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A B S T R A C T

Background: The high heterogeneity of acute myeloid leukaemia (AML) reflected in the patient- and disease-
related factors accounts for the unsatisfactory prognosis despite the introduction of novel therapeutic
approaches and drugs in recent years.
Methods: In the development set (n = 412), parameters including age, hematopoietic cell transplantation-
comorbidity index, white blood cell count, hemoglobin, biallelic CEBPA mutations, DNMT3A mutations, FLT3-
ITD/NPM1 status, and ELN cytogenetic risk status were identified as independent prognostic factors for over-
all survival (OS) in the multivariable Cox regression analysis. A nomogram combining these predictors for
individual risk estimation was established thereby.
Findings: The prognostic model demonstrated promising performance in the development cohort. The cali-
bration plot, C-index (0.74), along with the 1-, 2- and 3-year area under the receiver operating characteristic
curve (AUC, 0.76, 0.79, and 0.74, respectively) in the validation set (n = 238) substantiated the robustness of
the model. In addition to stratifying young (age � 60 years) and elderly patients (age > 60 years) into three
and two risk groups with significant distinct outcomes, the prognostic model succeeded in distinguishing eli-
gible candidates for hematopoietic stem cell transplantation.
Interpretation: The prognostic model is capable of survival prediction, risk stratification and helping with
therapeutic decision-making with the use of easily acquired variables in daily clinical routine.
Funding: This work was supported in part by grants from the National Natural Science Foundation of China
(81770141), the National Key R&D Program of China (2016YFE0202800), and Shanghai Municipal Education
Commission-Gaofeng Clinical Medicine Grant Support (20161406).
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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1. Introduction

Great efforts and progress have been achieved in the field of the
treatment of acute myeloid leukaemia (AML) in the last decades,
including the curable modality such as allogeneic hematopoietic
stem cell transplantation (HSCT), several novel agents as inhibitors
targeting BCL-2, IDH1/2 and FLT3, antibody-drug conjugates, and
hypomethylation agents, leading to a significant improvement of sur-
vival in this disease. Eight new drugs with promising effect on
improving response rates and outcomes of AML patients were
approved by the United States Federal Drug Administration (FDA)
between 2017 and 2019 [1]. However, the prognosis of elderly AML
patients remains dismal, with a long-term survival of less than 15%
[2]. The high heterogeneity of AML also brings challenges to the treat-
ment of AML, which includes not only the disease-related character-
istics, such as cytogenetic and molecular abnormalities, but also
individual factors including physical conditions and comorbidities.
Therefore, a prognostic model incorporating these well-recognized
factors is essential for precise risk stratification before treatment, and
more importantly, for the implementation of therapeutic decision-
making in clinical application [3]. So far, several models have been
reported, as exemplified by the PINAOS score and PINARFS score in
cytogenetically normal AML (CN-AML) proposed by Pastore et al. [4],
the scoring model designed for elderly AML by Djunic et al. [5], as
well as the reclassification of elderly patients with intermediate-risk
karyotype by Rollig et al. [6]. However, these models had certain limi-
tations since they were only applicable to a specific subgroup of AML
patients. Moreover, with the exception of the PINAOS and PINARFS

score, most of the other models reported in the literature lacked an
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Research in context

Evidence before this study

We searched the PubMed on Oct. 4, 2020 according to the
terms “[(“prediction” OR “risk prediction” OR “prediction model”
OR “predictive model” OR “prognostic model” OR “model”) AND
(“acute myeloid leukaemia” OR “acute myeloid leukemia” OR
“AML”)]” among English-language articles to identify papers
aiming to propose a comprehensive model at diagnosis to pre-
dict the outcome of patients with AML. Previous studies focused
on a specific age or karyotype subgroup of AML patients. None
of these studies reported discrimination and calibration of the
established model during the model development and valida-
tion procedure.

Added value of this study

A total of 810 patients with AML from three different clinical
centres were enrolled in this study. A nomogram incorporating
eight prognostic predictors was established in the development
set through the multivariable Cox regression analysis with
backward elimination. The area under a time-dependent
receiver operating characteristic (ROC) curve (AUC), C-Index,
along with the bias-corrected calibration plot of the early pre-
diction model in the validation set showed similar promising
performance as in the development set in respect to discrimi-
nation and calibration. The AML early prediction model demon-
strated good performance not only in risk stratification, but also
in facilitating therapeutic decisions.

