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SUMMARY

Ebola virus causes severe hemorrhagic fever, often
leading to death in humans. The trimeric fusion
glycoprotein (GP) is the sole target for neutralizing
antibodies and is themajor focus of vaccine develop-
ment. Soluble GP ectodomains are unstable and
mostly monomeric when not fused to a heterologous
trimerization domain. Here, we report structure-
based designs of Ebola and Marburg GP trimers
based on a stabilizing mutation in the hinge loop in
refolding region 1 and substitution of a partially
buried charge at the interface of the GP1 and GP2
subunits. The combined substitutions (T577P and
K588F) substantially increased trimer expression
for Ebola GP proteins. We determined the crystal
structure of stabilized GP from the Makona Zaire
ebolavirus strain without a trimerization domain or
complexed ligand. The structure reveals that the
stabilized GP adopts the same trimeric prefusion
conformation, provides insight into triggering of GP
conformational changes, and should inform future
filovirus vaccine development.

INTRODUCTION

Filovirus infections are characterized by high fatality rates, with

repeated outbreaks occurring in West Africa. Most are local

outbreaks, but in 2014, an epidemic caused by the Zaire

ebolavirus spread throughout West Africa, resulting in more

than 11,000 deaths (World Health Organization, 2020a). The

current epidemic in the Democratic Republic of Congo is the

second largest, with more than 2,264 deaths, to date and has

been declared a public health emergency of international

concern (World Health Organization, 2020b).

The Filoviridae family comprises six genera, with members of

the genus Marburgvirus (one species: Marburg marburgvirus)

and the genus Ebolavirus (six species: Bombali ebolavirus,

Bundibugyo ebolavirus, Reston ebolavirus, Sudan ebolavirus,

Tai Forest ebolavirus, and Zaire ebolavirus) being the most
4540 Cell Reports 30, 4540–4550, March 31, 2020 ª 2020 The Autho
This is an open access article under the CC BY-NC-ND license (http://
significant threats to human health (Kuhn et al., 2019) (Interna-

tional Committee on Taxonomy of Viruses, 2019). Filovirus

glycoprotein (GP) is a class I fusion protein that consists of two

disulfide-linked subunits, GP1 and GP2, that trimerize to form

the active molecule on the virion surface. GP1 consists of a

core, a glycan cap, and a mucin-like domain. GP2 is anchored

to the membrane and contains the membrane-fusion domains.

Like other viral fusion proteins, filovirus GP is a dynamicmachine

that drives membrane fusion by irreversibly refolding from a

metastable prefusion conformation to a stable postfusion

conformation. In the case of Ebola virus, the unusually complex

entry requirements are (1) binding to a cell-surface receptor

(TIM-1, Axl, heparan sulfate, and DC-SIGN) (Alvarez et al.,

2002; Brindley et al., 2011; Jemielity et al., 2013; Kondratowicz

et al., 2011; Shimojima et al., 2007; Simmons et al., 2003; Takada

et al., 2000); (2) macropinocytosis (Mulherkar et al., 2011; Nanbo

et al., 2010; Saeed et al., 2010); (3) cleavage of GP at low pH by

cathepsins (Chandran et al., 2005; Schornberg et al., 2006); (4)

binding to loop C of Niemann-Pick C1 cholesterol transporter

in the endosome (Carette et al., 2011; Côté et al., 2011; Miller

et al., 2012; Wang et al., 2016); and most likely, (5) a final trigger

that drives GP to undergo the conformational changes required

for membrane fusion (Fénéant et al., 2019; Wang et al., 2016).

For many class I fusion proteins, stabilizing substitutions have

been described for vaccine applications or to facilitate structural

analysis (Binley et al., 2000; Fels et al., 2019; Hastie et al., 2017;

Krarup et al., 2015; McLellan et al., 2013; Pallesen et al., 2017;

Rutten et al., 2018; Sanders et al., 2002). However, no stabilizing

substitutions have been described for soluble filovirus GP trimer.

Moreover, GP structures that have been obtained previously

have included a trimerization domain, complexed antibodies,

or a non-native N terminus (Bale et al., 2012; Bornholdt et al.,

2016; Dias et al., 2011; Janus et al., 2018; Lee et al., 2008; Murin

et al., 2018; Pallesen et al., 2016; Wang et al., 2016; West et al.,

2018). Because GP ectodomains form amixture of species when

expressed in HEK293T cells (Figure S8 in Lee et al., 2008), we

sought to stabilize the trimeric, prefusion conformation of GP.

