
entropy

Article

Performance Analysis and Optimization for Irreversible
Combined Carnot Heat Engine Working with Ideal
Quantum Gases

Lingen Chen 1,2,* , Zewei Meng 3, Yanlin Ge 1,2 and Feng Wu 1,2

����������
�������

Citation: Chen, L.; Meng, Z.; Ge, Y.;

Wu, F. Performance Analysis and

Optimization for Irreversible

Combined Carnot Heat Engine

Working with Ideal Quantum Gases.

Entropy 2021, 23, 536. https://

doi.org/10.3390/e23050536

Academic Editor: Ronnie Kosloff

Received: 7 March 2021

Accepted: 26 April 2021

Published: 27 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
geyali9@hotmail.com (Y.G.); 13006338568@163.com (F.W.)

2 School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
3 College of Power Engineering, Naval University of Engineering, Wuhan 430033, China; mengzw94@163.com
* Correspondence: lingenchen@hotmail.com

Abstract: An irreversible combined Carnot cycle model using ideal quantum gases as a working
medium was studied by using finite-time thermodynamics. The combined cycle consisted of two
Carnot sub-cycles in a cascade mode. Considering thermal resistance, internal irreversibility, and
heat leakage losses, the power output and thermal efficiency of the irreversible combined Carnot
cycle were derived by utilizing the quantum gas state equation. The temperature effect of the
working medium on power output and thermal efficiency is analyzed by numerical method, the
optimal relationship between power output and thermal efficiency is solved by the Euler-Lagrange
equation, and the effects of different working mediums on the optimal power and thermal efficiency
performance are also focused. The results show that there is a set of working medium temperatures
that makes the power output of the combined cycle be maximum. When there is no heat leakage loss
in the combined cycle, all the characteristic curves of optimal power versus thermal efficiency are
parabolic-like ones, and the internal irreversibility makes both power output and efficiency decrease.
When there is heat leakage loss in the combined cycle, all the characteristic curves of optimal power
versus thermal efficiency are loop-shaped ones, and the heat leakage loss only affects the thermal
efficiency of the combined Carnot cycle. Comparing the power output of combined heat engines
with four types of working mediums, the two-stage combined Carnot cycle using ideal Fermi-Bose
gas as working medium obtains the highest power output.

Keywords: finite-time thermodynamics; Carnot heat engine; irreversible combined cycle; ideal
quantum gas; power output; thermal efficiency

1. Introduction

Combining with thermodynamics, heat transfer, and fluid mechanics, finite-time
thermodynamics (FTT) has been widely applied in the performance analyses and opti-
mizations of various heat engines (HEs), refrigerators and heat pump cycles, and many
meaningful results have been obtained. At present, FTT is an important part of modern
thermodynamics [1–37].

Using FTT, many scholars have studied from single cycles to multi-stage combined
cycles with various types of traditional working mediums (WMs). Rubin and Andresen [38]
first studied the two-stage endoreversible combined HE with intermediate heat reservoirs in
1982 and pointed out that when the combined HE operated between the fixed hot reservoir
and the fixed cold reservoir, the efficiency at the maximum power (EMP) of the single-stage
cycle was the same as that of the multi-stage cycle, and the two efficiencies were equal to
Curzon-Ahlborn efficiency. After that, Chen and Yan [39] derived the optimal efficiency and
heating supply rate of an endoreversible combined Carnot cycle without intermediate heat
reservoirs. Wu [40,41] analyzed the influence of the types of WMs on the endoreversible
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combined HE. The results showed that compared with a single WM, the combined cycle
using different WMs could effectively expand the temperature difference between the
hot reservoir and cold reservoir. Hence, it could improve the output performance of
the combined HE. In order to obtain a more realistic combined cycle model, Chen [42]
established a generalized irreversible combined HE model considering thermal resistance,
heat leakage loss, and internal irreversibility. Then, different performance evaluations
and research methods have been taken into account, including power output [43–47] and
entransy loss [48,49]. Iyyappan and Johal [50] analyzed the linear irreversible two-stage
combined HE with low dissipation. Under the condition of tight coupling, each stage HE
presented low dissipation behavior, that is, entropy generation was inversely proportional
to the duration of the process.