Implication of all the available evidence

The predictive model incorporating the AML- and patient-
related parameters was constructed and validated. The perfor-
mance of the novel model was not inferior to previously
reported models based on the next-generation sequencing,
potentially indicating the indispensable role of the common
and conveniently acquired variables including comorbidities of
AML patients and routine laboratory indicators. Moreover,
some easily neglected prognostic factors of AML, such as cogni-
tion, psychological state, polypharmacy, family and social sup-
port, and nutritional status, deserve to be considered in future
prognostic models. We hope this study will provide a new ori-
entation in the field of model construction of AML.
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independent validation, which is indispensable for a well-established
model, resulting in an insufficient predictive performance and
robustness [7]. With the development of new technologies in the
field of molecular biology, factors derived from high-throughput
sequencing, including gene expression profiling based on microarray
or RNA sequencing [8-11], and somatic mutation profiling detected
by whole genome or exome sequencing have been incorporated into
prognostic systems [12, 13]. Unfortunately, the C-index of these mod-
els, which reflects the discrimination ability, was usually less than
0.65 in an independent validation cohort, representing a “poor” dis-
crimination [14]. In addition, most of these models encompassed a
large number of genes, usually from dozens to thousands, that were
associated with prognostic significance, which makes them difficult
to be widely applied in the clinical setting. In this regard, an ideal
prognostic model that might be well recognized should combine the
value of accuracy, applicability, and generality.

Thus, we integrated different types of prognostic parameters,
including the well-established demographic and baseline clinical
characteristics, cytogenetic and molecular variables, and other
recently reported prognostic factors, to develop and validate a new
model predicting the overall survival (OS) and helping with the ther-
apeutic decision-making in adult AML patients of all ages.

2. Methods

2.1. Participants and source of data

This study enrolled a total of 801 newly diagnosed non-M3 adult
AML patients who were consecutively treated in three different clini-
cal centres, including 687 patients from Ruijin Hospital (RJH)
between June 2011 and August 2018, 64 patients from Ruijin Hospital
North (RJHN) between January 2017 and December 2018, and 50
patients from Beizhan Hospital (BZH) between November 2013 and
November 2017.

After 2015, most of the patients enrolled in this study from RJH
participated in one of the three phase Ⅱ and III clinical trials, which
were registered at the Chinese Clinical Trial Registry (www.chictr.
org.cn Identifier: ChiCTR-OPC-15006085; ChiCTR-OIC-16007764;
ChiCTR-OIN-16008955). The diagnosis and subtype classification of
AML were based on the 2016 World Health Organization criteria.
Patients who refused chemotherapy, received palliative treatment
only, or dead before or during initial induction therapy were
excluded. The follow-up of all patients ended in December 2019. This
study was approved by the ethics committee of the three participat-
ing hospitals (KY-2016-2). Informed consent was obtained from all
patients for treatment and cryopreservation of bone marrow and
peripheral blood samples according to the Declaration of Helsinki.

2.2. Treatment protocols

Generally, young patients (age � 60 years) were treated with the
standard first-line “3 + 700 IA/DA like induction regimens, which con-
sisted of idarubicin/daunorubicin (10/45 mg/m2, D1�3) and cytara-
bine (100 mg/m2, D1�7). In patients who entered clinical trials,
additional intervention with homoharringtonine was tried in those
with D5 peripheral blast clearance rate (D5-PBCR) of less than 99.55%
(see Supplementary Material). After achieving CR, four cycles of high-
dose cytarabine (2 g/m2) were given as consolidation.

Elderly patients (age > 60 years) were evaluated by the treating
physician and classified as “fit” or “unfit” in consideration of their
physical conditions and disease risks. Fit patients received the
reduced “3 + 700-based induction regimens (idarubicin 6�10 mg/m2

D1�3; cytarabine 100 mg/m2, D1�7), and reduced cycles of consoli-
dation therapy to 2 cycles of high-dose cytarabine (2 g/m2). While
the unfit patients were assigned to other less intensive therapies
such as demethylation agents at the discretion of the physician. More
details concerning the treatment protocols are provided in the Sup-
plementary Materials.

2.3. Outcome

OS was the primary outcome of interest, which was measured
from the date of diagnosis to death from any cause. Patients who
were still alive were censored for OS at the time of last follow-up,
and patients who received HSCT were censored at the beginning of
transplantation. As the secondary endpoint, disease-free survival
(DFS) was measured from the date of diagnosis to relapse or death
from any cause, whichever came first.