We mutated elements in refolding region 1 (RR1, from 502 to

584) of GP2 and at the interface between GP1 and GP2 to obtain

high yields of near-native soluble filovirus prefusion GP trimers

with a native N terminus andwithout a heterologous trimerization

domain. The trimers described in this study allowed structure
r(s).
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Figure 1. Structure-Based Design of Stabilizing Mutations

(A) Schematic structure of filovirus GP showing the GP1 head domain (red, yellow) that includes the mucin-like domain (dashed red/white) and the glycan cap

(yellow), GP2 that includes RR1 (with the hinge region in cyan), the base helix (BH, between RR1 and RR2) in green, refolding region 2 (RR2, in purple), and the

transmembrane domain (TM, in gray).

(B) Cartoon of the 5JQ3 crystal structure used for the structure-based design. Coloring is as in (A). Amino acid residues shown as a ball-and-stick model were

selected for mutagenesis.
determination of an unliganded Ebola GP ectodomain with a

native N terminus, revealing the importance of the N terminus

in the stability of the prefusion GP trimer. The stabilized soluble

trimers described here may have applications as superior

subunit-based antigens in vaccines or immune assays or as

bait for isolation of monoclonal antibodies (mAbs) against

filovirus GPs.
RESULTS

Structure-Based Design of Stabilized GP Trimers
The ectodomains of wild-type Zaire ebolavirus GPs from the

Yambuku-Mayinga and Makona strains were expressed with

or without their mucin-like domains and without an additional

C-terminal trimerization domain. Only a small fraction of the total

produced protein formed trimers, as judged by analytical size-

exclusion chromatography (SEC) or native polyacrylamide gel

electrophoresis (PAGE), whereas most of the protein formed

dimers and monomers (Figure S1). To increase the trimer yields,

we set out to increase the stability of the protein using a struc-

ture-based design. Although class I fusion proteins like HIV-1

Env, respiratory syncytial virus (RSV) F, influenza hemagglutinin

(HA), and Ebola/Marburg GP have very low sequence conserva-

tion, they share structural features in their fusion machinery.
Because class I fusion proteins need to transform from a prefu-

sion conformation to a highly stable postfusion conformation, the

proteins harbor several regions of instability. The C-terminal end

of RR1 just before the base helix is the so-called hinge region

(Figure 1) that needs to transform from a loop to a coiled-coil

structure. Mutations to proline in the hinge loop of RR1 have

been successful in arresting this transition and stabilizing other

class I fusion proteins (Battles et al., 2017; Hastie et al., 2017;

Krarup et al., 2015; Pallesen et al., 2017; Sanders et al., 2002).

Other approaches that proved successful were the neutralization

of charged repulsions or the substitution of buried charged and

polar residues in subdomain interfaces (Krarup et al., 2015; Rut-

ten et al., 2018). Both approaches were explored for Ebola GP.
Hinge Loop Stabilization
Plasmids encoding soluble Makona GP variants with proline

substitutions in the hinge loop at positions 575, 576, 577, 579,

and 581were transfected in Expi293F cells. Cell culture superna-

tants were tested for trimer formation using native PAGE (Fig-

ure 2A). L579P and T577P increased the trimer yield of Makona

GP, and the double mutation (T577P/L579P) further increased

the yield, as shown by analytical SEC of cell culture supernatants

(Figure 2B). T577P increased the melting temperature in which

50% of the protein was unfolded (Tm50) by �2.5�C, whereas
Cell Reports 30, 4540–4550, March 31, 2020 4541
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Figure 2. Increased Trimer Yield by Prolines in RR1 Hinge Loop in Ebola GP

(A and B) Native PAGE (A) and analytical SEC profile (B) of variants with single and double proline mutations in the hinge loop of Makona GP. Analysis was

performed on crude cell culture supernatants.

(C) Quantification of expression levels of Mayinga and Sudan (Gulu) (SUDV) GP trimers observed in native PAGE gel (data not shown) with and without the T577P

mutation. The y axis shows the trimer content, based on the intensity of the trimer band and monomer bands, as a percentage of trimer content.

(D) Analytical SEC profiles of Mayinga and SUDV GP with and without T577P. Analysis was performed on crude cell culture supernatants.
L579P did not increase the Tm50 of Makona GP (Figure S2).

Introduction of the T577P substitution in Makona GP that lacked

the mucin-like region (Dmucin GP) showed a �10-fold increase

in trimer yield (Figure S3). The hinge loop stabilization was also

tested for Mayinga and Sudan (Gulu) (SUDV) GP. Excluding the

mucin-like domain, Makona and Mayinga GPs are �97% iden-

tical and Makona and Sudan (Gulu) GPs are �70% identical.

