, tolfenamic acid and mefenamic acid,
showed benefits in a 3 × TgAD transgenic model of AD
(Daniels et al., 2016).

TNF is a key pro-inflammatory cytokine involved in insulin
resistance, systemic inflammation and upregulation of amyloid
β-protein, which further affects tau hyperphosphorylation (Clark
and Vissel, 2015, 2016). Considering the importance of TNF in
T2DM and AD pathogenesis, are TNF inhibitors a promising
approach to treat AD or AD with T2DM? Although insufficient
data are available, TNF inhibitors have been shown to produce
cognitive improvements and lower the risk of AD in clinical
trials of infliximab and adalimumab (Shi et al., 2011; Zhou
et al., 2020). Etanercept, a specific anti-TNF biological in wide
clinical use (Clark and Vissel, 2021), has been reported to
attenuate neuroinflammation and improve cognitive function
in murine models of traumatic brain injury (Chio et al., 2010)
and Japanese encephalitis virus (Ye et al., 2014) and in clinical
studies (Chen et al., 2010). However, further investigations to
evaluate the use and specificity of these agents for dementia needs
to be conducted.
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Antioxidant Drugs
Oxidative stress is involved in the pathogenesis of both AD
and T2DM. Vitamins C and E, potent antioxidants, are believed
to lower the risk of AD and dementia (Lam et al., 2016).
This hypothesis is supported by a cohort study which showed
a significant protective effect of combined vitamin C and E
supplements on cognitive functions in elderly men (Masaki et al.,
2000). Another study with 4,740 participants also showed that
long-term use of vitamin C and E supplements in combination
helped to reduce the incidence of AD (Zandi et al., 2004). In
addition, lower plasma levels of vitamin C and E were detected
in patients with MCI compared to controls (Rinaldi et al., 2003).
However, other studies indicated that vitamins C and E did not
reduce the risk of developing AD and vitamin E supplementation
had no significant effect on the amyloidotic phenotype if the
amyloid plaques were already deposited (Feng and Wang, 2012).

Thiazolidinediones (TZDs)
The peroxisome proliferator-activated receptor-γ (PPAR- γ),
highly expressed in adipose tissue, has a pivotal role in regulating
carbohydrate, protein, and lipid metabolism and inflammatory
responses (de la Monte, 2017). Thiazolidinediones (TZDs) are
synthetic PPAR- γ agonists and potent insulin sensitizers,
approved to treat T2DM. TZDs are now considered an attractive
treatment of AD because of their potential benefit in cognitive
function and memory (Khan et al., 2019). Here, we discuss two
prototype TZDs—rosiglitazone and pioglitazone.

Rosiglitazone not only increases insulin sensitivity but also
regulates APP processing, leading to reduced plasma amyloid β-
protein levels (Pardeshi et al., 2017). Rosiglitazone upregulates
IDE levels and downregulates amyloid β-protein levels in a mixed
transgenic APPSwe/PS1 mouse model exhibiting both AD and
T2DM (Li et al., 2018). Patients with mild to moderate AD
in clinical trials were found to significantly improve cognitive
function when administrated rosiglitazone (Watson et al., 2005;
Risner et al., 2006). However, a phase III trial of rosiglitazone
showed no significant effect on cognition (Gold et al., 2010) and
rosiglitazone had no effect on the risk of dementia in T2DM
patients (Tseng, 2019).

Pioglitazone has been found to increase insulin sensitivity,
downregulate levels of hippocampal amyloid β-protein oligomer
and decrease pro-cognitive effects in insulin-resistant rats (Yin
et al., 2013; Gad et al., 2015). Furthermore, pioglitazone improved
cognitive performance in some patients with AD and T2DM
(Hanyu et al., 2009; Sato et al., 2011). However, the adverse effects

of TZDs, including edema and congestive heart failure, are major
limitations for their use in the treatment of dementia and AD
(Campbell et al., 2018).

DISCUSSION

AD is a well-known neurodegenerative disorder, which afflicts
millions of people worldwide and places a huge financial burden
on society (Jia et al., 2018). For decades, treatments targeting
amyloid β-protein based on the amyloid-cascade hypothesis and
oligomer-cascade hypothesis have failed (Morris et al., 2014,
2018; Panza et al., 2019). The FDA’s approval of the amyloid β-
antibody Aducanumab reflects a promising achievement in AD
therapy despite uncertainty about this drug’s clinical benefits and
adverse reactions. Apart from amyloid targets, in 2020, according
to the FDA registry, there were over 50 agents in clinical trials
targeting tau protein, inflammation and metabolism (Cummings
et al., 2020). Therefore, novel approaches based on recent insights
into this disease are needed.

The role of insulin in AD pathogenesis has only recently
gained attention. Insulin resistance may not be the primary
cause of AD but it definitely exacerbates AD progression
(Clark and Vissel, 2018). In this review, we summarize the
mechanisms whereby insulin resistance worsens amyloid β-
protein accumulation and tau hyperphosphorylation, including
activation of neuroinflammation, activation of oxidative stress
and downregulation of IDE. We highlight how insulin resistance
and AD form a feed-forward loop in which insulin resistance
increases the risk of AD and AD, in turn, exacerbates insulin
resistance. Targeting insulin resistance may be a breakthrough
strategy to treat AD and may avoid the pitfalls of past treatments
targeting amyloid β-protein and tau protein. This review adds
to the literature linking insulin resistance and AD by extending
insights in this area to update the list of drug candidates that
can be repurposed for AD. Further research into the mechanism
of the metabolic drivers of AD is needed to identify novel
therapeutic approaches for this devastating disease.
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