2.4. Predictors

Well-established prognostic parameters and some novel factors
based on recent research, which were independent predictors of OS
and convenient to acquire in clinical practice, were included in this
study. Parameters at diagnosis that we analysed in the model
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development process included age, sex, hematopoietic cell transplan-
tation-comorbidity index (HCT-CI) [15], Barthel Index [16], white
blood cell count (WBC), hemoglobin (Hb), platelet (PLT), lactate dehy-
drogenase (LDH), fibrinogen (Fg), type of AML (de novo-AML vs sec-
ondary-AML), bone marrow blasts, ELN cytogenetic risk status
(Supplementary Materials) [3], gene mutations and fusions including
FLT3-ITD/TKD, KMT2A-PTD, NPM1, NRAS, KIT, CEBPA, DNMT3A,
RUNX1-RUNX1T1, CBFB-MYH11, and KMT2A rearrangements, as well
as CD34/CD38 expression status of leukemic cells. Bone marrow aspi-
rate samples were obtained from each patient at diagnosis and were
detected for morphology, immunophenotype, cytogenetics and
molecular biology (MICM) following the standard operating proce-
dures of our institution, as previously reported [17, 18].
2.5. Missing data

Missing data were assumed to occur at random and predicted by
using multiple imputations on the basis of the correlations with other
observed variables through mice (version 3.5.0) R package. For both
training and validation datasets, Fg, PLT and LDH were imputed.
Twenty different imputed datasets were created with identical non-
missing information but different imputed values reflecting the
uncertainty associated with the imputations. In the development
dataset, patients were excluded if they lacked information on the fol-
lowing key predictors: age, cytogenetic or molecular data. While in
the validation dataset, patients were not included if they had missing
information on any predictor in the prognostic model. Details regard-
ing the multiple imputations of missing variables were described in
the Supplementary Materials.
2.6. Statistical analysis methods

All the continuous parameters, HCT-CI and Barthel Index were
grouped in accordance with the generally accepted criteria in clinical
practice or reports in prior literature. Univariable Cox analysis for OS
was applied for each of the aforementioned parameters separately.
Prognostic indicators with a P-value of less than 0.10 were entered
into backward elimination for model selection. Based on the Akaike
information criterion (AIC), we included all independent prognostic
indicators in the final model to construct a nomogram, along with a
free web-based tool used for precise risk calculation (http://
121.199.26.137:3838), which was made by shiny (version 1.4.0.2) R
package. The estimated risk was calculated as the weighted linear
sum of all predictors in the model, where the weight of each factor
was its regression coefficient in the multivariate analysis.

Model performance was evaluated through calibration and dis-
crimination. Bias-corrected calibration for 1-year, 2-year, and 3-year
OS rate was performed using 1000 bootstrap resamples to assess the
consistency between the observed and estimated survival probabili-
ties by rms (version 5.1-4) R package. Discrimination was assessed by
Harrell’s concordance index (C-index) adjusted through 1000 boot-
strap resamples under boot (version 1.3-24) R package, as well as the
area under the curve (AUC) of a time-dependent receiver operating
characteristic (ROC) curve by pROC (version 1.13.0) R package. The
AUC of different ROC curves was compared using the Venkatraman
method [19].

Categorical variables were compared by Fisher’s exact test, and
continuous data by Wilcoxon rank sum test. The log-rank test was
used to compare the difference of OS and DFS distribution. All sur-
vival analyses were performed using the survival (version 2.42-6) R
package, and survival curves were visualized using survminer (ver-
sion 0.4.3) R package. All statistical analyses were performed using
the R 3.6.0 (The CRAN project, www.r-project.org) software package.

This study was reported in compliance with the Transparent
Reporting of a multivariable prediction model for Individual
Prognosis Or Diagnosis (TRIPOD) standard guidelines for construction
and validation of the prognostic model [20].

2.7. Role of funding source

The funders had no role in study design, data collecting, analysis
and interpretation, decision to publish, or writing of the manuscript.
YS had full access to all the data in the study and had final responsi-
bility for the decision to submit for publication.

3. Results

3.1. Population characteristics

The participant flow diagram is depicted in Supplementary Figure
S1. The baseline clinical characteristics of the training set (n = 412)
and validation set (n = 238) are summarized and compared in Supple-
mentary Table S1, and the median and range of all continuous varia-
bles and HCT-CI are shown in Supplementary Table S2, which
indicate the scope of model application. Overall, patients in the two
sets shared similar clinical characteristics and prognosis. The 1-year,
2-year, and 3-year OS rates were 76.1% (95% CI, 71.6�80.9), 59.5%
(95% CI, 53.6�66.1), 51.4% (95% CI, 44.9�58.8) in the training set, and
76.3% (95% CI, 70.5�82.7), 62.1% (95% CI, 54.9�70.2), and 51.8% (95%
CI, 43.6�61.6) in the validation set (log-rank p = 0.646, 0.617 and
0.733, respectively), with a median follow-up of 10.9 (range
0.4�77.0) months and 11.4 (range 0.5�77.0) months, respectively.