Both Mayinga and Sudan (Gulu) GPs showed substantially

increased trimer yields when T577P was introduced (Figures

2C and 2D), demonstrating the general applicability of the hinge

loop stabilization approach.

Stabilization by Optimization of Domain Interfaces
Subdomains in viral fusion proteins need to refold andmove rela-

tive to each other; therefore, such proteins do not contain the hy-

drophobic core of a typical protein. We identified nine charged

and polar residues that are buried to different extents in the

inter-protomer interface or the interface between GP1 and

GP2. All of these residues are clustered in the charged center

of the structure, close to the hinge loop (Figure 1B). These amino

acids were substituted with hydrophobic residues in Makona

Dmucin GP. Supernatants of cell cultures transfected with the
4542 Cell Reports 30, 4540–4550, March 31, 2020
GP variants with single or double substitutions were analyzed

by native PAGE (Figure S4A). The variants that showed

increased trimer formation were further analyzed by analytical

SEC (Figures 3A and S4B). The K588W and K588F substitutions

showed a substantial increase in trimer expression, and few

monomers were detected for the K588F variant (Figure 3A). To

investigate the nature of the stabilizing effect of K588F, other

substitutions were evaluated at position 588 for Mayinga GP

andMayingaDmucin GP.Most hydrophobic residues at position

588 increased trimer yield, as shown by analytical SEC (Figures

3B and 3D) or binding to the trimer-specific antibody mAb100

(Figures 3C and 3E). Although the footprint of mAb100 is distrib-

uted over two monomers at the trimer interface, it is not known

whether mAb100 can also bind to monomeric GP with reduced

affinity. However, the association rate of mAb100 with the GP

variants, as measured by bio-layer interferometry (BLI), corre-

lated with the amounts of trimer measured using analytical

SEC (Figure S5A). The association rate with samples that contain

more monomeric GP is low, but at saturation after 300 s, the

nanometer shift no longer correlates with the trimer content

but with the total amount of GP trimer and monomer in the sam-

ple. This indicates that mAb100 may also bind to monomers and
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Figure 3. Substitutions at Position 588

Increase Trimer Expression

(A) Analytical SEC profile of the variants with

substitutions that increased the trimer content in the

Makona Dmucin GP T577P/T42A backbone. The

trimer peak is labeled �4 min.

(B) Expression levels of Mayinga GP trimers based

on analytical SEC trimer peak heights for variants

with hydrophobic substitutions of Lys588.

(C) BLI binding rates after 10 s of binding of mAb100.

(D) Expression levels of Mayinga Dmucin GP trimers

based on analytical SEC trimer peak heights for

variants with all possible natural substitutions of

Lys588. Data are represented as mean ± SEM.

(E) BLI binding rates after 10 s of binding of mAb100.

Analysis was performed on crude cell culture

supernatant.

See also Figures S4 and S5 and Table S1.
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could indicate that mAb100 is able to induce trimer formation.

Surprisingly, although the K588F mutation increases trimer con-

tent, it slightly decreased the Tm50 by �1.2�C. (Figure S2B).

Combination of Substitutions andGeneral Application of
Approach for Other Filovirus GPs
The combined T577P and K588F substitutions were evaluated