With the development of new technology and the demand for energy, micro-scale energy
conversion devices have gradually attracted the interest of scholars. A great deal of literature
has applied FTT theory to study the thermodynamic performance of HEs such as Brownian
motor [51,52] and micro-/nanoscaled energy conversion systems [53,54]. FTT theory is also
extended to the study of quantum heat engines (QHE). Since 1984, combined with quantum
mechanics and FTT, Kosloff [55,56] established a QHE model with a finite heat transfer rate
and studied the power and efficiency of the QHE using a harmonic oscillator system [55,56]
and spin-1/2 system [57] as WMs, respectively. Sisman and Saygin [58–61] employed
ideal quantum gases as the WMs and applied the WMs to establish the Ericsson cycle [58],
Carnot cycle [59], Stirling cycle [60], and Otto cycle [61] models. Considering the effect of
quantum degeneracy, Lin and Chen [62] established the Brayton Fermi cycle and focused
on the output work and thermal efficiency of the system. Considering the influence of
thermal resistance and internal irreversibility, Wang et al. [63–65] analyzed the Otto cycle
and Brayton cycle with Bose gas and obtained the relationships among the power, efficiency,
and the optimal pressure ratio. Açikkalp and Caner [66,67] analyzed the performances of
the Dual cycle and Brayton cycle with quantum gas, and deduced performance indexes
such as work, exergy output, ecological function, thermal efficiency, and exergy efficiency.
In the past years, FTT theory has been widely used to study all kinds of QHEs, including
Carnot [68–70], Otto [71–73], Stirling [74], and Brayton [75] QHEs, from the reversible cycle,
endoreversible cycle to the irreversible cycle. Different optimization objective functions,
from power, efficiency to ecological function, and thermo-economic performance in single-
stage quantum thermodynamic cycles, have been studied widely [76–89].

The research results on classical HEs have shown that a combined cycle can further
improve the energy utilization rate and avoid the waste of energy [38–41]. The researches
on the combined cycle have mostly focused on the classical working medium. However,
with the development of lasers, nanodevices, and cryogenic refrigeration devices, these
will involve energy conversion and energy loss. Generally, the energy conversion pro-
cesses are analyzed by simplified theoretical models such as quantum HE and quantum
refrigerator. Through these theoretical models, scholars can analyze and optimize their
power, efficiency and the optimal working range, and so on. Then these results further
guide the practical applications. There are many works, including theoretical studies and
experimental studies [89–92], focused on single-stage single-atom HEs and QHEs, but little
research on combined QHEs.

If building a combined cycle with quantum WM, would the result be the same? Would
there be new results? For the quantum combined HE, Meng et al. [93] studied the combined
quantum harmonic HE with an intermediate heat reservoir by using FTT theory. The results
showed that the combined HE had three operating modes with different temperatures of
WM, and the improving extents of power and efficiency linearly increased with the number
of stages. For thermal Brownian engines, Qi et al. [94,95] studied the combined thermal
Brownian HE [94] and refrigerator [95] by using FTT theory. To date, the combined HE
using ideal quantum gas as WM has not been studied in the open literature. Based on
the Refs. [58,93], an irreversible combined cycle model with ideal quantum gas will be
established in this paper, and the output power and efficiency of the combined HE will be
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analyzed and optimized. Quantum gas will be used as WM for the first time to establish an
irreversible combined cycle by using FTT theory. It is important and valuable to extend the
application of FTT theory and to study the characteristics of an irreversible combined cycle.

2. Theoretical Model for Heat Engine with Quantum Gas

The basic thermodynamic parameters of quantum gas will be introduced. Then, the
combined HE model will be established in this section.

2.1. The Physical Characteristics for Quantum Gas

According to the theory of ideal quantum gas, the gas state equation is described
as [58,96]

p = nqkT · CFq(z) (1)

where p denotes gas pressure, nq denotes number density, k denotes Boltzmann’s constant,
T denotes gas temperature, and CFq(z) denotes correction factor.

For Bose gas and Fermi gas, the definitions of the number density of gas particles and
correction factor are different due to the statistical description. The number density of gas
particles is expressed as, respectively,

nq = nB =
N − N0

V
= gλ−3g3/2(z) (2)

nq = nF =
N
V

= gλ−3 f3/2(z) (3)

where N denotes the total number of particles, N0 denotes the number of particles of
Bose gas in a condensed state, V denotes the volume, g denotes the number of possible
spin orientations, λ = h/

√
2πmkT denotes the mean thermal wavelength, h denotes

Planck’s constant, m denotes the rest mass of a gas particle, z = eµ/kT denotes the fugacity,
µ denotes the chemical potential, fl(z) = 1

Γ(l)

∫ ∞
0

xl−1

z−1ex+1 dx denotes the Fermi integral,

gl(z) = 1
Γ(l)

∫ ∞
0

xl−1

z−1ex−1 dx denotes the Bose integral, and Γ(l) denotes Gamma function.
The correction factors of Bose gas and Fermi gas are given by, respectively

CFq(z) = CFB(z) = g5/2(z)/g3/2(z) (4)

CFq(z) = CFF(z) = f5/2(z)/ f3/2(z) (5)

The corresponding expressions of internal energy and entropy for quantum gas are
denoted as, respectively,

U =
3
2

NkT · CFq(z) (6)

S = Nk
[

5
2

CFq(z)− ln(z)
]

(7)

The above equations are the basic thermodynamic parameters of the quantum gas. In
the following section, utilizing the thermodynamic characteristics of the above quantum
gas, the output performance of the quantum combined HE will be analyzed and the optimal
relationship between power and thermal efficiency will be solved.

