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Abstract

Background: Electronic clocks exhibit undesirable jitter or time variations in periodic signals. The circadian clocks of
humans, some animals, and plants consist of oscillating molecular networks with peak-to-peak time of approximately
24 hours. Clockwork orange (CWO) is a transcriptional repressor of Drosophila direct target genes.

Methodology/Principal Findings: Theory and data from a model of the Drosophila circadian clock support the idea that
CWO controls anti-jitter negative circuits that stabilize peak-to-peak time in light-dark cycles (LD). The orbit is confined to
chaotic attractors in both LD and dark cycles and is almost periodic in LD; furthermore, CWO diminishes the Euclidean
dimension of the chaotic attractor in LD. Light resets the clock each day by restricting each molecular peak to the proximity
of a prescribed time.

Conclusions/Significance: The theoretical results suggest that chaos plays a central role in the dynamics of the Drosophila
circadian clock and that a single molecule, CWO, may sense jitter and repress it by its negative loops.
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Introduction

Humans, most animals and plants, have a biological clock that

exhibits circadian rhythms that control the timing of sleep,

alertness, and appetite. Circadian clocks exhibit 24-hr recurring

behavioral and transcriptional oscillations, generated by intercon-

nected transcriptional feedback loops (see File S1). In particular,

the Drosophila circadian clock has one positive and two negative

loops that interconnect at CLK-CYC, a heterodimer of the

CLOCK (CLK) and CYCLE (CYC) proteins. CLK-CYC binds

canonical E-box sequences to activate the transcription of direct

targets clockwork orange (cwo), period (per), timeless (tim), vrille (vri),

and par domain protein 1 (Pdp1, Figure 1a) [1–6]. CWO is a

recently defined negative transcriptional regulator of the same

direct targets as those of CLK-CYC (Figure 1a). The presence of

circadianly expressed cwo-orthologs in mouse (dec1 and dec2),

suggest that a similar feedback mechanism exists in mammals

[7,8]; this view may also extend to other animal systems [9].

A recent report describes a mathematical model of the

Drosophila circadian clock. This model is faithful in the sense

that it replicates biological results (see File S1 and [10]). In

particular, simulations generate timely oscillations with peak-to-

peak times approximately 24 hours in LD and DD, and

entrainment in response to light shifts; furthermore, simulations

replicate biological data from flies with cwo-, clk-, and dPDBD-

mutations as well as from experiments that enhance the activity of

CLK/CYC.

Typically, electronic clocks exhibit jitter or undesirable

variations in periodic signals. Interestingly, like digital clocks and

unlike the wt model, the cwo-mutant model of the Drosophila

circadian clock exhibits jitter or variations in recurring signal (see

Figures 1b–c). Here, I investigate the idea that CWO regulates an

anti-jitter control system and study its contribution to the

dynamics of the circadian model.

Results

Theory
Zeitgeber time (0ƒZTv24) refers to time modulo 24 where 0–

12 hr and 12–24 hr indicate light and dark cycles (LD),

respectively. The cycle-n variability in the concentration (xi) of a

molecule, i, at ZT~t is computed as:

Vi,n(t)~xi(tz24n){xi(tz24(n{1)),

which computes the difference in concentration between cycles n

and n{1. The cwo-mutant model predicts that the variability in

the concentration of each direct target gene, g, at the times of its

peak or trough, tg (tg max or tg min), is proportional to the

variability of CLK-CYC (C/C, see File S1); in particular,

Vcwo
g,n (tg)~kgVcwo

C=C,n(tg), kg~
lC=C,g

dg

����
���� ð1Þ
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The parameters dgv0 and lC=C,gw0 are the decay rates of direct

target mRNAs and the regulatory weights that encode the CLK-

CYC-mediated transcriptional activation, respectively. The deri-

vation of this equation uses the fact that the relationship between

the molecules that regulate g is linear at its peak and trough (see

File S1). Notice that kgw1 for per and tim.

In the case of the wt model, the peak-time linear relationships

between the variability of CWO and the variability of each direct

target gene (agw0, see Figure 1d) also lead to:

Vg,n(tg)%k
0
gVC=C,n(tg), k

0
g~bgkgv1,

bg~
dg

�� ��
dg

�� ��zag lCWO,g

�� ��v1,
ð2Þ

Figure 1. Network model and jitter. (a) is a cartoon depicting the Drosophila circadian molecular network; protein and mRNA are represented by
capital letters and lower case, respectively. Red arrows and cyan blocked lines indicate stimulatory and inhibitory interactions, respectively. The green
arrow ending in X indicates that CRY protein enhances the degradation of TIM. (b) and (c) plot recurring orbits of the wt and cwo-mutant models in
LD (cycles 100 to 120000), respectively; observe the jitter/variation when CWO is absent. The variability of CWO is proportional to the variability of
each direct target gene at the times of its peak and trough (tg , see File S1):