for their impact on Mayinga, Makona, and SUDV GP trimer sta-

bilization with and without the mucin-like domain. The Mayinga

GP with an N-terminal HA tag and T42A/T230V substitutions

(Lee et al., 2008) was included as a control. Trimer content

was determined using analytical SEC, and association phase

analysis with mAb100 was determined using BLI. The T577P

and K588F substitutions increased the trimer yield, and the com-

bination of both substitutions resulted in the highest trimer yields

(Figures 4A, 4B, and S5B) and increased the fraction of trimeric

GP in the HA-tagged T42A/T230V variant (Lee et al., 2008) (Fig-

ure 4A, gray curve in lower left panel). The substitutions at posi-

tions 578 (equivalent to 577 in Ebola GP) and 589 (equivalent to

588 in Ebola GP) were also introduced inMarburg GP, which only

has�32% sequence identity with Ebola GP. Although the T578P

substitution did not show a stabilizing effect on the Marburg

Dmucin GP trimer (data not shown), the H589F and H589I substi-

tutions increased the levels of the Marburg Dmucin GP trimers

compared with the wild-type ectodomain. The wild-type

Marburg Dmucin predominantly formed high-molecular-weight

aggregates, as shown by analytical SEC and native PAGE (Fig-

ures 4C and S5C). Although the retention time of the Marburg

Dmucin GP trimers in analytical SEC is shorter than that of the

Ebola Dmucin GP trimers, they have similar average molecular

weights according to multi-angle light scattering (MALS) (214.0

and �213.7 kDa for the H589I and H589F Marburg Dmucin GP

variants, respectively) (Figure 4D; Table S1). When only the pro-

tein fraction molecular weights (MWs) are calculated, without

glycosylation, the MWs are close to the theoretical MW based

on the sequence (Table S1). From this, we conclude that the

elution peak at 3.6 min contains Marburg Dmucin GP trimers.

Crystal Structure of Makona GP with T577P and K588F
Mutations
To identify the effect of the stabilizing mutations on the confor-

mation of trimeric prefusion GP, we determined the X-ray crystal

structure of apo T577P/K588F Makona GP at pH 5.2 For these

studies, the mucin-like region was deleted to facilitate crystalli-

zation (Figure 5A). The 3.5 Å resolution structure (see Table S2

for crystallographic statistics) revealed that stabilized GP is

similar to the previously determined Mayinga GP structure

(PDB: 5JQ3), with an root-mean-square deviation (RMSD) of

1.87 Å for 353 Ca atoms. Although small differences in the

conformation of the fusion loop were evident, the native confor-

mation of the hinge loop and the base helix was preserved (Fig-

ures 5B and 5C). Thus, the stabilizing mutations did not disrupt

the overall conformation of the trimeric prefusion GP protein.

Pro577 is located at the inter-protomer interface (Figure 5B).

The proline likely has a stabilizing effect because of prevention

of a-helical formation and thus the transition from prefusion to

postfusion conformation, but it could also stabilize the packing

between two protomers. The proline makes more favorable
4544 Cell Reports 30, 4540–4550, March 31, 2020
van der Waals interactions with the neighboring protomer than

the original threonine residue, interacting with Asn98, Arg164,

and Leu165 of GP1, as well as Phe582 of GP2. As predicted

based upon previous GP structures, Phe588 rests within a small

hydrophobic pocket that is formed by residues in GP1 (Ile33,

Leu35, Leu63, and Phe183) and GP2 (Ile584 and Leu585) (Fig-

ures 5B and 6). Thus, the crystal structure suggests that

Phe588 acts by stabilizing the interface of GP1 and GP2 within

one protomer by packing against hydrophobic residues from

both subunits.

The N Terminus/Lys588 Interaction Network
To better understand the role of amino acid position 588 on

trimer stability, we analyzed the environment of Lys588 in exist-

ing crystal and electron microscopy (EM) structures (Figure 6).

The Lys588 side chain is located next to a hydrophobic cavity

and in direct proximity to the N terminus of GP1 (Figure 6).

Understanding of the interaction in this area is obfuscated,

because most solved EM and X-ray structures contain a non-

native N terminus because of fusion with purification tags,

and some proteins were crystallized at a pH at which the N ter-

minus may be deprotonated (see Table S3). Of 25 structures,

only four contain the native N terminus and do not contain a het-

erologous trimerization domain. Two of these structures, 5KEL

and 5KEN, do not have the flexible b2-b3 loop directly con-

strained by an antibody and thus are most representative of

the native state of the GP. In both structures, Lys588 is close

to the N terminus. Because this arrangement seems to be de-

stabilizing, we tested the trimer stability of GP variants with

and without an N-terminal extension. The GP variant with a

native GP1 N terminus has a lower trimer yield compared with

a variant in which the N terminus was elongated by addition

of five amino acids ETGRS, used in most crystallized GP pro-

teins (Figure 7).

We analyzed the interactions around amino acid 588 in the

previously determined cryo-EM structure (PDB: 5KEL). In the

cryo-EM structure, the wild-type lysine side chain was built in

an orientation that suggests interaction between the lysine’s

amino group and the N terminus. However, the density in this re-

gion is weak, and an alternative conformation with the lysine

packed into the neighboring hydrophobic pocket could be

possible (Figure 6C). Interestingly, both arrangements are ener-

getically unfavorable, involving positive charge repulsion or des-

olvation of the lysine’s amino group, suggesting Lys588 and the

N terminus are trapped in ametastable conformation.We believe

the N-terminal extension, which does not alter the position of

Ile33 in the structure (Figure 7C), effectively decreases the insta-

bility arising because of the repulsive interaction of the native N

terminus with Lys588 and as a result improves the stability of GP

trimers. Mutation of Lys588, as in the K588F variant described

here, achieves the same task, but simultaneously fills the neigh-

boring hydrophobic cavity. This seems to result in larger

improvement of the protein’s stability and expression than

removal of the electrostatic repulsion only (Figure 7) and even

stabilizes GP with an extended N terminus (see the last panel

of Figure 4A showing GP with an N-terminal HA tag), although

to a lesser extent than GP without an extended N terminus.