2.2. The Model of Combined Carnot Cycle with Quantum Gas

The combined HE can be defined as one that consists of several single-stage HEs,
which have some correlations and work together. According to the combined forms, it can
be classified as parallel connection, cascade connection, etc., and according to the number
of stages, it can be classified as a two-stage cycle or multi-stage cycle. Figure 1 shows a
schematic of two types of combined HEs.
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Figure 1. Schematic diagram of two types of combined HE.

In this paper, a two-stage cascade Carnot cycle with quantum gas was studied. The
operation way of two Carnot sub-cycles is that the top sub-cycle absorbs heat from the hot
reservoir, outputs power, and then exhausts heat to the bottom sub-cycle, and the bottom
sub-cycle absorbs heat from the top sub-cycle, outputs power, and then exhausts heat to
cold reservoir. Through multi-stage utilization of the energy from the hot reservoir, the total
available temperature range between hot reservoir and cold reservoir can be expanded,
thus, the combined cycle can improve the power and thermal efficiency.

To obtain the specific performance of the combined HE with quantum gas, an irre-
versible combined Carnot cycle was utilized as an example in this paper. Figure 2 shows
the temperature-entropy diagram of the combined Carnot cycle. For the combined cycle,
the WMs of two sub-cycles were separated by a heat conduction material. The WM of the
bottom sub-cycle is used as the cold reservoir (T3) of the top sub-cycle, and the WM of the
top sub-cycle was used as the hot reservoir (T2) of the bottom sub-cycle. Therefore, the top
sub-cycle operates between hot reservoir (TH) and cold reservoir (T3). The temperatures of
WM in the isothermal expansion process and isothermal compression process are T1 and
T2, respectively.
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The bottom sub-cycle operates between the hot reservoir (T2) and cold reservoir (TL).
The temperatures of WM in the isothermal expansion process and isothermal compression
process are T3 and T4, respectively. In the Figure 2, v = V/N is the average volume that a
quantum gas particle occupies.

In the quantum regime, in order to simplify the model, the heat transfer of gas is
supposed to obey Newton’s Law [63,97], the amount of absorbing heat from the hot
reservoir can be denoted as

Q1 = α1 A1(TH − T1)t1 (8)

where α1 denotes heat transfer coefficient, A1 denotes heat transfer area, and t1 denotes
process time.

There is no intermediate heat reservoirs for the two sub-engines. Therefore, the
amount of heat transfer from the low-temperature WM of the top sub-cycle to the high-
temperature WM of the bottom sub-cycle can be expressed as

Q2 = α2 A2(T2 − T3)t2 (9)

Correspondingly, the amount of heat transfer between the bottom sub-cycle and cold
reservoir is

Q3 = α3 A3(T4 − TL)t3 (10)

There is heat leakage loss between the hot reservoir and cold reservoir, which can be
expressed as

Qi = Ci(TH − TL)τ (11)

where τ is the cycle period of the combined heat engine and Ci is the heat leakage
loss coefficient.

The two sub-cycles are Carnot cycles, and the times of adiabatic compression processes
and adiabatic expansion processes are negligible. In addition, to keep the two sub-cycles
operate synchronized, the two cycle periods should be equal, that is τ = t1 + t2 = t2 + t3.
Hence, the time consumed in the isothermal absorbing heat process of the top sub-cycle
should be equal to the time consumed in the isothermal exhausting heat process of the
bottom sub-cycle, that is

t1 = t3 (12)

The internal irreversibilities of the two sub-cycles are given by, respectively

D1 =
Q2

Q′2
=

T2(Sd − Sc)

T2(Sd′ − Sc′)
=

Sd − Sc

Sb − Sa
(13)

D2 =
Q3

Q′3
=

T3
(
Sh − Sg

)
T3

(
Sh′ − Sg′

) =
Sh − Sg

S f − Se
(14)

where Q′2 and Q′3 are the amounts of exhausting heat under the endoreversible conditions in
top sub-cycle and bottom sub-cycle, respectively; Q2 and Q3 are the amounts of exhausting
heat under the irreversible conditions in top sub-cycle and bottom sub-cycle, respectively;
Sa, Sb, Sc and Sd denote entropies of four state points (a, b, c and d) under the irreversible
conditions in top sub-cycle; Sc′ and Sd′ denote entropies of two state points (c′ and d′)
under the reversible conditions in top sub-cycle; Se, S f , Sg and Sh denote entropies of four
state points (e, f , g and h) under the irreversible conditions in bottom sub-cycle; as well as
Sg′ and Sh′ denote entropies of two state points (g′ and h′) under the reversible conditions
in bottom sub-cycle (see Figure 2).