VCWO,n(tg)%agVg,n(tg), agw0:

(d) plots the variability of CWO (y-axis) vs. per mRNA (x-axis) at the peak-time of per. (e) illustrates the theoretical results predicting that the jitter of
CWO dampens the jitter of direct targets at the times of their peaks and troughs. (f)–(k) plot per oscillations in simulations where the CLK/CYC of each
cycle (total = 70) of the wt (f–h) and the cwo-mutant (i–k) models is pulsed at ZT = 14 hr by pseudorandom numbers drawn from a uniform
distribution on [0, 0.001] (f and i), [0, 0.01] (g and j), and the unit interval (h and k), respectively. The unit of the y-axes of b–c and f–k is arbitrary.
doi:10.1371/journal.pone.0011207.g001
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where lCWO,gv0 are regulatory weights that encode the CWO-

mediated repressive actions (see Figure 1 and File S1). Interest-

ingly, k
0
g~bgkgv1 for all direct targets. Equations (1) and (2)

reveal that the cycle-to-cycle peak-time variability of per and tim in

the cwo-mutant model is always larger than the variability of

CLK/CYC. CWO seems to lower this cycle-to-cycle jitter because

its own variability, proportional to each direct target gene, is

subtracted by its negative repressive actions. Notice that the design

of the CWO negative control circuit is similar to the idea of digital

phase-locked negative loops in the sense that the variability of

CWO, proportional to the variability of each direct target, is fed

back by the negative loops to dampen the variability of each direct

target (see Equations 1–2 and Figure 1e). Therefore, Equations (1)

and (2) predict that CWO lowers the cycle-to-cycle variability in

each direct target gene at least at the times of its peak and trough.

Biological systems can be noisy
To study how the wt and cwo-mutant networks react to errors,

CLK/CYC is pulsed with noise at ZT = 14 hours, i.e. near its

peak. The data reveal that the wt model shows less per variability/

jitter than the cwo-mutant model even when noise is drawn from

the unit interval (Figures 1f–1k). These findings validate the

theoretical results.

The following quantities Ji(t) and S(t) are called, respectively,

the jitter of molecule, i, and of the circadian network at ZT~t:

Ji(t)~ lim
N?z?

1

N

XN

n~2

logDVi,n(t)D, and S(t)~
1

I

XI

i~1

Ji(t): ð3Þ

N and I refer to the total number of cycles and oscillating

molecules, respectively. The circadian jitter is the mean of the

molecular jitters.

CWO is an anti-jitter molecule in LD
The goals of the following computations are to evaluate the

theoretical results and study the effects of CWO on the jitter of

each direct target gene and of the entire network. The analysis is

done in LD conditions; the system is integrated numerically from 0

to 24 hrs and data is collected only at a prescribed time (Figure 2).

As predicted, the results reveal that CWO actions dampen jitter of

the whole network as well as the jitter of direct target genes not

only at the times of their peaks and troughs. In particular, the wt

network jitter is lower than the cwo-mutant model at 15

independent times that span both light and dark cycles

(Figures 2, S1, S2, and S3). The fact that two independent

integration methods (ode45 and ode15s) yield consistent results

enhances my confidence in these findings (Figure S4).

Stable limit cycles and stable phase in LD
Typically, chaotic systems exhibit dynamics that are highly

sensitive to initial conditions resulting in exponential growth of

small perturbations in the initial conditions. The Lyapunov

exponents (LE) describe the stability of nonlinear systems by

measuring the exponential divergence or convergence of infini-

tesimally close trajectories. A positive LE is taken as an indication

that the system is chaotic. I apply the discrete QR method with

orthonormalization at each step to compute the LE (see File S1)

[11–13]. The findings reveal that the maximal LE converge to

positive real numbers thus providing evidence for chaotic

dynamics of the wt and cwo-mutant models in both LD and DD

conditions (Figures 3a and S5). The wt model has two positive LE

Figure 2. CWO dampens molecule and network jitters in LD. To avoid the complications of numerical integration over long periods, the
integration of these experiments is performed from 0 to 24 hr while computing measurements only at two fixed time points, ZT~t and 24 hr; t

corresponds to either the time of the peak (tg max), trough (tg min) of each direct target gene or tgmid~
tg maxztg min