The improvement in both cases stems from eliminating the
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(D) SEC-MALS with purifiedMarburg Dmucin andMayinga Dmucin GP trimers. The red lines show themolar mass traces (right y axis). The dn/dc values used are

0.185 for all three trimers.

See also Figures S1 and S5.
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Figure 6. Interactions of Lys or Phe at

Position 588 with the Ebola GP

(A–C) Wild-type structures determined by cryo-

EM (PDB: 5KEL).

(A) Packing of the Lys588 side chain (red) against

the hydrophobic pocket composed of the base

helix (green) and GP1 (gray).

(B) Residues forming the pocket, including the N

terminus of GP1.

(C) Side view of the pocket. Lys588 can either fill the

space in the hydrophobic pocket (yellow rotamer) or

form a polar interaction with the backbone of the

N-terminal Ile33 (red rotamer). Neither solution is

energetically favorable (proximity of positive

charges versus desolvation of the positive charge).

(D–F) K588F pocket based on the crystal structure.

(D) Phe588 (red) tightly packed in the hydrophobic

pocket.

(E) All residues forming the pocket and hydrophobic

interactions with Phe588.

(F) Side view on the K588F pocket. Positive charge

proximity is removed, and the sidechain of Phe588

is buried in the pocket.
high energy conformation, which may be involved in the

prefusion to postfusion refolding process.

DISCUSSION

Like other class I fusion proteins, Ebola GP refolds from the

prefusion to the postfusion state. However, for Ebola GP, the

requirements for entry are unusually complex, and most details

of the refolding process are unknown. Strategies to stabilize

GP in the native soluble prefusion trimeric state have not been

described. Production of native trimeric Ebola GP ectodomain

is challenging, because most of the protein is monomeric. In

recent years, structural knowledge of class I fusion proteins

has greatly informed the design of mutations to stabilize these

metastable proteins. Introduction of cavity-filling residues and

disulfide bridges has been successful in a range of fusion pro-

teins (Hastie et al., 2017; McLellan et al., 2013; Stewart-Jones

et al., 2018). Introduction of glycine residues (Guenaga et al.,

2017) or a single proline that restricts the movement of the hinge

loop in RR1 and prevents the central helix extension and conse-

quential release of the fusion peptide has also been successful,

as was shown for RSV F, HIV Env, human metapneumo virus F,

LassaGP, andMiddle Eastern respiratory syndrome coronavirus

S (Battles et al., 2017; Hastie et al., 2017; Krarup et al., 2015; Pal-

lesen et al., 2017). The substitution of buried or partially buried

charged residues with hydrophobic residues resulted in the sta-

bilization of HIV Env (Rutten et al., 2018). Here, the T577P substi-
Figure 5. Crystal Structure of Stabilized Makona DMucin GP

(A) Analytical SEC profile of the crude cell culture supernatant of the T577P/T42A/K

K588F.

(B) GP is viewed along the viral membrane, with two protomers shown as gray mo

the schematic in Figure 1A. Insets show the regions surrounding Phe588 (left) an

surfaces. Nitrogen and oxygen atoms are colored blue and red, respectively.

(C) Superposed GP structures of Mayinga Dmucin GP (5JQ3) in blue and stabiliz
tution in the hinge loop of RR1 and substitution of the partially

buried charged residue Lys588 with a hydrophobic residue in

the base helix at the GP1-GP2 interface stabilized the soluble

GP trimer and led to a �20-fold increase in trimer production.

The proline substitution increased stability and expression of

several Ebola GPs, and the substitution of the buried charged

residue increased stability and expression of Ebola GP and Mar-

burg GP and thus may be universally applied to filoviruses.