To further simplify the internal irreversibilities of the two sub-cycles, the entropy
ratios in adiabatic processes of two sub-cycles are defined as, respectively,

φ1 = Sa/Sc (15)
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φ2 = Sd/Sb (16)

φ3 = Se/Sg (17)

φ4 = Sh/S f (18)

Combining Equation (7) with Equations (13)–(18) yields the internal irreversibilities of
the two sub-cycles are, respectively;

D1 =
Sd − Sa/φ1

Sd/φ2 − Sa
=

5
2 CFq(zd)− ln(zd)−

[ 5
2 CFq(za)− ln(za)

]
/φ1[ 5

2 CFq(zd)− ln(zd)
]
/φ2 −

[ 5
2 CFq(za)− ln(za)

] (19)

D2 =
Sh − Se/φ3

Sh/φ4 − Se
=

5
2 CFq(zh)− ln(zh)−

[ 5
2 CFq(ze)− ln(ze)

]
/φ3[ 5

2 CFq(zh)− ln(zh)
]
/φ4 −

[ 5
2 CFq(ze)− ln(ze)

] (20)

It can be seen from Equations (19) and (20) that only when all the entropy ratios
in adiabatic processes of two sub-cycles meet φ1 = φ2 = φ3 = φ4 = 1, the internal
irreversibilities of the two sub-cycles are D1= 1 and D2= 1, and the irreversible combined
HE cycle is the endoreversible one.

In the combined HE, both absorbing heat and exhausting heat are isothermal processes.
The amounts of exchanging heat are given by

Q1 = Qab = T1(Sb − Sa) = T1(Sd/φ2 − Sa) (21)

Q2 = Qcd = T2(Sd − Sc) = T2(Sd − Sa/φ1) (22)

Q2 = Qe f = T3

(
S f − Se

)
= T3(Sh/φ4 − Se) (23)

Q3 = Qgh = T4
(
Sh − Sg

)
= T4(Sh − Se/φ3) (24)

Combining Equation (22) with Equation (23) yields

T2(Sd − Sa/φ1)− T3(Sh/φ4 − Se) = 0 (25)

Combining Equations (8), (10) and (12) with Equations (21) and (24) yields:

T1(Sd/φ2 − Sa)

α1 A1(TH − T1)
=

T4(Sh − Se/φ3)

α3 A3(T4 − TL)
(26)

α3 A3T1(T4 − TL) · (Sd/φ2 − Sa)− α1 A1T4(TH − T1) · (Sh − Se/φ3) = 0 (27)

Equations (25) and (27) are the necessary conditions for sustaining operation of the
combined HE.

3. The Output Performance of Combined Heat Engine

Combining Equations (8)–(10) and (12) with Equations (21) and (24), the cycle period
of combined HE is given by

τ = t1 + t2 = t2 + t3 =
T1(Sd/φ2 − Sa)

α1 A1(TH − T1)
+

T2(Sd − Sa/φ1)

α2 A2(T2 − T3)
(28)

According to Equations (8)–(24), the power and thermal efficiency of the combined
HE are denoted as, respectively,

P = P1 + P2 =
Q1 −Q2

τ
+

Q2 −Q3

τ
=

Q1 −Q3

τ
= [T1(Sd/φ2 − Sa)− T4(Sh − Se/φ3)]τ

−1 (29)

η =
QH −QL

QH
=

Q1 −Q3

Q1 + Qi
=

T1(Sd/φ2 − Sa)− T4(Sh − Se/φ3)

T1(Sd/φ2 − Sa) + Ci(TH − TL)τ
(30)
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Substituting Equations (19) and (20) into Equation (25) yields

Sh − Se/φ3

Sd/φ2 − Sa
= D1D2

T2

T3
(31)

Using Equations (19), (20), and (31), the power and thermal efficiency can be rewritten
as, respectively,

P =
T1T3 − D1D2T2T4
T1T3

α1 A1(TH−T1)
+ T2T3D1

α2 A2(T2−T3)

(32)

η =

(
1− D1D2

T2

T1
· T4

T3

)
· 1

1 + Z
(33)

where Z = Ci(TH − TL) · {1/[α1 A1(TH − T1)] + T2D1/[α2 A2T1(T2 − T3)]}.
According to Equations (32) and (33), the power and thermal efficiency of the com-

bined HE is determined by the temperature of WM in two sub-cycles, and there are four
variables (T1,T2,T3 and T4). In fact, the four variables are not independent variables. Com-
bined with Equations (25) and (27), it can be known that when T1 and T2 is given, T3 and
T4 can be solved by the two equations.