3.2. Model development and internal validation

Univariable Cox analysis was applied to evaluate the association
of each covariate with OS of patients in the development cohort, as
shown in Table 1. Through backward selection procedure based on
the AIC (1313.45) in the multivariable modeling, eight prognostic fac-
tors including age, HCT-CI, WBC, Hb, biallelic CEBPA mutations,
DNMT3A mutations, FLT3-ITD/NPM1 status, and ELN cytogenetic risk
status were incorporated in the final AML early prediction model,
which was presented graphically as a nomogram (Fig. 1). The points
in the nomogram were assigned in accordance with the rank order of
the effect estimates [21]. Molecular biology and ELN cytogenetic risk
status were important influential predictors of OS, in which FLT3-
ITD/NPM1 status was demonstrated as the most crucial one.

The calibration plot for internal validation showed an excellent
agreement of 1-, 2-, and 3-year survival probabilities between the
estimated outcomes by nomogram and actual observations (Fig. 2A).
The C-index was 0.736 (95% CI, 0.693�0.780) in the development
cohort, and the optimism-corrected C statistic with 1000 bootstrap
replications was 0.76. Time-dependent ROC was used to assess the
predictive performance of the model, which showed good discrimi-
nation and accurate overall survival prediction, with a 1-, 2- and 3-
year AUCs in the development set of 0.81 (95% CI, 0.76�0.87), 0.78
(95% CI, 0.71�0.84), and 0.83 (95% CI, 0.77�0.90), respectively
(Fig. 2B).

Based on the 25% and 75% quartiles of the risk score, young
patients (age � 60 years) were divided into 3 groups (Fig. 2C), with a
3-year estimated OS rate for low-, intermediate-, and high-risk group
of 78.6% (95% CI, 68.3�90.5), 52.2% (95% CI, 42.1�64.7), and 9.0% (95%
CI, 1.7�48.2), respectively (log-rank p < 0.001). In view of the rela-
tively small number of elderly patients in both sets, and the thera-
peutic dilemma in this population which emphasizes the need to
facilitate risk-adapted therapy, two risk groups were established
with a median cut-off value of the estimated risk in elderly patients
(Fig. 2D), and the estimated 3-year OS rates for low- and high-risk
groups were 63.9% (95% CI, 48.1�84.8) and 9.5% (95% CI, 1.9�48.2),
respectively (log-rank p < 0.001).
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Table 1
Univariate and multivariable analyses of variables predicting overall survival in the validation set.

Variable Comparison groups Univariate analysis Multivariable analysis

weight HR (95% CI) P weight HR (95%-CI) P

Sex Male vs. Female 0.027 1.028 (0.727�1.452) 0.877
Age (years) � 65 vs. < 65 0.572 1.771 (1.118�2.805) 0.015 0.435 1.545 (0.927�2.574) 0.095
HCT-CI (points) � 1 vs. < 1 0.701 2.016 (1.404�2.894) < 0.001 0.688 1.990 (1.364�2.904) < 0.001
Barthel Index (points) 100 vs. < 100 �0.418 0.658 (0.432�1.003) 0.052
WBC (£ 109/L) � 50 vs. < 50 0.476 1.609 (1.077�2.404) 0.020 0.488 1.628 (1.044�2.539) 0.031
Hb (g/L) 60 to < 100 vs. < 60 �0.239 0.788 (0.479�1.295) < 0.001 �0.304 0.738 (0.437�1.244) 0.254

� 100 vs. < 60 �1.079 0.340 (0.186�0.621) �0.913 0.401 (0.210�0.766) 0.006
PLT (£ 109/L) 20 to < 50 vs. < 20 �0.009 0.991 (0.600�1.637) 0.884

50 to < 100 vs. < 20 �0.111 0.895 (0.514�1.558)
� 100 vs. < 20 �0.176 0.838 (0.479�1.466)

LDH (IU/L) � 500 vs. < 500 0.465 1.592 (1.097�2.310) 0.014
Fg (g/L) � 1.5 vs. <1.5 �0.528 0.590 (0.240�1.451) 0.250
AML type Secondary-AML vs. De Novo-AML 0.108 1.114 (0.490�2.529) 0.797
Bone marrow blasts � 60 vs. < 60 0.166 1.180 (0.833�1.671) 0.351
ELN cytogenetic risks status Intermediate vs. Favorable 0.110 1.116 (0.697�1.787) < 0.001 0.542 1.720 (0.989�2.989) 0.055