Our results point toward Lys588 as an important contributor to

the instability of Ebola GP trimers. Not only is Lys588 partially

buried, but it is also restrained to interact with a positively

charged N terminus (Figures 6A–6C). Such an unstable, high-en-

ergy configuration implies the region could act as a structural

switch for undergoing conformational change. In the unstable

region around Lys588, the N terminus of GP1 can move, as

opposed to the lysine, which is fixed on the base helix. Exit of

the N terminus may compromise its interaction with the intrapro-

tomeric a3 helix (HR1) of RR1 that contains the internal fusion

loop. This HR1 helix is stabilized by Pro34 and by several of

the residues that form the hydrophobic pocket (Ile584, Phe183

and the N-terminal GP1 Ile33 residue). Loss of the Ile33-

Lys588 interaction would release the N-terminal Ile33, break up

the hydrophobic pocket, and thereby disrupt contacts with

HR1 in the refolding region. Removal of the instability by

mutating the N terminus results in improved expression and

trimer stability. An alternative way to remove the instability is

by mutating the lysine to a hydrophobic residue, as described
588FMakonaDmucin GP that was used for crystallization and a variant lacking

lecular surfaces and the other protomer shown as ribbons colored according to

d Pro577 (right), with side chains shown as sticks with transparent molecular

ed Makona Dmucin GP in red: side view (left) and top view (right).
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Figure 7. Stability and Trimer Content of Mayinga DMucin GP Variants

(A) Analytical SEC profile of variants with K588F mutation and N-terminal ETGRS extension. Analysis was performed on crude cell culture supernatant.

(B) Analysis of Tm using differential scanning fluorometry (DSF) on variants with N-terminal extension and the K588F variant. Data are represented as

mean ± SEM.

(C) Superposed structures with the native N terminus (stabilizedMakonaDmucin GP structure in dark green; 5KEL, 5KEN, and 6DZM in green) and structures with

extended N termini (6F5U, 6G9I, 5F1B, 5HJ3, 3S88, 3VE0, 3CSY, and 6EAY in pink).
in this study. The K588F mutation not only removes the excess

positive charge in the region but also adds favorable interactions

with a neighboring hydrophobic pocket composed of residues

from both GP1 and GP2 subunits (Figures 6D–6F and 7), which

also seems to contribute to the stability substantially, given

that K588A does not result in substantially increased trimer

yields (Figures 3B and 3D).

Interestingly, the K588F mutation described here for Ebola GP

has some resemblance to the D589V mutation used to stabilize

HIV Env (Rutten et al., 2018). Both substitutions increase trimer

yield and are located in the base helix of the fusion domain

(GP2 in filovirus GP and gp41 in HIV Env). Both also make an in-

traprotomeric interaction with the head domain (GP1 and

gp120), which forms a hydrophobic pocket. These similarities re-

ported here suggest commonalities in the triggering mecha-

nisms of Ebola GP and HIV Env and indicate that the strategy

used here to stabilize GP may be broadly applicable to other

class I viral fusion proteins.

In conclusion, stabilization of the hinge loop in RR1 by T577P

and stabilization and neutralization of a region of instability in the

GP1-GP2 interface by K588F dramatically increases the yield of

filovirus prefusion GP trimers. The increasing knowledge of the

refolding mechanism of class I fusion proteins is critical for the

design of stable proteins that can be used for vaccines, diagnos-

tics, or isolation of antibodies.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines
Human Expi293F cells (Thermo Fischer Scientific) were maintained in Expi293 Expression medium (Thermo Fisher Scientific).
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METHOD DETAILS

Expression Plasmids and Transient Transfections
The Mayinga and Makona GP proteins contain amino acids 1-647 followed by a His6-tag. For the Mayinga and Sudan (Gulu) GP

protein without the mucin-like domain, amino acids 320 until 476 were deleted and for the Makona protein without the mucin-like

domain, amino acids 314 until 472 were deleted. DNA encoding the glycoproteins (GPs) were synthesized and codon-optimized

for expression in human cells at GenScript (Piscataway, NJ 08854). The codon-optimized sequenceswere then cloned into the vector

pcDNA2004 to generate the GP constructs, which were used as the backbone sequences for introducing further mutations. The

genes were expressed in Expi293F cells (Thermo Fischer) according to the manufacturer’s specification. Glucose levels were

monitored using the ViCell MetaFlex (Beckmann). Glucose was depleted at day 4 post-transfection and therefore glucose was added

at a 15 mM concentration. Supernatants were harvested at day 6 post-transfection by centrifugation and sterile filtration. For small

scale 96-well format for analytical SEC experiment, the supernatants were harvested 3 days post-transfection.