In general, the thermal conductance distribution is also an optimization variable.
Setting ka = α3 A3/(α1 A1), Equations (25) and (27) can be rewritten as, respectively,

f1(T3, T4) = T2(Sd − Sa/φ1)− T3(Sh/φ4 − Se) = 0 (34)

f2(T3, T4, ka) = kaT1(T4 − TL) · (Sd/φ2 − Sa)− T4(TH − T1) · (Sh − Se/φ3) = 0 (35)

A schematic of two constraint functions is depicted in Figure 3, where the curve
(dot line) f1(T3, T4) is the feasible solution of Equation (34) and the curve (dashed line)
f2(T3, T4, ka) is the feasible solution of Equation (35). When ka change, f1(T3, T4) and
f2(T3, T4, ka) will intersect at different points. That is, for a set of values (T1,T2 and ka), T3
and T4 can be obtained according to the intersection point of f1(T3, T4) and f2(T3, T4, ka) .
Then, the operating temperatures of the combined HE are obtained. At the same time, for
the HE, the temperatures of WM are required to meet T3 > T4, that is, the shadow area in
the figure is feasible temperature range for normal operation.
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When T1 and T2 is given, the solutions of T3 and T4 are determined by ka. When
ka is taken for different values, the corresponding temperatures (T3 and T4) of WM vary
and the output performance of the combined HE is also different. Therefore, the local
optimal solution of the performance parameters can be obtained through optimizing
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ka. For example, when the output power is taken as the performance evaluation, the
different temperatures (T3 and T4) of WM in the bottom sub-cycle can be obtained through
optimizing ka for given temperatures (T1 and T2) of WM in the top sub-cycle. Therefore,
the thermal conductance distribution is chosen as ka = km that makes power maximize.
Under this condition, the corresponding temperatures (T1,T2,T3 and T4) of WM are taken
as the local optimal solution of the combined heat engine.

The above method only obtains the local optimal solution of the combined HE for
each set of temperatures of WM (T1, T2, T3 and T4). In fact, there are many parameters to
evaluate the performance of HEs, such as maximum power and maximum efficiency, but
both cannot be reached at the same time (refer to Figure 6). In practical work, the perfor-
mance of a HE deviates inevitably from the maximum power and maximum efficiency. In
order to balance the contradiction between maximum power and maximum efficiency, the
appropriate performance parameters need to be selected. In this paper, the power with
constraint of efficiency is selected as the performance index, aiming to obtain the local
maximum power (optimal performance) of the heat engine when the efficiency is given or
constrained. In order to obtain the global optimal power at a given thermal efficiency, the
Lagrangian function method is introduced. Utilizing the constraint Equations (34) and (35),
the Lagrangian function can be established as

L = P + λ1η + µ1 f1(T3, T4) + µ2 f2(T3, T4, km) (36)

In Equation (36), the Lagrange multiplier (λ1) is introduced to represent the maximum
power value under the given efficiency value (Pmax,η=ηs ). In the relationship between
optimal power and efficiency, the maximum power and its corresponding efficiency are
global optimum point and there is only one point. But in practice, when the efficiency
changes, there will be a corresponding local optimal power output. That is, the power
output cannot always reach the maximum value. So the Lagrange multiplier is introduced
to obtain the relationship between the optimal power and efficiency. µ1 and µ2 are the
constraints to ensure the normal operation of the combined heat engine.

Combined with Equations (34) and (35) and Euler-Lagrange equations

∂L/∂T1 = 0, ∂L/∂T2 = 0 (37)

the optimum relationship of T1 and T2 is obtained, and then the optimal relationship
of power versus thermal efficiency is also obtained. Since the explicit expressions of
temperatures of WM cannot be solved from Equations (34) and (35), the Euler-Lagrange
equations are difficult to derive the analytical solution. Therefore, a numerical method is
employed to solve the optimal solution of the objective function in the following section.