Adverse vs. Favorable 1.042 2.834 (1.581�5.082) 1.443 4.232 (2.322�7.712) < 0.001
FLT3-ITD/NPM1 status FLT3-ITD+/NPM1- vs. FLT3-ITD-/NPM1- 1.292 3.640 (2.029�6.532) < 0.001 1.004 2.728 (1.427�5.215) 0.002

FLT3-ITD-/NPM1+ vs. FLT3-ITD-/NPM1- �0.258 0.772 (0.465�1.283) �0.796 0.451 (0.250�0.813) 0.008
FLT3-ITD+/NPM1+ vs. FLT3-ITD-/NPM1- 0.837 2.309 (1.159�4.602) 0.158 1.171 (0.547�2.503) 0.684

FLT3-TKD Mutated vs. Wild-type �1.281 0.278 (0.069�1.123) 0.072
Biallelic CEBPA Mutated vs. Wild-type &Monoallelic �1.055 0.348 (0.199�0.610) < 0.001 �0.980 0.375 (0.199�0.706) 0.002
DNMT3A Mutated vs. Wild-type 0.558 1.746 (1.081�2.820) 0.023 0.792 2.208 (1.285�3.794) 0.004
N-RAS Mutated vs. Wild-type �0.008 0.992 (0.603�1.633) 0.974
C-KIT Mutated vs.Wild-type 0.107 1.113 (0.626�1.979) 0.716
CD34/CD38 status CD34+CD38+ vs. CD34� �0.018 0.982 (0.654�1.476) 0.024

CD34+CD38� vs. CD34� 1.255 3.507 (1.344�9.149) 0.024

Abbreviations: HCT-CI hematopoietic cell transplantation-comorbidity index, WBC white blood cell count, Hb hemoglobin, PLT platelet, LDH lactate dehydrogenase, Fg
fibrinogen, ELN European LeukemiaNet.

Fig. 1. A nomogram for the 1-year, 2-year, and 3-year overall survival probability prediction. HCT-CI hematopoietic cell transplantation-comorbidity index, WBC white blood cell
count, Hb hemoglobin, ELN European LeukaemiaNet.
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Fig. 2. Performance of the prognostic model in the development set. (a) Calibration curve showing predicted and actual 1-year, 2-year, and 3-year survival probabilities. The blue
diagonal line indicates the perfect correspondence between the observation and prediction. (b) The area under the ROC curve (AUC) showing the discriminative ability of the prog-
nostic model. The black dotted line indicates no discriminability (AUC = 0.5). Kaplan-Meier estimates the survival of young AML patients (c), and elderly AML patients (d) according
to the risk groups. LR low-risk group, MR intermediate-risk group, HR high-risk group.
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3.3. Model validation and performance

To evaluate the validity and performance of the prognostic model,
a separate dataset comprising 238 patients was used for validation.
The 1-, 2- and 3-year calibration plot of the validation set (Fig. 3A)
indicated satisfactory concordance between the estimated and
observed probabilities of overall survival. The C-index of the estab-
lished nomogram in the validating cohort was 0.74 (95% CI,
0.70�0.80). The predictive accuracy of the model was validated by
the time-dependent ROC in this cohort, with 1-, 2- and 3-year AUCs
of 0.76 (95% CI, 0.67�0.84), 0.79 (95% CI, 0.71�0.87), and 0.74 (95%
CI, 0.63�0.84), respectively (Fig. 3B). Collectively, these results sug-
gested that the risk model had an equally good performance in the
validation set in terms of both calibration and discrimination.

The cut-offs identified in the development set were applied
directly to the validation set. For young patients (Fig. 3C), the esti-
mated 3-year OS rate was 82.0% (95% CI, 69.3�97.2) for low-risk,
68.5% (95% CI, 58.1�80.8) for intermediate-risk, and 26.4% (95% CI,
14.9�46.7) for high-risk patients (log-rank p < 0.001). Of note,
though there were only 51 elderly patients in the validation set
(Fig. 3D), it could be seen that the high-risk patients bore a 3-year
survival rate of merely 19.1% (95% CI, 8.0�45.7), which was worse
than the low-risk patients with a 3-year survival rate of 39.5% (95%
CI, 21.5�72.6) (log-rank p = 0.018).