2
. The procedure is then repeated

with the last vector of the previous cycle as initial condition. The numerical integration methods are based on an explicit Runge-Kutta formula, the
Dormand-Prince pair (ode45, Matlab), and on a variable order solver based on the numerical differentiation formulas (ode15s, Matlab). Relative error
tolerance is 10{8 . Data from ode45 are shown here, the results from ode15s are shown in Figure S4. (a) and (b) plot the jitter of per at
t~tper min,tpermid,tper max in the wt and cwo-mutant models in LD, respectively (see Equation 3). (c) and (d) plot the network jitter of the wt and cwo-
mutant models in LD, respectively. Notice that the limits converge and that per and network jitters are larger in the cwo-mutant model as compared
to wt. Similarly, tim, cwo, pdp1 and vri jitters are also larger in the cwo-mutant models as compared to wt (Figures S1, S2, and S3). Network jitter is
lower in the presence of CWO at t [ ftg min,tgmid,tg maxg, where g refers to direct target genes. These times include ZT = 2.91, 4.19, 4.22, 5.2, 5.22, 8.68,
10.07, 10.15, 10.8, 10.99, 14.44, 15.95, 16.4, 16.77 and 19.09 in the wt model and ZT = 6.42, 7.58, 7.88, 7.94, 8.98, 12.19, 13.31, 13.75, 13.76, 14.97, 17.96,
19.04, 19.623, 19.57 and 20.97 in the cwo-mutant model (see Figures S1, S2, and S3).
doi:10.1371/journal.pone.0011207.g002
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in both LD and DD; the cwo-mutant model has 2 and a single

positive LE in LD and DD conditions, respectively (Figure S5).

The LE were computed over 6.16106 hours. The averages of the

maximal LE of the last million hours are 0.0141, 0.016, 0.0555,

and 0.0539 in the wt LD, cwo-mutant LD, wt DD, and cwo-mutant

DD models, respectively; the standard deviations are 0.0012,

4.543661024, 1.322461026, and 4.805061027, respectively. The

averages and standard deviations of the second positive LE of the

wt LD, cwo-mutant LD, and wt DD models are, respectively,

[1.678261024,1.571961025], [1.351361026, 3.840861026], and

[7.854961024, 4.363261027].

The algorithm for computing the LE of the clock models is

applied to the classical Lorenz attractor. The LE of the Lorenz

attractor converge at 0:9055, {4:9865|10{7, and {14:5721,

which are in agreement with the literature (see File S1 and Figure

S5b). These findings enhance my confidence in the computation of

the LE.

Phase-space graphs in LD conditions reveal trajectories of the

wt and cwo-mutant models that are attracted to stable limit cycles

(Figures 3b–c, S6, S7, S8, and S9), which are consistent with

chaotic attractors in the sense that the orbits are confined to small

subsets of the space. Furthermore, the position of ZT = 0 remains

restricted to a very small neighborhoods on the limit cycles of the

wt and cwo-mutant models in LD (see Figures 3b–c arrows).

CWO stabilizes recurrence time and phase in LD
To plot recurrence maps, the state of the network at ZT~0 is

recorded as days (cycles) advance. Here, the numerical integration

Figure 3. Chaotic attractors and almost periodic orbits in LD. (a) plots the positive maximal Lyapunov characteristic exponents of the wt
model in LD (blue), wt model in DD (black), cwo-mutant model in LD (red), and the cwo-mutant model in DD (cyan), respectively. (b) and (c) plot the
orbits from cycle 100 to 120,000 of the wt and cwo-mutant models in LD, respectively. Observe that the trajectories remain confined to limit cycles. In
addition, the orbits revisit the same neighborhoods at ZT = 0 in LD (arrows pointing to red X). (d) and (g) are recurrence plots of consecutive levels of
per (arbitrary unit) at ZT = 0 in the wt and cwo-mutant models, respectively; the following cycles are plotted in this order, 1) cycles 70,000 to 120,000
(yellow), 2) 115,000–120,000 (blue), 3) 115,00–116,000 (green), and 4)119,000–120,000 (red). (e) and (h) are recurrence plots of consecutive peak-to-
peak times (hr) of per in the wt and cwo-mutant models, respectively; the following cycles are plotted in this order, 1) cycles 70,000 to 120,000
(yellow), 2) 115,000–120,000 (blue), 3) 115,00–116,000 (green), and 4)119,000–120,000 (red). (f) and (i) plot D(t) and Dcwo(t) for
t~tper min,tpermid,tper max; similarly, D(t)vDcwo(t) for t~tg min,tgmid,tg max, where g refers to direct target genes tim, cwo, pdp1, and vri. The unit of
the y-axes of (b) and (c) is arbitrary.
doi:10.1371/journal.pone.0011207.g003
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method (ode45) uses variable time steps from 0 to 24 hr; this

procedure is repeated with the last vector of the previous cycle as

initial condition. To ensure that the results are not biased by the

discretization procedure, the integration is also performed with

smaller maximal time steps (6K and61/8). The recurrence maps

consistently reveal that, as compared to wt, the molecular levels of

the cwo-mutant model exhibit larger variability at ZT = 0

(Figures 3d, 3g and S10). Dynamical systems are periodic in the

mathematical sense if they revisit the same points or exact values.