Firstly, the efficiency is set as a value, of which range is 0 < ηs < ηmax. The analyz-
ing process of maximum efficiency (ηmax) will be given in Equation (39) in Section 4.2.
Then, numerical methods (enumeration method or Newton iteration method) are used to
solve Equation (37), so as to obtain the working conditions of the combined cycle at the
maximum power output under the given efficiency (Pmax,η=ηs ). That is, the corresponding
temperatures (T1,T2,T3 and T4) of WM are obtained by solving Equation (37). Then, it
is substituted into Equation (32) to obtain the optimal power value at a given efficiency
(Pmax,η=ηs ). By repeating the above steps, the relationship between the optimal output
power (Pmax,η=ηs ) and the corresponding efficiency can be obtained, and the corresponding
working conditions can also be obtained.

4. The General Performance of Power Output and Thermal Efficiency

The general and optimal performances of the combined cycle will be discussed in
this section.



Entropy 2021, 23, 536 9 of 18

4.1. The General Combined Cycle for Multi-Stage Endoreversible Carnot QHE

To study the specific output performance of the combined HE, Fermi gas (3He) and
Bose gas (4He) are selected as WMs [97]. The temperatures of heat reservoirs are set as
TH = 90K and TL = 10K, respectively. The minimum average volume and maximum
average volume of top sub-cycle are set as v1 = 1.1× 10−29 m3 and v2 = 1× 10−28 m3,
respectively. The minimum average volume and the maximum average volume of the
bottom sub-cycle are set as v3 = 1× 10−29 m3 and v4 = 1.1× 10−28 m3, respectively. It is
assumed that all the entropy ratios are all equal, that is φ1 = φ2 = φ3 = φ4 = φ. When the
entropy ratio meet φ = 1, the internal irreversibilities of the two sub-cycles are D1 = D2= 1
and the combined cycle is the endoreversible one. Therefore, the combined cycle can be
directly considered as an endoreversible cycle in the following analysis when the entropy
ratio meets φ = 1. Based on the established cycle model and the given parameters, the
output power and corresponding thermal efficiency of the combined HE will be analyzed
and optimized in the following section.

Figure 4 shows the relationship of dimensionless output power (P/Pmax) of combined
HE working with Fermi gas versus dimensionless temperatures (T1/TH and T2/TH) of
WM, where PFermi

max.φ=1.Ci=0 is the maximum output power of endoreversible combined Fermi
HE (φ = 1 and Ci = 0). The horizontal coordinates and vertical coordinates are all
dimensionless with the temperature of the hot reservoir (TH). In this paper, the influence
of the factor of entropy ratio (φ) on the output power is given instead of the heat leakage
loss coefficient (Ci). The reason for this is that the heat leakage loss coefficient (Ci) does not
affect the output power, according to Equation (32).
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As can be seen from the temperature range of WM, the operating range of the com-
bined heat engine is confined within a finite area. That is, when the high temperature
of WM is fixed, the low temperature of WM is available in a small range that keeps the
combined heat engine operates normally. In addition, there is a set of optimal temper-
atures of WM at which the combined heat engine output maximum power. According
to Figure 4b, due to the effect of internal irreversibility, the operating temperature range
of the combined cycle becomes smaller, and the dimensionless maximum output power
decreases (P/PFermi

max.φ=1.Ci=0 < 1).
The relationship of thermal efficiency (η) of combined HE working with Fermi gas

versus dimensionless temperatures (T1/TH and T2/TH) of WM is depicted in Figure 5. The
horizontal coordinates and vertical coordinates are all dimensionless with the temperature
of the hot reservoir (TH). It can be seen from the contour that there are two types of relation-
ship between thermal efficiency and temperatures of WM. When there is no heat leakage
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loss (Ci = 0), the thermal efficiency is directly proportional to the high temperature of WM
and is inversely proportional to the low temperature of WM. When there is a heat leakage
(Ci = 0.02), there is a set of optimal temperatures (T1,T2) that makes thermal efficiency
maximize. Both internal irreversibility and heat leakage loss weaken the thermal efficiency.
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4.2. The Optimal Power Output and Thermal Efficiency

Equation (36) is adopted to solve the optimal performance of the combined HE with
quantum gas. Since the Lagrangian function is very complex and nonlinear, the numerical
method is utilized to solve in this paper.