3.4. Model comparison

To further explore and quantify the predictive performance of this
novel model, we compared it in the validation cohort with the two
previously reported risk stratification systems, which were Irena
Djunic’s model (integrating information on age, LDH, HCT-CI) in the
elderly patients, and Pastore’s model (incorporating age, performance
status, WBC count, mutation status of NPM1, CEBPA, and FLT3-ITD) in
CN-AML patients (Fig. 4)[4, 5]. Even though our novel risk system
was not specifically designed for elderly or CN-AML patients, it pro-
vided a better discriminability than Irena Djunic’s model in respect to
AUC (AML early prediction model: 0.692, Irena Djunic’s model: 0.630,
venkatraman p = 0.003), and a similar discriminability compared to
Pastore’s model (AML early prediction model: 0.739, Pastore’s model:
0.758, venkatraman p = 0.979).
3.5. Performance of the established model in risk stratification of the
entire cohort

To appraise the value of the AML early prediction model in risk
stratification for both long-term survival and risk of relapse in all
patients, the OS and DFS of different risk groups without censoring
for HSCT were compared after combining the two sets together.
Young patients with AML were divided into three distinct groups
with gradually reduced 3-year survival rate in low-risk (OS, 78.6%,
95% CI, 71.1�86.8; DFS, 62.4%, 95% CI, 54.4�71.7), intermediate-risk
(OS, 63.6%, 95% CI, 57.1�70.9; DFS, 45%, 95% CI, 38.5�52.5), and high-
risk (OS, 35.9%, 95% CI, 27.7�46.6; DFS, 27.4%, 95% CI, 20.2�37.1)
(Fig. 5A, 5C). Besides, the model performed equally well in risk classi-
fication of elderly AML patients, with an estimated 3-year OS rate for
low-, and high-risk group of 58.0% (95% CI, 38.8�72.9) and 18.6%
(95% CI, 10.1�34.2) (log-rank p < 0.001), respectively (Fig. 5B), and



Fig. 3. Performance of the prognostic model in the validation set. (a) Calibration curve showing predicted and actual 1-year, 2-year, and 3-year survival probabilities. (b) The area
under the ROC curve (AUC) showing the discriminative ability of the prognostic model. Kaplan-Meier estimates the survival of young AML patients (c), and elderly AML patients (d)
according to the risk groups. LR low-risk group, MR intermediate-risk group, HR high-risk group.
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an estimated 3-year DFS rate of 46.2% (95% CI, 32.6�65.5) and 8.1%
(95% CI, 3.0�21.8) (log-rank p < 0.001), respectively (Fig. 5D).

3.6. Clinical application for treatment selection in different risk groups

Determining which young AML patients should receive HSCT and
whether “3 + 700-based or other less intensive therapy should be offered
to elderly patients remain controversial in daily clinical practice. Hence,
we investigated the ability of our model to assist with guiding
Fig. 4. Comparison between AML early prediction model and published models in the valida
elderly AML patients (b) ROCs of the novel classification system and Pastore’s PINAOS score i
katraman method.
therapeutic decision-making in both young and elderly patients. By com-
bining 521 young patients in the training and validation cohorts without
censoring for HSCT, the effects of transplantation on OS and DFS in differ-
ent risk groups were compared (Fig. 6A, 6C,6E). It showed that HSCT
failed to significantly improve the outcome of low-risk patients (univari-
able Cox regression: OS, HR = 0.666, 95% CI, 0.266�1.669, p = 0.386; DFS,
HR = 1.118, 95% CI, 0.617�2.027, p = 0.713). In contrast, HSCT could con-
siderably improve the prognosis of patients in the intermediate-risk
group (OS, HR = 0.290, 95% CI, 0.164�0.513, p < 0.001; DFS, HR = 0.483,
tion set. (a) ROCs of the AML early prediction model and Irena Djunic’s score system in
n CN-AML patients. The P-value between different ROCs was calculated under the Ven-



Fig. 5. Performance of the prognostic model in risk stratification of the entire cohort. Kaplan-Meier curves of OS for young AML patients (a) and elderly AML patients (b); Kaplan-
Meier curves of DFS for young AML patients (c) and elderly AML patients (d) according to the AML early prediction model. LR low-risk group, MR intermediate-risk group, HR high-
risk group.
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95% CI, 0.325�0.720, p < 0.001), and to a greater extent, of those in the
high-risk group (OS, HR = 0.209, 95% CI, 0.121�0.362, p < 0.001; DFS,
HR = 0.253, 95% CI, 0.155�0.414, p < 0.001). Notably, patients who
underwent HSCT in the intermediate-risk group achieved a similar 3-
year estimated OS rate compared with transplant patients in the low-
risk group (82.4 vs 83.3months, log-rank p = 0.751, Supplementary Table
S3).