Purification of Ebola or Marburg GP Protein
Interfering host-cell proteins (HCPs) were scavenged by applying the supernatant to 13 mL CHT type 1 resin (Biorad) in an XK16/20

column (GEHC) using a flow rate of 300 cm/hr and a running buffer of 5 mM NaPO4, pH 6.8. Bound proteins were eluted by a step

elution using 500 mMNaPO4, pH 7.4. The HCP depleted flow through was subsequently applied to a HisTrap HP 5mL (GEHC) using

a flow rate of 300 cm/hr and a running buffer of 20mMTris, 500mMNaCl pH 7.4. Bound proteins were eluted using a step gradient of

15, 30 and 100% elution buffer (20 mM Tris, 500 mM NaCl, 300 mM imidazole pH 7.4) while running the column in upflow with a

flow rate of 600 cm/hr. The trimer fractions eluted along with aggregates when 100 mM imidazole was applied. This fraction was

concentrated, using 50K Amicon Ultra concentrators (Millipore), and applied to a Superdex 16/600 size-exclusion column (GEHC)

using a flow rate of 60 cm/hr to separate the trimer fraction from aggregates and monomers. The fractions containing the trimer

peak were pooled, and the identity of the peak confirmed as GP protein using SDS-PAGE, and/or SEC-MALS analysis. The concen-

tration of the purified Ebola or Marburg GP was determined by measuring the optical density at 280 nm, and the purified protein was

stored at 4�C until further use.

Antibody production and purification
The heavy and light chain of mAb100 were cloned into a single IgG1 expression vector to express a fully human IgG1 antibody.

mAb100 was made by transfecting the IgG1 expression construct using the ExpiFectamine 293 Transfection Kit (ThermoFisher) in

Expi293F (ThermoFisher) cells according to the manufacturer specifications. mAb100 antibodies were purified from serum-free

culture supernatants using mAb Select SuRe resin (GE Healthcare) followed by rapid desalting using a HiPrep 26/10 Desalting

column (GE Healthcare). The final formulation buffer was 20 mM NaAc, 75 mM NaCl, 5% Sucrose pH 5.5. IgG quality was confirmed

to be > 97% monomeric using SEC-MALS.

NativePAGE Analysis
NativePAGE was performed according to manufacturer’s protocol (LifeTechnologies) using 4%–16% NativePage Bis-Tris gradient

gels (LifeTechnologies). TheGP trimer withmucin-like domain ran at amass of about 800 kDa, whereas theGPwithout themucin-like

domain ran at a mass of about 420 kDa.

Analytical SEC and SEC-MALS
The EBOV GP variants were expressed in 96 well format cell cultures. An ultra high-performance liquid chromatography system

(Vanquish, ThermoScientific) and mDAWNTREOS instrument (Wyatt) coupled to anOptilab mT-rEXRefractive IndexDetector (Wyatt),

in combination with an in-line Nanostar DLS reader (Wyatt), was used for performing the analytical SEC experiment. The cleared

crude cell culture supernatants were applied to a TSK-Gel UP-SW3000 4.6x150 mm column with the corresponding guard column

(Tosoh Bioscience) equilibrated in running buffer (150 mM sodium phosphate, 50 mM NaCl, pH 7.0) at 0.3 mL/min. When analyzing

supernatant samples, mMALS detectors were offline and analytical SEC data was analyzed using Chromeleon 7.2.8.0 software pack-

age. The signal of supernatants of non-transfected cells was subtracted from the signal of supernatants of GP transfected cells.

When purified proteins were analyzed using SEC-MALS, mMALS detectors were inline and data was analyzed using Astra 7.3 soft-

ware package. For the protein component, a dn/dc (mL/g) value of 0.1850 was used and for the glycan component a value of 0.1410.

Molecular weights were calculated using the RI detector as [C] source and mass recoveries using UV as [C] source.

BioLayer Interferometry (BLI)
A solution of monoclonal antibodymAb10038 at a concentration of 10 ug/mLwas used to immobilize the antibody on anti-hIgG (AHC)

sensors (FortéBio cat#18-5060) in 1x kinetics buffer (FortéBio cat#18-1092) in 96-half well black flat bottom polypylene microplates

(FortéBio cat#3694). The experiment was performed on an Octet HTX instrument (Pall-FortéBio) at 30 �C with a shaking speed of

1,000 rpm. Activation was 60 s, immobilization of antibodies 600 s, followed by washing for 150 s and then binding the GP proteins

for 600 s, and a dissociation of 60 s. The data analysis was performed using the FortéBio Data Analysis 8.1 software (FortéBio). The

binding was determined by using association phase analysis. The binding slope was determined at 10 s in nm/minute.
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Differential scanning fluorometry (DSF)
The purified protein was mixed with SYPRO orange fluorescent dye (Life Technologies S6650) in a 96-well optical qPCR plate. The

optimal dye and protein concentration were determined experimentally. All protein dilutions were performed in PBS, and a negative

control sample containing the dye only was used for reference subtraction. The measurement was performed in a qPCR instrument

(Applied Biosystems ViiA 7) using a temperature ramp from 25–95�C with a rate of 0.015�C per second. Data were collected

continuously. The negative first derivative of the Sypro Orange signal was measured at several intervals during a temperature

ramp up to 95�C.
For measurement in supernatants, constructs were expressed in a 96-well format and harvested 3-days post transfection.