Because of the shortcoming that the physical parameters of a single WM are fixed,
different WMs are often used for improving performance in the combined HEs [40,41].
Since several sub-cycles are involved in the combined HE, it will contribute to improved
performance of combined cycles if the suitable types of WMs are chosen to match the
characteristics of cycles. Therefore, when calculating the optimal performance of the
combined cycle, four types of WMs, including Fermi gas, Bose gas, Fermi–Bose gas (the
WM of top sub-cycle is Fermi gas and the WM of bottom sub-cycle is Bose gas), and
Bose–Fermi gas (the WM of top sub-cycle is Bose gas and the WM of bottom sub-cycle is
Fermi gas), are compared in this paper.
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Figure 6 depicts the relationship of the optimal power versus thermal efficiency with
four types of WMs. For four types of WMs, all the relationships of the optimal power
and thermal efficiency are similar and appear two types of curves. When there is no
heat leakage loss (Ci = 0), the characteristic curve of power and thermal efficiency is a
parabolic-like one. When there is internal irreversibility, i.e., φ > 1, both power and thermal
efficiency decrease. When there is heat leakage loss (Ci > 0), the characteristic curve of
power and thermal efficiency is a loop-shaped one. The heat leakage loss weakens the
thermal efficiency of the combined HE, but does not affect the power, which can also be
seen from Equations (32) and (33). In terms of the relationship between optimal power
output and efficiency, the combined Carnot engine and the standard Carnot engine are the
same. But for the combined HE working with quantum gas, the operating range of the
bottom sub-cycle is constrained, and the operating conditions of the bottom sub-cycle are
determined by the WM temperature and the thermal conductance distribution of the top
sub-cycle. What’s more, the different types of quantum gases also affect power out and
efficiency. The comparison of the two types of quantum gases will be given in the following.
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Table 1 lists optimal output power and optimal thermal efficiency of the endoreversible
combined HE with four types of WMs. Both maximum output power and thermal efficiency
of the combined Fermi HE are superior to that of the combined Bose HE. In other words,
higher power output can be achieved by using Fermi gas as WM in the high-temperature
region, and higher power output can be achieved by using Bose gas as WM in the low-
temperature region. When two types of quantum gases are selected for the WM, the
combined HE working with Fermi–Bose gas obtains the highest output power. In fact, in
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order to simplify the calculation, this paper assumed that the entropy ratios of the four
irreversible processes of the combined Carnot cycle were equal (φ1 = φ2 = φ3 = φ4 = φ),
so this result may be related to the entropy ratio of the irreversible process. In addition, the
gas physical properties of the two kinds of quantum gases are different, which may also
affect the power output. Therefore, more theoretical analysis and experiments are needed
to verify the results of this paper.

Table 1. Optimal performance of the endoreversible combined HE working with four types of gases.

Fermi Gas Bose Gas Fermi–Bose Gas Bose–Fermi Gas

Pmax.φ=1.Ci=0/PFermi
max.φ=1.Ci=0 1 0.997 1.004 1.001

ηmax 0.884 0.877 0.878 0.883

It should be noted that the maximum efficiency of the combined HE is still equal to the
Carnot efficiency. According to Equation (33), when the combined cycle is endoreversible
(φ = 1, Ci = 0), the thermal efficiency reaches the highest and is given by

ηmax = 1− T2

T1
· T4

T3
(38)

In the limiting case, the temperatures of WM meet T2 = T3, T1 = TH , and T4 = TL,
Equation (38) is rewritten as

ηmax = 1− TL
TH

= ηC (39)

According to the calculating example in this paper, it can be seen from Table 1 that the
maximum efficiency is in a range from 0.877 to 0.884 which is close to the Carnot efficiency
(ηC = 1− 10K/90K= 0.89). Considering the error caused by numerical calculation, it can
be concluded that the maximum efficiency is equal to the Carnot efficiency.

5. Discussions

Under some special conditions, the expressions for power and thermal efficiency can
be further simplified.

5.1. The Weak Degeneracy Condition

When the temperature of the WM is very low or the density of quantum gas is very
low, it is a weak degeneracy condition. The corresponding Fermi integral and Bose integral
can be expanded in the power of z. For the first-order approximation, the two correction
factors of quantum gases are written as F(T, v) = 1 ± B/

(
T3/2v

)
, where the sign ‘±’

corresponds to ideal Fermi gas and Bose gas.
The natural logarithm of the corresponding fugacity is simplified as

ln z = ln
[
4
√

2B/
(

T3/2v
)]
± 2B/

(
T3/2v

)
, then entropy can be denoted as

S =
5
2
− ln

4
√

2B
T3/2v

± B
2T3/2v

(40)

where B = h3/
[
16g(mkπ)3/2

]
.