Furthermore, we applied this new risk classification to all 129
elderly patients in both sets to identify whether elderly patients with
different risks could benefit from different intensity of induction regi-
mens (Fig. 6B, 6D, 6E). For patients in the high-risk group, the admin-
istration of reduced “3 + 700-based induction regimens and other less
intensive induction regimens conferred a similar outcome (univari-
able Cox regression: OS, HR = 0.872, 95% CI, 0.482�1.577, p = 0.651;
DFS, HR = 0.922, 95% CI, 0.530�1.604, p = 0.774), with a 3-year esti-
mated OS rate of 20.1% and 19.8%, and DFS rate of 5.9% and 9.9%,
respectively (Supplementary Table S4). The results were similar in
the low-risk group, the 3-year OS, DFS rate were 59.0%, 51.8% with
reduced “3 + 700-based therapy, and 42.7%, 37.4% with other less
intensive therapy (univariable Cox regression: OS, HR = 0.945, 95% CI,
0.382�2.340, p = 0.903; DFS, HR = 0.835, 95% CI, 0.365�1.908,
p = 0.669), illustrating that elderly patients in both risk groups
responded similarly to different induction regimens.

4. Discussion

Precise, robust, and applicable prognostic model for predicting
long-term survival, stratifying risk groups and helping with



Fig. 6. Evaluation of the clinical application value in different age groups. Kaplan�Meier estimates the OS (a) and DFS (c) of young AML patients in different risk subgroups, stratified
by whether or not they underwent HSCT. The benefits of transplantation for young AML patients at different risk status were calculated without censoring for HSCT. Kaplan�Meier
estimates the OS (b) and DFS (d) of elderly AML patients in low- and high-risk subgroups, stratified by different induction regimens. (e) Forest plot exhibiting the P-value and Hazard
ratio of OS and DFS for young AML patients who received HSCT or not within each risk subgroup, and for elderly AML patients who received reduced “3 + 700-based induction chemo-
therapy or other less intensive agents within each risk subgroup. HSCT hematopoietic stem cell transplantation, LR low-risk group, MR intermediate-risk group, HR high-risk group.
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therapeutic decision-making in AML is still an unmet clinical
demand. In this study, by combining patient-related and AML-related
predictors, we developed and validated a novel prognostic model in
adult AML patients to address this issue.

Various models have been proposed to predict the prognosis of
AML so far, however, the majority of which focused on specific AML
cohorts, for example, models for young patients (age � 60 years) [22]
or elderly patients (age � 60 years) only [5, 6, 23], those restricted to
CN-AML [4, 24], or a combination of the above two populations [25].
In contrast, we included all age groups of adult AML patients to
improve the generalizability of our prognostic model. Traditional
clinical and demographic parameters such as age, performance sta-
tus, physical condition, comorbidities, as well as disease-related char-
acteristics including morphology, immunophenotype, cytogenetic
risk status and molecular events were fully considered during the
model construction procedure. Taking into account of multi-aspect
variables allows a comprehensive view of the patient- and disease-
related conditions, thereby improving the reliability and robustness
of the model.

Calibration and discrimination are two key aspects when evaluat-
ing the performance of a predictive model, which was recommended
and emphasized in the TRIPOD, criteria for reporting a multivariable
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prediction model. Nevertheless, many of the reported prognostic
models in AML lacked a comprehensive assessment of their perfor-
mance, merely through stratifying patients into three or four differ-
ent risk groups to evaluate the discriminative ability [6, 15, 22, 26-
28]. The only exception was the nomogram predicting the leukae-
mia-free survival after autologous stem cell transplantation devel-
oped by shouval et al. [29]. Importantly, the AML early prediction
model established in our study complied with the TRIPOD criteria
and manifested promising performance concerning both calibration
and discrimination in the development and validation sets in predict-
ing the long-term survival of all adult AML patients.