Samples were diluted with PBS pH 7.4 (GIBCO) containing 8-fold diluted supernatant and 500-fold diluted Sypro Orange dye

(5000 x stock, Invitrogen). A mock sample was included as background control. The measurement was performed in a qPCR instru-

ment (Applied Biosystems ViiA 7) using a temperature ramp from 25–95�C with a rate of 0.015�C per second. Data were collected

continuously. The negative first derivative was plotted as a function of temperature. The melting temperature corresponds to the

lowest point in the curve.

Differential scanning calorimetry (DSC)
Melting temperatures for GPs were determined using MicroCal capillary DSC system. 400 mL of 0.5 mg/mL protein sample was used

per measurement. The measurement was performed with a start temperature of 20�C and a final temperature of 110�C. The scan

rate 100�C/h and the feedback mode; Low ( = signal amplification). The data were analyzed using the Origin J. Software (MicroCal

VP-analysis tool).

Crystal structure determination
For crystallization purposes an additional T42A substitution was introduced to remove the glycosylation site at Asn40 (Zhao et al.,

2016) and during production a final concentration of 5 mM of kifunensin was used. Although the T577P/T42A variant still has a higher

trimer yield than wild-type Makona Dmucin GP, the additional T42A substitution significantly reduced the trimer yield (Figure S3).

Deletion of the glycan at position 40 reduced the molecular weight of the monomer as illustrated by the shifted peak in analytical

SEC (Figure S3). The trimer retention time, however, was not affected, which may correlate with a relatively compact trimer in the

closed prefusion conformation. The stabilized GP T42A/T577P/K588F protein was crystallized by hanging-drop vapor diffusion by

mixing 0.5 mL of protein at 8.8 mg/mL with 0.5 mL of water and 1 mL of reservoir solution containing 9.8% polyethylene

glycol (PEG) 6000, 0.1 M sodium citrate pH 5.2, and 3% glycerol. Crystals were soaked in reservoir solution supplemented with

25% (v/v) glycerol as a cryoprotectant before being plunge frozen with liquid nitrogen. Data were collected to 3.5 Å resolution at

the SBC beamline 19-ID (Advanced Photon Source, Argonne National Laboratory).

X-ray diffraction data were processed using software curated by SBGrid and accessed through the CCP4i interface (Collaborative

Computational Project, Number 4, 1994; Morin et al., 2013; Potterton et al., 2003). Data indexing and integration were carried out

using iMOSFLM (Powell et al., 2017), and merging and scaling were performed with AIMLESS (Evans and Murshudov, 2013). The

results of the L-test identified possible twinning, however, since no merohedral or pseudo-merohedral twin laws are possible for

space group H32, other possible pathologies were examined. An off-origin peak in the Patterson function with 3.56% the height

of the origin peak was identified, suggesting that lattice translocation, which has previously been reported in space group H32

(Wang et al., 2005), could be responsible for the deviation from normal data statistics. Uncorrected data were used to determine

the molecular replacement solution in PHASER (McCoy et al., 2007) using the previously determined GP structure (PDB ID: 5JQ3)

as a search model. One copy of a single GP protomer was present in the asymmetric unit, although weak density for a second

overlapping protomer was also visible and is likely the result of the lattice translocation defect. A single copy of the GP protomer

was built manually in Coot (Emsley and Cowtan, 2004) and refined in PHENIX (Adams et al., 2002) to an Rwork/Rfree of 28.4%/30.3%.

QUANTIFICATION AND STATISTICAL ANALYSIS

Bar graphs of analytical SEC data were presented as mean ± standard error from at least two independent transfections when

indicated. Data fitting and statistical analysis was performed using GraphPad Prism software (version 7.00).

DATA AND CODE AVAILABILITY

Atomic coordinates and structure factors for the crystal structure of the stabilized GP trimer have been deposited with the Protein

Data Bank with PDB code 6VKM.
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