At this condition, Equations (19) and (20) are further simplified as

D1 =

5
2 − ln 4

√
2B

T2
3/2v2

± B
2T2

3/2v2
−
(

5
2 − ln 4

√
2B

T1
3/2v1

± B
2T1

3/2v1

)
/φ1(

5
2 − ln 4

√
2B

T2
3/2v2

± B
2T2

3/2v2

)
/φ2 −

(
5
2 − ln 4

√
2B

T1
3/2v1

± B
2T1

3/2v1

) (41)
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D2 =

5
2 − ln 4

√
2B

T4
3/2v4

± B
2T4

3/2v4
−
(

5
2 − ln 4

√
2B

T3
3/2v3

± B
2T3

3/2v3

)
/φ3(

5
2 − ln 4

√
2B

T4
3/2v4

± B
2T4

3/2v4

)
/φ4 −

(
5
2 − ln 4

√
2B

T3
3/2v3

± B
2T3

3/2v3

) (42)

Substituting Equations (41) and (42) into Equations (32) and (33) can yield the simpli-
fied expressions of power and thermal efficiency.

5.2. The Strong Degeneracy Condition

When the temperature of the WM is very low and the density of quantum gas is
very high, the Fermi integral can be described by an approximate expression. At this
condition, the Fermi integral ( fl(z) = 1

Γ(l)

∫ ∞
0

xl−1

z−1ex+1 dx) can be expanded in power of

(ln z)−1. For the first-order approximation, the correction factor and natural logarithm
of the corresponding fugacity are written as F(T, v) = 2TF/5T + π2T/6TF and ln z =
TF/T − π2T/12TF, respectively. So the entropy can be simplified as

S = Nk
π2T
2TF

(43)

where TF = A/v2/3 is Fermi temperature, A =
(
3h3)2/3/

(
8π2/3km

)
.

At this condition, Equations (19) and (20) are further simplified as

D1 =
(

T2v2
2/3 − T1v1

2/3/φ1

)
/
(

T2v2
2/3/φ2 − T1v1

2/3
)

(44)

D2 =
(

T4v4
2/3 − T3v3

2/3/φ3

)
/
(

T4v4
2/3/φ4 − T3v3

2/3
)

(45)

Substituting Equations (44) and (45) into Equations (32) and (33) can yield the simpli-
fied expressions of power and thermal efficiency.

6. Conclusions

An irreversible combined Carnot cycle model utilizing ideal quantum gas as WM is
established in this paper. Under the irreversible conditions of thermal resistance, inter-
nal irreversibility and heat leakage loss, the output performance of the combined HE is
analyzed and optimized. The main results are as follows:

(1) According to the exhausting heat of the top sub-cycle, the operating range of the
bottom sub-cycle is constrained, and the operating conditions of the bottom sub-cycle
can be determined by the WM temperature and the thermal conductivity distribution
of the top sub-cycle.

(2) There is a set of optimal temperatures (T1,T2) that makes output power maximize.
When there is heat leakage loss, there is also a set of optimal temperatures (T1,T2) that
makes thermal efficiency maximize.

(3) When there is no heat leakage loss (Ci = 0), the characteristic curve of power and
thermal efficiency is a parabolic-like one. When there is heat leakage loss (Ci > 0),
the characteristic curve of power and thermal efficiency is a loop-shaped one. The
internal irreversibility makes both power and thermal efficiency decrease. The heat
leakage loss weakens the thermal efficiency of the combined HE, but does not affect
the power.

(4) Under the assumption that the entropy ratios of the four irreversible processes of the
combined Carnot cycle were equal, the optimal power and optimal efficiency of the
combined Fermi HE is superior to that of the combined Bose HE. When two types of
quantum gases are selected for the WM, the combined HE working with Fermi–Bose
gas obtains the highest output power.
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Nomenclature

A heat transfer area, m2

C heat leakage coefficient, W/K
CF correction factor
D internal irreversibility
g number of possible spin orientations of a gas particle
h Planck’s constant, J · s
k Boltzmann’s constant, J/K
L Lagrangian function
m rest mass of a gas particle, kg
n number density of gas particles, 1/m3

N total number of particles
P power output, W
p gas pressure, Pa
Q amount of heat exchange, J
.

Q rate of heat flow, W
S entropy, J/K
t heat transfer time, s
T temperature, K
U internal energy, J
V volume of gas, m3

v average volume that an ideal quantum gas particle occupies, m3

W work, J
Z simplified factor
z fugacity of gas
Greek Letters
α heat transfer coefficient, W/

(
m2 · K

)
φ entropy ratio
Γ gamma function
η efficiency
µ chemical potential, J
τ cycle period, s
Subscripts
B Bose gas
F Fermi gas
H hot side
i heat leakage
L cold side
q ideal quantum gas
0 condensed state
1, 2, 3, 4 cycle states
Superscripts
′ The irreversible process
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Abbreviations
EMP efficiency at the maximum power
HE heat engine
MPO maximum power output
QHE quantum heat engine
WM working medium
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