Since the models are not periodic (Figure 3), I will use the term

peak-to-peak time instead of period. The orbits of the wt and cwo-

mutant models are almost periodic in the sense that each orbit

revisits a very small neighborhood of the phase space at the end of

each LD cycle (Figures 3b–c, 3d, and 3g). Because a periodic

multidimensional biological network may be excessive as it

requires significant control, an almost periodic orbit seems like a

practical solution.

Previous results showed that peak-to-peak time is inversely

proportional to per mRNA levels within bounds (see [10]).

Furthermore, per mRNA levels exhibit larger variability in the

absence of CWO (Figures 3d and 3g). Thus, it is not surprising

that the absence of CWO leads to larger variability in peak-to-

peak times (see Figures 3e and 3h). Specifically, peak-to-peak times

vary within 24 hr61.8 seconds and 24 hr62.4 minutes in the wt

and cwo-mutant models, respectively.

Figures 2 and 3 reveal that the actions of CWO dampen jitter

and suggest that CWO decreases the size of the small

neighborhood revisited by the trajectory at any fixed ZT. To

estimate the dimension of this neighborhood, I examine the

quantity D, which reflects the average Euclidean distance of the

recurring orbit from a single point within the attractor at ZT~t,

D(t)~ lim
N?z?

1

N{c
(
XN

n~cz1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

(Xi,n(tz24n){Xi,c(tz24n))2
r

):ð4Þ

Here c refers to a cycle number such that the forward orbit

remains confined to the chaotic attractor/limit cycle; c is taken as

100. The findings reveal that the neighborhood revisited by the

orbit at a fixed ZT is confined to a sphere and CWO reduces the

radius of this sphere in LD (Figures 3f and 3i).

Phase shifts in DD
Like LD cycles, phase-space graphs in DD conditions also reveal

trajectories that converge to stable limit cycles/chaotic attractors

(Figures 4a–b, S7, and S9). However, unlike the results in LD, the

phase exhibits minute shifts to the left and right after each DD

cycle in the wt and cwo-mutant models, respectively (Figure 4,

arrows). These findings highlight the critical importance of light in

resetting the phase of the clock each day by confining each

molecular peak to the proximity of a prescribed time (see Figure 3).

Discussion

The theory and results detailed in this paper support the

conclusion that CWO appears to control negative circuits that

reduce jitter in the Drosophila circadian clock leading to

stabilization of peak-to-peak time. There is no current data from

cwo-mutant flies that is relevant to the dynamics of the clock.

Nonetheless, experiments could be designed to validate these

Figure 4. Phase shifts in DD. (a) and (b) plot the trajectories of the orbit from cycle 100 to 120,000 of the wt and cwo-mutant models in DD,
respectively. Observe that the trajectories remain confined to limit cycles. However, unlike the limit cycles in LD (Figures 3b–c), the position of ZT = 0
(red X) in the limit cycle migrates in the direction of the arrows as cycles advance (a, cycles 100 to 20,000; b, cycles 100 to 120000). (c) and (d) plot
recurring orbits of the wt and cwo-mutant models in DD; the phase exhibits minute shifts to the left and to the right at the end of each cycle in the wt
and cwo-mutant models, respectively (arrows). The per mRNA oscillation in the first (cycle = 100), middle (c, cycle = 10000; d, cycle = 60000) and last
cycles (c, cycle = 20000; d, cycle = 120000) are labeled in green, yellow, and red respectively. The unit of the y-axis is arbitrary.
doi:10.1371/journal.pone.0011207.g004
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predictions; like a detailed analysis of variability in peak-to peak

times between wt and cwo-mutant flies. This is the first example of

a putative molecular anti-jitter negative circuit; it is remarkable

that designs that reduce jitter in electronic clocks are similar to the

negative circuits controlled by CWO.