It is not surprising that cytogenetic risk status, FLT3-ITD/NPM1 sta-
tus, and biallelic CEBPA mutations were powerful predictors in our
model in consideration of their important roles in the ELN risk strati-
fication and prior reports [4, 15, 28, 30]. Notably, only 12% patients
carried FLT3-ITD mutations in our full cohort, which seemed to be
considerably lower than the frequency of 20�25% in the western
population [2], but similar with the reports derived from the Chinese
population [17], reflecting the difference of genetic background
between different races, as exemplified as the high incidence of
CEBPA mutations in Chinese patients [31]. Even so, FLT3-ITD/NPM1
status remained to be the most powerful factor for OS in our model.
Interestingly, Papaemmanuil et al. also proved that the deleterious
effect of FLT3-ITD increased in patients with concomitant NPM1 and
DNMT3A mutations regardless of the ratio of mutant to wild-type
FLT3-ITD [30]. The independent negative effect of lower Hb level at
diagnosis on the survival of AML patients aged 70 and older was
recently revealed by Talati et al. [32], and the effect was expanded to
all adult AML patients in our study. HCT-CI, a measure of comorbid-
ities, was originally proposed by Sorror et al. in 2005 for risk assess-
ment of AML patients before allogeneic hematopoietic cell
transplantation [33], and has recently been proved to exert a signifi-
cant impact on early death, 1-year mortality, and long-term survival
in patients with AML [15]. Moreover, age has been widely recognized
as a crucial prognostic factor, which may be related to the accumula-
tion of molecular events and the deterioration of cognitive, psycho-
logical and physical function in the process of aging [34]. Apparently,
the incorporation of these important prognostic factors into the risk
score improves the robustness and validity of this prognostic model.
Despite the fact that the model did not incorporate factors derived
from the next-generation sequencing which has not yet been widely
applied in clinical diagnosis, the well-known predictors in the model,
on the contrary, are easily acquired in routine clinical practice, mak-
ing it convenient to apply the novel model not only in advanced clini-
cal centres, but also in community hospitals.

The selection of consolidation therapy for young patients after
attaining CR remains challenging in clinical practice when weighing
the risk of relapse and treatment-related death, especially for
patients with intermediate cytogenetic and molecular risk. Several
models integrating post-remission variables were developed to iden-
tify which patients could benefit from chemotherapy or HSCT for
consolidation [22, 35], and more were designed to predict survival
after transplantation [29, 36, 37]. Our results demonstrated that
patients in both intermediate- and high-risk groups identified by our
model could benefit from HSCT, and more intriguingly, patients in
the intermediate-risk group who received HSCT for consolidation
achieved similar prolonged survival as those in the low-risk group,
indicating that our model is capable of discriminating eligible candi-
dates for HSCT rather than simply stratifying patients, which makes
it possible for physicians to select optimal consolidation therapy at
the time of diagnosis.

It is of critical importance to correctly choose the treatment
modality suitable for elderly AML patients, so as to achieve durable
efficacy while sparing them the toxicity of chemotherapy. Elderly
patients receiving reduced “3 + 700-based induction regimens in our
study were empirically evaluated as “fit” before treatment and
expected to have a better prognosis than those in the “unfit” group.
However, patients who experienced reduced “3 + 700-based induction
treatment and other less intensive agents had comparable survival
time in both low- and high-risk groups, suggesting that the subjective
criteria traditionally used might not be able to choose the proper
intensity and modality of induction therapy, and the first-line
“3 + 700-based induction regimens failed to prolong the survival of
elderly patients in this study. New hope relies on novel modalities,
such as venetoclax, IDH1/2, and FLT3 inhibitors that were not admin-
istered in these elderly patients.

Recently, several novel drugs have been approved by the FDA and
introduced to patients with AML since 2017, which exerted encour-
aging anti-leukemic efficacy in large clinical trials, as exemplified by
venetoclax, CPX-351 and IDH1/2 inhibitors. These drugs brought new
light to the treatment of AML. Furthermore, molecular prognostic
profile might be changed by these new treatment strategies. We
believed that it is worth noting that the AML early prediction model
is suitable and beneficial for the majority of AML patients who
receive the classic “3 + 700 regimens. However, its significance in the
era of mutation-directed therapy should be re-evaluated with the
more extensive application of new drugs. In conclusion, we inte-
grated comprehensive patient-related and AML-related information
to develop and validate a novel score system, which could precisely
predict both overall and disease-free survival of all adult AML
patients. Quick evaluation and accurate calculation of individual sur-
vival probability can be made with the nomogram and a free web-
based calculator, which meets the demand of the precision medicine
and personally tailored cancer management. The parameters in the
model are routinely evaluated and easily adopted in the clinic, mak-
ing it possible for physicians to quickly complete the evaluation of
survival probability, risk stratification, and therapeutic decision-mak-
ing at diagnosis. Investigators and related authorities can utilize this
model to select patients with specific risks for treatment research
and compare performance among different clinical trials and centres.
Prospective, randomized clinical trials are warranted to validate our
model in the future.
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