The theoretical results reveal that peak-to-peak times vary

within 24 hr61.8 seconds and 24 hr62.4 minutes in the wt and

cwo-mutant models, respectively. This translates to an 80-fold

difference generated by a jitter that appears after the 3rd place

after the decimal point; a peak-to-peak time of 24 hours is equal to

1440 minutes or 86,400 seconds. Chaotic attractors have been

described in dynamical biological systems like the heart rate, cell

division, oscillatory enzymatic reactions, and calcium oscillations

[14,15]. Prior to the discovery of cwo, Tsumoto et al. and Leloup et

al. reported phase-space graphs from a model of the Drosophila

circadian clock consistent with either chaos or birhythmicity

[16,17]. The positive maximal LE, reported here, demonstrate

that both the wt and cwo-mutant models of the Drosophila

circadian clock are chaotic in LD and DD. Nevertheless, the orbits

are confined to limit cycles supporting the idea of chaotic

attractors. Daily light appears to play a critical role in resetting

the phase by limiting the molecular peaks to prescribed times.

Methods

Simulations are performed in Matlab (Mathworks, Natick, MA)

at the Dense Memory Cluster of the Alabama Supercomputer

Center (www.asc.edu). Details of the model, theory, and

computations are included in File S1.

Supporting Information

File S1 Supplementary material.

Found at: doi:10.1371/journal.pone.0011207.s001 (0.41 MB

DOC)

Figure S1 CWO lowers tim and network jitters. Shown are the

tim and network jitters of the wt (a,c) and cwo-mutant (b,d) models in

LD at t M {ttimmin, ttimmid, ttimmax} starting from cycle 100.

Found at: doi:10.1371/journal.pone.0011207.s002 (2.37 MB TIF)

Figure S2 CWO lowers Pdp1 and network jitters. Shown are the

Pdp1 and network jitters of the wt (a,c) and cwo-mutant (b,d) models

in LD at t M {tpdpmin, tpdpmid, tpdpmax} starting from cycle 100.

Found at: doi:10.1371/journal.pone.0011207.s003 (2.96 MB TIF)

Figure S3 CWO lowers vri and network jitters. Shown are the vri

and network jitters of the wt (a,c) and cwo-mutant (b,d) models in

LD at t M {tvrimin, tvrimid, tvrimax} starting from cycle 100.

Found at: doi:10.1371/journal.pone.0011207.s004 (2.52 MB

DOC)

Figure S4 CWO lowers direct target and network jitters, second

numerical method. These results are computed by ode15s (see

Figure 2 legend); shown are the plots of per and network jitters of

the wt (a,c) and cwo-mutant (b,d) models in LD at t M {tpermin, tpermid,

tpermax} starting from cycle 100.

Found at: doi:10.1371/journal.pone.0011207.s005 (3.19 MB TIF)

Figure S5 The Lyapunov characteristic exponents. (a) plots the

second positive LE of the wt model in LD (blue), wt model in DD

(black) and the cwo-mutant model in LD (red). (b) plots the LE for

the Lorenz equations (s= 10, r= 28 and b= 8/3). (c–f) plot the

full LE spectrum of the wt and cwo-mutant models in LD and DD

conditions.

Found at: doi:10.1371/journal.pone.0011207.s006 (2.87 MB TIF)

Figure S6 Attractor to stable limit cycle; wt model in LD.

Shown are the trajectories of the wt model in LD starting from

different points in the phase space (red X) and converging to a

stable limit cycle (cycles 1–120000).

Found at: doi:10.1371/journal.pone.0011207.s007 (2.38 MB TIF)

Figure S7 Attractor to stable limit cycle; wt model in DD.

Shown are the trajectories of the wt model in DD starting from

different points in the phase space (red X) and converging to a

stable limit cycle (cycles 1–120000).

Found at: doi:10.1371/journal.pone.0011207.s008 (2.38 MB TIF)

Figure S8 Attractor to stable limit cycle; cwo-mutant model in

LD. Shown are the trajectories of the cwo-mutant model in LD

starting from different points in the phase space (red X) and

converging to a stable limit cycle (cycles 1–120000).

Found at: doi:10.1371/journal.pone.0011207.s009 (2.33 MB

DOC)

Figure S9 Attractor to stable limit cycle, cwo-mutant model in

DD. Shown are the trajectories of the cwo-mutant model in DD

starting from different points in the phase space (red X) and

converging to a stable limit cycle (cycles 1–120000).

Found at: doi:10.1371/journal.pone.0011207.s010 (2.33 MB TIF)

Figure S10 Jitters persist after lowering maximal time steps.

Shown are the variations in per mRNA oscillations of the wt (a–c)

and cwo-mutant (d–f) models (cycles 100–1500) when the maximal

time step of ode45 is not changed (a and d), multiplied by 1/2 (b

and e) and 1/8 (c and f).

Found at: doi:10.1371/journal.pone.0011207.s011 (2.70 MB TIF)
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